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Abstract:       Constructing an efficient and accurate model from security events to determine an attack scenario for an enterprise network is 
challenging. In this paper, we discuss how to use the information obtained from security events to construct an attack scenario 
and build an evidence graph.  To achieve the accuracy and completeness of the evidence graph, we use Prolog inductive and 
abductive reasoning to correlate evidence by reasoning the causality, and use an anti-forensics database and a corresponding 
attack graph to find the missing evidence.  

 
1. INTRODUCTION 

Investigators of digital crime look for evidence so that they 
can construct potential attack scenarios with the hope that 
they can be more convincing than the ones presented by the 
defense. However, attackers who launch attacks against 
enterprise networks tend to use sophisticated techniques 
such as multi-host, multi-step attacks and anti-forensics, 
which makes finding real evidence difficult. Besides, the 
defense may question the admissibility of presented 
evidence, rebut the arguments presented by the prosecution 
or present an alternative scenario that fits the evidence 
presented by the prosecution that would absolve the 
accused of wrongdoing. Consequently, using incomplete 
evidence to re-construct the attack scenario that can 
withstand a rebuttal is challenging.   

Enterprise systems generate events to show their state 
changes that are categorized by criticality and recorded in 
event logs. Although the topic of using IDS logs as forensic 
evidence has been controversial, they provide the first level 
of information for forensics analyst [4]. Many researchers 
have proposed to aggregate redundant alerts and correlate 
them to determine multi-step attacks [1, 9]. However, most 
reported work used non-automated ad-hoc methods. In 
order to partially automate forensic analysis, Wang et al. 
proposed a hierarchical reasoning framework to correlate 
alerts using so-called local rules and group them using so-
called global rules [7]. The end result of this hierarchical 
reasoning system forms an evidence graph that visualizes 
multi-host, multi-step attacks in an enterprise network. 

Although there is extensive work regarding using 
evidential reasoning in formulating hypothesis and 
collecting evidence in criminal investigations [2], to the 
best of our knowledge, [7] is one of the few that proposed 
to use reasoning to correlate attack scenarios represented by 
security event alerts. However, this work did not implement 
an end-to-end system to fully automate the forensics 
analysis process. Besides, this work left two problems un-
resolved: (1) Variable alternative hypotheses could explain 
the same attack scenario in the situation where the evidence 
has been destroyed, but only one of them is correct; (2) The 
evidence that can provide security advice to a network 
administrator might not be admissible in a court of law.  In 
this paper, we propose to implement a Prolog reasoning 
based model to automate multi-host, multi-stage 
vulnerability analysis on an attacked enterprise network. 
Because Prolog can easily query information from SQL 
database table and is well known to be more suitable tool 
for implementing programs with explicit domain 
knowledge representation [7]. Also, we propose to use an 
anti-forensics database and a corresponding logical attack 
graph to help resolve the two problems mentioned above. 
We implement our model by extending an end-to-end 
framework and reasoning system MulVAL [13,15]. 

The rest of the paper is organized as follows. Section 2 
describes background. Section 3 is related work. Section 4 
describes the experimental network, and Section 5 
introduces attack graphs and the tool used in the paper. 
Section 6 is our main contribution, which describes our 
model of building evidence graphs for network attack 



analysis under the situation where anti-forensics is used. 
We conclude this paper in Section 7. 

2. BACKGROUND  

2.1 Digital Forensics and Anti-forensics 

Digital forensics uses scientifically validated methods to 
collect, validate and preserve digital evidence derived from 
digital sources [20]. Digital forensics investigators analyze 
data from enterprise systems and use imaging and analysis 
tools to extract data from physical or storage media 
memory to do content analysis [23]. While live analysis 
risks getting changing data from a computer, dead analysis, 
although better, requires terminating all system processes 
[23].  

Analyzing network data presumes that some monitoring 
tools have saved network traffic or event logs [24, 25]. 
Network IDS alerts provide first clues about potential 
attacks. However, the large quantities and false positives of 
the IDS alerts make the analysis difficult.  As a solution, [5] 
uses a fault graph based on safety properties and security 
policies to impose a structure on log data so that the IDS 
can decide what data is necessary to log for forensic 
analysis in a way that facilitates determining the attack 
scenario and its effect.  

