

Cross Sectional Characterization of Planar and Nonplanar Nanostructures using X-ray Scattering

Chengqing Wang¹, Hae-Jeong Lee¹, Ronald L. Jones¹, Kwang-Woo Choi^{1,2}, Jimmy Price³, Benjamin Bunday⁴, <u>Wen-li Wu¹</u>

 ¹Polymers Division, NIST, Gaithersburg, MD 20899-8541
²Intel Corporation, Santa Clara, CA
³International SEMATECH, Austin, TX
⁴International SEMATECH Manufacturing Initiative (ISMI), 255 Fuller Rd 359, Albany, NY 12203

Work supported by NIST Office of Microelectronics Programs

Methodology:

- 1) Measure diffraction pattern at varying angles of incidence
- 2) Compile data into Intensity vs. q_x,rotation angle
- 3) Transform data from sample rotation to Q_x,Q_z coordinate plane
- 4) Fit data using Fourier transform of ideal pattern cross section
- 5) Applicable to buried structure with multiple materials- Si, Cu, Ta, Hf etc.

Composite X-ray detector image after large anglular rotation ω

0.01 q (A⁻¹)

1.E+06

1.E+05 1.E+04

1.E+03

1.E+02 1.E+01 1.E+00

Intensity (cm⁻¹)

Resulting X-ray detector image at a fixed rotation angle $\boldsymbol{\omega}$

"Single-slice" data set obtained in ≈ 1 min

Transform raw data to Q_x and Q_z coordinate plane

Quantities Readily Available from CD-SAXS

Line Width Roughness Test Vehicle

Cell 1 (S1): LWR [effect of tab amplitude]

(200 x 600) µm Grating

200

600

35nm Line / 175nm Pitch / 100nm tab period / 15nm tab ampl /50nm tab width

LWR Comparison- NO- preprogrammed roughness

NIST

DWF/removed SWA component

CD-SAXS detects overall line shape fluctuations

Extending applicability from planar films to line gratings

- Planar films film thickness electron density through film interfacial roughness
- Patterned (imprinted) films

pattern height line-to-space ratio (vs. pattern height) residual layer thickness fidelity of pattern transfer

High resolution X-ray reflectometer

High precision settings

X-ray optics goniometer control

Principle of Specular X-ray Reflectivity (SXR)

If atomic composition is given, q_c is converted into ρ_{mass}

NIL as a Next Generation Lithography

- mold (Si, Quartz, etc)
resist (polvmer, monomer)
- substrate

imprint	
(force + UV or heat)	

Advantages

- Resolution (sub-10 nm)
- High throughput (min/wafer)
- Low cost (\$0.2M vs \$25M)
- Simplicity (flow vs rxn-diff)
- Flexibility (UV, heat, excimer)

 SEM of a 200 nm period grating mold etched into (110) Si ral of the SiO₂ mask. Note the impoth iidewalls obtained.

fabricate complex structures...

release

RIE etch

Applications

- semiconductors
- bio chips & microfluidics
- optical components
- Photonic devices
- memory & logic devices
- display (wire grid polarizers)
- high brightness LEDs
- digital camera lens arrays

build functional devices!

Molecular electronic circuits: Imprinted electrode (top) and imprint mold (bottom)

MOSFET fabricated by NIL at 4 lithographic levels (channel length: 60 nm)

SXR of Mold

SXR of Imprinted Resist

Comparing SLD in the patterned region to the fully dense material

SLD (layer) = SLD (Si/SiO₂) × (1 - f_{space}) + SLD (air) × f_{space}

SLD (layer): SLD of each layer in the patterned region SLD (Si/SiO₂) and SLD (air): SLD of Si substrate and air, respectively f_{space} : lateral fraction of space between the lines in the pitch.

Line-to-space ratio can be determined via XR **BUT not** the dimension of line or space

X-ray Scattering Length Density Profiles

Profiling real pattern Structure

- CD-SAXS pitch & SXR line-space ratio defines absolute length scale
- Full line shape profile as a function of pattern height are quantified
- Excellent fidelity of pattern transfer
- Side wall angles and line/space ratio are consistent with CD-SAXS
- Less agreements w/ CD-SAXS line height; SXR is probably superior

- SXR is utilized as a powerful methodology to quantify relative line-tospace ratio as a function of pattern height in periodic patterns
- For periodic patterns an external lateral length scale calibration can be used to convert the relative line-to-space ratios into absolute values
- SXR complements CD-SAXS for 3D dimensional metrology in nanostructures

All CD-SEM, IR-Reflectivity and scatterometry measurements were made on the SA4 module. This metrology test array consists of a 100um X 500um box of 2000 repeating Fin lines.

Air

TiN

HfSiO

SiO₂

Si

Sidewall

Botton

There are at least THREE modulation frequencies in the intensity profile. And the repeating length (pitch?) is 400 nm instead of 200 nm. It indicates there might be sort of super structures in the dense gratings.

·····

F 2208 070828007_6060707_05_SA4_rot_s.dm3*_____MAG: 5.9kX

Definitions:

w: line width

- d: High-K dielectric thickness
- L: pitch

ρ₁: electron density of High-K dielectric

ρ₂: electron density of silicon node

High-K dielectric

Mask overlay error – Pitch Shift

26

Amazing FinFET Qx-Qz map

Conclusions

- X-ray scattering has been demonstrated as a viable reference metrology for nanostructure characterization line width, side wall angle, line height and side wall roughness
- 3D nanostructures e.g. FinFET can be characterized using X-ray
- Buried 3D structures are our next targets

CSTIC Conference

March 16-18 2010, Shanghai, China

Symposium on Metrology, Testing and Reliability