Attackers use anti-forensics tools as attempts that 
negatively affect the existence, amount, and/or quality of 
evidence from a crime scene, or make the examination of 
evidence difficult or impossible to conduct [21]. Current 
anti-forensic techniques include (1) attacking data and (2) 
attacking tools [21]. Techniques used to attack data include 
overwriting stored (meta) data, deleting files or media, 
hiding information using obfuscation, steganography, 
encryption or unallocated (slack) spaces, etc. [21]. 
Techniques used to attack forensics tools interfere with or 
mislead forensic analysis by crafting images or data that is 
unusable by tools [14].  

2.2 Evidence Graph  

An Evidence Graph is a graphical model that presents 
intrusion evidence and their dependency, which can be used 
to ascertain multi-stage, multi-step attacks in enterprise 
networks [7]. We modify the formal definition from [11] as 
follows.  

Definition 1(Evidence Graph): An evidence graph is a 
sextuple G=(Nh,Ne,E, L, Nh-Attr, Ne-Attr,), where Nh and 
Ne are two set of disjoint nodes representing host computers 
involved in the attack and its related evidence; E ⊆(Nh ×Ne) 
∪(Ne×Nh); L is mapping from a node to its label; Nh-Attr 
and Ne-Attr are attributes to host and evidence nodes 
respectively.  
• Attributes for Host Nodes 
a. Host ID: Identity of a host node. 
b. States: Host node category consisting of one or many of 

the “source”, “target”, “stepping-stone” and “affiliated”. 
Affiliated hosts have suspicious interactions with an 
attacker, one of victims or stepping-stone.  
c. Time stamps: Time stamps that record the attack states 
of a machine.  
• Attributes for Evidence Nodes 
a. General attributes: Includes event initiator, event 
target, event description and event time stamp(s).  
b. Relevancy: Measurement of impact on attack success, 
which includes the irrelevant true positive = 0, Unable to 
verify = 0.5 and Relevant true positive =1. 

2.3 MulVAL, Prolog and Datalog   

In this paper, we use and extend MulVAL, a Datalog based 
attack graph generation system, to reason the correlation 
between evidence collected allegedly after a multi-stage, 
multi-step attack. We also use XSB [17], a Prolog based in-
memory deductive database engine as a rule engine [3]. 

3. RELATED WORK 

Reasoning has been used to link evidence and claims about 
attacks by using expert knowledge. In this area, [2] uses 
inductive and abductive reasoning to model potential crime 
scenarios and correlate evidence, and [6] uses a Bayesian 
inference to evaluate how well a given criminal evidence 
can choose one scenario over possible alternatives. 
However, both works are based on traditional criminal 
forensics. For network forensics, [7] uses a global and local 
reasoning system that is based on expert knowledge to 
correlate evidence and intuitively visualize attack scenarios 
by creating an evidence graph. In this work, rule based 
fuzzy cognitive map is used to model expert knowledge in 
order to reason the evidence correlation. Neither work [2, 
6] nor [7] uses Prolog programming language to formalize 
expert knowledge, evidence, and access control policy to 
automate network attack analysis, which is our contribution 
in this paper. Besides, [7] did not consider how to handle 
the situations where anti-forensics techniques have been 
used and there might be variable alternative hypotheses 
about the missing evidence, which instead will be discussed 
in this paper. 

4. EXPERIMENTAL NETWORK 



 

Figure 1: Experimental Attacked Network 

Table 1: Machine IP address and Vulnerability 

Machine IP Address/Port Vulnerability 
Attacker 129.174.124.122  

Workstations 129.174.124.184/185/
186 

HTML Objects 
Memory Corruption 
Vulnerability (CVE-
2009-1918) 

Webserver1--
Product Web 

 

129.174.124.53:8080 

 

SQL Injection 
(CWE89) 

Webserver2--
Portal Web 

 

129.174.124.53:80 SQL Injection 
(CWE89) 

Administrator 129.174.124.137 Cross Site Scripting 
Flaw (XSS) 

Database 
server 129.174.124.35  

Figure 1 is the topology of an experimental network we use 
in this paper. Table 1 has the IP addresses of computers and 
their vulnerability information. In Figure 1, the external 
Firewall 1 controls network access from the Internet to the 
enterprise network, where a webserver hosts two web 
services--Apache HTTP Server at Port 80 and Apache 
Tomcat Server at Port 8080. The internal Firewall 2 
controls the access to a SQL database server, which can be 
accessed by the webserver and employees’ workstations in 
the network. The administrator has administrative privilege 
on the webservers. SNORT is used as an IDS and firewall 
in this network. We also configured both web servers and 
the database server to log all access and queries. Sample of 
the SNORT alerts, web server access records and Database 
query log is displayed in Appendix 1. 

5. ATTACK GRAPHS AND TOOLS  

Attack graphs can serve as a basis for network attack 
detection, defense and forensics analysis [10]. Given a set 
of vulnerabilities in a system, an attack graph analysis 
provides investigators with potential attack steps that the 
attacker can take to reach the attack goals. In this paper, we 
use an attack graph as an assistance tool to find missing 

evidence.  We redefined Ou et al.’s logical attack graph 
model [15] as follows [11].   

Definition 2(Logical Attack Graph): A = (Nr, Np, Nd, 
E, L, G) is an attack graph, where Nr, Np, Nd are called 
derivation nodes, primitive and derived fact nodes 
respectively; E ⊆ ((Np∪Nd)×Nr)∪(Nr ×Nd); L is a mapping 
from a node to its label; G ⊆ Nd is an attacker’s final goals.  

This model uses logical statements in the form of 
primitive facts to represent network configurations and 
vulnerabilities.  A derived node consists of facts derived by 
applying an interaction rule to other primitive facts and 
prior derived facts. A successful interaction is called a 
derivation node, which is represented by an ellipse. A 
diamond and a box represent a derived node and a primary 
fact node respectively. An example logical attack graph is 
displayed in Figure 2.  

 

 
Figure 2: A Sample Logical Attack Graph 

Many tools generate attack graphs and security analysts 
use them to secure systems and networks. The tool that 
generates a logical attack graph as Figure 2 is called 
MulVAL [13], which uses XSB [17], a Prolog system, to 
evaluate the Datalog interaction rules on input facts. 
Datalog is a syntactic subset of Prolog. MulVAL uses 
Datalog literals (such as L(args)) to model 
network/computer configuration and vulnerability as input 
facts, and uses Datalog interaction rules to track simulation 
trace by modeling all attack techniques and security 
semantics. The interactive rules have the form: L(args):- 
L1(args1),…..Ln(argsn). MulVal is arranged so that an 
execution trace for a query/queries produces an attack 
graph. 

For example, in Table 2, we have two sample general 
rules.  Rule 1 means that the “competent” “Victim” who 
operates host computer “H” could access the malicious 
input “Software” if (1) “MaliciousMachine” can visit “H” 
by “httpProtocol” and “httpPort”, and (2) the attacker is 
located in the “MaliciousMachine”. Rule 2 means the 
attacker gets the permission “Perm” on the host computer 
“H”, if  (1) vulnerability exists in the “Software” on host 
computer “H” that can be reached by “remote Client” with 
privilege escalation- “privEscalation”; (2) the “Victim” has 
the permission “Perm” on the host computer “H”; and (3) 
the competent “Victim” who operates host computer “H” 
accesses the malicious input-“Software”. 

In the interactive rules, the capital identifier in every 
literal is a variable that will be instantiated by concrete 
terms during Prolog run time. MulVAL uses an input file to 



hold all the concrete terms (facts). For example, Table 3 
holds the facts that correspond to two rules in Table 2.  If a 
query is made to Rule 2 in Table 2, Prolog interpreter will 
instantiate all variables by concrete terms in Table 3 to 
decide if corresponding literals in Table 2 are true, and if 
the evaluation on the rules succeeds. If it succeeds, this rule 
records the successful derivation into a trace file, which 
forms the attack path. The trace steps of querying Rule 2 
form an attack graph in Figure 3. 

Table 2: MulVAL Reasoning Rules 

Rule
1 

interaction_rule(  
          (accessMaliciousInput(H, Victim, Software) :- 
  competent(Victim), 
  hacl(H, MaliciousMachine, httpProtocol, httpPort), 
  attackerLocated(MaliciousMachine)), 
      rule_desc('Browsing a malicious website')). 

Rule
2 

interaction_rule((execCode(H, Perm) :- 
  vulExists(H, _, Software, remoteClient, privEscalation), 
  hasAccount(Victim, H, Perm), 
  accessMaliciousInput(H, Victim, Software)), 
      rule_desc('remote exploit for a client program')).   

Table 3: Machine/Network Configuration Facts 

attackerLocated(internet).         
    //The attacker is from Internet                                    
competent(employee).              
    //The user of the workstation is a competent employee 
hacl(workStation,internet,httpProtocol,httpPort).  
   //Workstation can be accessed from Internet 
hasAccount(employee,workStation,root). 
   //The employee has root privilege on the workStation 
isClient(MaliciousSite). 
    //The employee accessed a malicious link 
eviExists(workStation,'CVE-2009-1918',MalicousSite). 
    //The workstation has CVE-2009-1918 vulnerability, which can 
be triggered by accessing a malicious link 
vulProperty('CVE-2009-1918',remoteClient,privEscalation). 
    //This vulnerability allows the attacker comprise the machine 
 

The logical statement and reasoning in MulVAL greatly 
reduces the size complexity of an attack graph. However, 
even with this model, a logical attack graph is still too large 
even for a small network, since this reasoning engine 
traverses all possible derivation paths. Forensics analysts 
need visualization tools to look at such an attack graph.  
Besides, because such a logical attack graph is constructed 
by using vulnerability information, some attack path(s) 
might be missing or incorrect if the corresponding 
exploit/vulnerability information is not complete or correct 
[16].  These drawbacks are hindrance for us to use an attack 

graph to do forensics analysis, which is the reason why we 
use evidence to construct attack scenarios for forensics 
analysis. In this paper, we propose to use and extend 
MulVAL reasoning rules to achieve this. 
 

 
1. execCode(workStation,root) 
2. Rule 3(remote exploit for a client program) 
3: accessMaliciousInput(workStation,employee,_) 
4. Rule 23(Browsing a malicious website) 
5. attackerLocated(internet) 
6. hacl(workStation,internet,httpProtocol,httpPort) 
7. competent(employee) 
8. has Account(employee,workStation,root) 
9. vulExists(workStation,'CVE-2009- 
                  1918',_,remoteClient,privEscalation) 

Figure 3:  An Attack Graph Generated by Using Rules in 
Table 2 against Facts in Table 3 

6.  OUR REASONING BASED MODEL  

This section explains our model that uses and extends 
MulVAL to correlate event related evidence including 
alerts and log to create an evidence graph.  The sample 
model is shown in Figure 4 (different shapes represent 
different processing stages). In this model, we first 
preprocess the evidence that is related to corresponding 
security events, and then use a three-stage process to 
construct the attack scenario in the form of a graph.  

6.1 Pre-processing Evidence 

As mentioned in 2.1, in order to reduce the large quantities 
and false positives of alerts, we adopted the method in [5] 
for the logging. At this stage, we pre-process IDS alerts and 
log information to serve the next three-stage evidence 
correlation process.  First, we remove all alerts and log 
information whose IP addresses are not related to the 
attacked network. Afterwards, we categorize the alerts or 
log information as primary evidence and secondary 
evidence. While primary evidence is explicit and direct 
about the attack, the secondary evidence is implicit.

 



Figure 4: The System Model for Constructing Attack Scenario 

Table 4: Formalized Alert/Log Example 

ID Time Stamp Source IP Destination IP Content Vulnerability Validation 

SA1 8/13/13 12:10 129.174.124.122 129.174.124.184 SHELLCODE x86 inc ebx NOOP CVE-2009-1918 True 

Table 5:  Vulnerability Database 

Vulnerability OS Software Version Attack Action 

CVE-2009-
1918 Windows IE 

IE 5.01 
SP4; IE 6 
SP1;IE 6 
Win XP 
SP2 
… 

Allows remote 
attackers to 
execute 
arbitrary code 
via a crafted 
HTML 
document 

 
One example of a primary evidence is an alert from a IDS 
system.  An example of a secondary evidence is that “only 
the attacker was logged in at that time”. We mainly use 
primary evidence to reconstruct the attack scenarios. Only 
when the primary evidence is not available, we use 
corresponding secondary evidence. 

In our experiment, we have following alerts as primary 
evidence:  (A) “SHELLCODE x86 inc ebx NOOP” alerts 
that are from the attacker to workstations; (2)  “SQL 
Injection Attempt --1=1” alerts from the attacker to 
“Portal” Web Service; (3) “WEB-MISC cross site scripting 
attempt” alerts from the attacker to the administrator. Our 
second evidence includes other log information recorded by 
webservers and the database server, which includes all 
clients’ web access and database query history.  

Because XSB-ODBC interface allows XSB users to 
query databases through ODBC connections, we formalize 

evidence to SQL records by using the following attributes: 
ID, Timestamp, Source IP, Destination IP, Content, 
Vulnerability and Validation (See Table 4 as example). 
Here, “vulnerability” holds its NVD item that corresponds 
to the evidence [19].  The field “validation” is used to 
determine if an alert is a false alert or not.  To validate an 
attack, we use tools to investigate the attacked host 
computers, confirming that the attack has been successfully 
launched. Because there can be multiple alerts or log items 
on the same attack action, in order to save storage and 
improve the efficiency, we only save one instance of the 
repeated alerts. Besides, we formalize the vulnerability 
information from NVD to a database table as given in 
Table 5, using it to pre-evaluate the admissibility of 
corresponding evidence. For example, according to Table 
5, “CVE-2009-1918” only works in IE, so the admissibility 
of the alert towards a Linux machine should be zero. The 
admissibility is up to the judge, but our evaluation could 
provide important reference to the court.  

6.2 Correlation Stage 1: Inductive Reasoning 

In order to correlate alerts and other evidence, we take the 
timestamp of preprocessed evidence as the order to reason 
if there is any causality between the attack states 
represented by the corresponding evidence. Because 
MulVAL reasoning rules use vulnerability information as 
Datalog literals, we use the corresponding “Vulnerability” 
to represent a piece of evidence. In this case, we can take

 

 



Table 6: The Anti-Forensic Technique/Tool Vulnerabilities Database 

ID Category Tool Technique Windows Linux Priviledge Access Vulneraibility  Effect 

A1 Attack tool  Obfuscate 
signature 

All All User Internet SNORT Rule Bypass being detected 
by rules 

D1 Destroy 
data 

BCWipe Delete file 
content 

98 Above All User Computer  Delete data 
permanently 

D2 Destroy 
data  Remove log 

file All All User Internet 
MySql 5.0 above 

set log off 
command 

Set general log off 

.. …         

  
the “Vulnerability” and its corresponding network/machine 
configurations as facts against the MulVAL interaction 
reasoning rules to see if we can get any derived result, and 
check if there is any matching evidence. Correspondingly, 
we make the correlation between the two pieces of 
evidence that represent the pre and post conditions of the 
attack. If there is no matching evidence, further 
investigation should be performed to see if there is any 
other data to support evidence. If the derived result is a 
failure, there will be no correlation here. Following the 
time-stamp order, we move on to the next piece of evidence 
and repeat the above process.  
 

 
 

 Figure 5: Match Evidence for Derived Result from Reasoning  

For example, in Figure 5, by querying the reasoning 
rules in Table 2 on the alert in Table 4( “SHELLCODE x86 
inc ebx NOOP--Buffer Overflow Attack”), we got the 
derived result that the workstation could be compromised. 
Because there is no available evidence in evidence SQL 
database showing that the workstation has been 
compromised, we used tools to investigate the workstation 
and were able to find the data to prove that the workstation 
has been compromised. Correspondingly, we correlated the 
attacker to the “compromised” workstation via the “buffer 

overflow attack” evidence. 
The above correlation is a forward traversing process, 

which uses rules to find the consequence (post-condition) 
of an attack indicated by the corresponding evidence. We 
call it inductive reasoning. 

In the case where no any evidence can be found to 
validate the derived attack consequence, we use an anti-
forensics database (Table 6) and the corresponding 
technique described in [12] to reconstruct the attack 
scenario. Our paper [12] discusses this method in details. 

 

6.3 Correlation Stage 2: Abductive Reasoning  

If inductive reasoning cannot correlate evidence in the 
Alert/Log evidence table to form an attack step, we use 
abductive reasoning to find the cause of a given piece of 
alert/log evidence. For example, if we know that a certain 
alert can be generated only from this application then we 
can create a hypothesis that “this application  must be 
running”.  This is an example of reasoning using abduction. 
We may not see any explicit evidence of this application  as 
the attacker might have deleted all the evidences. It is 
possible that a combination of some sequence of  events  
can possibly produce a given piece of available alert or log 
information.  

Hypothesis is needed for abductive reasoning. 
Specifically, by analyzing the given evidence (validated 
alert or log information), forensics experts could use their 
empirical expert knowledge or NVD advisory database to 
determine what attack would cause the attack consequence 
represented by the given evidence. By using this hypothesis 
as the attack cause, we do inductive reasoning as mentioned 
in 6.2, seeing if we can get the expected derived result 
matching the given evidence. If such a match or several 
matches exist, it proves that the hypothesis could be the 
right attack cause of the attack consequence represented by 
the given evidence. Therefore, investigators can investigate 
further to find supporting evidence in order to substantiate 
and validate the hypothesis. As mentioned in 6.2, in the 
case where there is no supporting evidence, the anti-
forensics database and technique described in [12] should 
be used, because the attacker might have used anti-
forensics techniques to destroy any evidence. 



Different forensics experts might have different 
opinions, and it is possible that the defense rebuts the 
arguments presented by the prosecution or present an 
alternative scenario that fits the evidence presented by the 
prosecution. As such, we apply the same reasoning rules to 
all possible hypotheses on the attack cause of the given 
evidence, comparing the derived results to see if any of 
them is more reasonable and convincing than alternatives. 
In order to easily compare different hypotheses, we 
implemented a GUI interface to display different 
hypotheses and their corresponding derived results from the 
reasoning.  

6.4 Stage 3: Global Reasoning  

At this stage, we do a final examination on the evidence 
graphs generated from stage 1 and stage 2, which might 
have incomplete attack path(s), since only the consecutive 
attack steps are correlated. To do so, we map the 
constructed evidence graphs to the corresponding logical 
attack, examining if there is any unsupported attack path 
[11]. If such an unsupported attack path exists, with the 
information provided by the logical attack graph, we do 
abductive reasoning from stage 2, seeing if the unsupported 
attack path could be completed. Our paper [11] has a 
detailed discussion about the mapping algorithm, which is 
used here. In order to reduce the attack graph size, we only 
use the related vulnerability and network/computer 
configuration to get a sub-attack graph [18]. 

7. CONCLUSIONS 

We have proposed a network forensics model, which 
extends a   Prolog logic based system, MulVAL, to 
automate the causality correlation between evidence 
collected from security events in an enterprise network. In 
this model, we use different methods, including inductive 
reasoning, abductive reasoning and mapping the evidence 
to a logical attack graph to construct an evidence graph for 
network forensics analysis. In order to resolve the problem 
of missing evidence, an anti-forensics database was used to 
explain how the attack was launched. Our case study 
showed that such a reasoning system could automate the 
network forensics analysis, even under the situations where 
the attacker has destroyed the evidence.  

DISCLAIMER 

This paper is not subject to copyright in the United States. 
Commercial products are identified in order to adequately 
specify certain procedures. In no case does such 
identification imply recommendation or endorsement by 
the National Institute of Standards and Technology, nor 
does it imply that the identified products are necessarily the 
best available for the purpose. 
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APPENDIX 

1:  SAMPLE ALERT AND LOG  
 
Alert : 
[**] [1:1390:8] SHELLCODE x86 inc ebx NOOP [**] 
[Classification: Executable Code was Detected] [Priority: 1] 
08/13-12:26:10.399734 129.174.124.122:4444 -> 129.174.124.184:3044 
TCP TTL:128 TOS:0x0 ID:32723 IpLen:20 DgmLen:1500 DF 
***A**** Seq: 0x7776AFF3  Ack: 0x9B7896FF  Win: 0xFFFF  TcpLen: 
20 
 
[**] [1:1390:8] SHELLCODE x86 inc ebx NOOP [**] 
[Classification: Executable Code was Detected] [Priority: 1] 
08/13-12:26:19.399734 129.174.124.122:4444 -> 129.174.124.185:3044 
TCP TTL:128 TOS:0x0 ID:32723 IpLen:20 DgmLen:1500 DF 
***A**** Seq: 0x7776AFF3  Ack: 0x9B7896FF  Win: 0xFFFF  TcpLen: 
20 

Apache Tomcat Webserver Log: 
…… 
AT_log 1: 129.174.124.122 - - [13/Aug/2013:14:35:34 -
0400] "GET /lab/Test HTTP/1.1" 200 368 
 
 

MySQL General Query Log: 
Gen_log 1: 
130813 14:37:29    40 Connect root@localhost on lab 
                                       … 
     40 QuerySET GLOBAL general_log = 'ON' 
     40 Queryselect * from profiles where 
name='Alice' AND password='alice' or '1'='1' 
Gen_log 2: 
130813 14:39:56    41 Connect root@localhost on lab 
                                        … 
     41 QuerySET GLOBAL general_log = 'ON' 
     41 Queryselect * from profiles where name='Bob' 
AND password='bob123'  
... … 
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