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Outline 

• Introduction 
• Background 

• Principles of high-resolution X-ray diffraction (HRXRD) 

• Instrumentation 

• Diffraction geometries 

• Measurements of epitaxial thin-films 

• Reciprocal space and reciprocal space maps (RSMs) 
• RSMs from epitaxial thin-films 

• RSMs from patterned epitaxial nanostructures 

• Synchrotron studies 

• Conclusions 
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Jordan Valley overview 

• Jordan Valley Semiconductors (JVS) develops and 
manufactures X-ray based in-line metrology and 
inspection solutions for the semiconductor industry 

• Provide innovative solutions for a wide variety of 
materials, process and structure challenges 

• Range of X-ray techniques including: XRF, XRR, 
(HR)XRD and XRDI  

• Tools provide fully automated measurements, 
analysis and reporting and support semiconductor 
production and R&D activities worldwide 
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Jordan Valley overview (cont.) 

• Private company 

• Established 1982, HQ in Israel 

• Global presence 

• > 180 employees  

• Manufacturing and demo sites (Israel & UK) 

• Local sales & support offices in strategic locations 
(US, Taiwan, Korea, Singapore, Europe) 
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• Tools: JVX7300 series 

• Channels: XRF, XRR and HRXRD 
Applications: 
o 7300HR: SiGe & Si:C on bulk or  

(FD)SOI, various ALD films, HKMG  
stacks, silicides… 

o 7300LSI: Ge and III/V on Si for  
sub-10 nm, HKMG, FinFETs,  
GaN-on-Si, MEMS 

o 7300F(R): Metal / magnetic films, WLP 

o 7300G: Ultra-thin films and 3D devices 

• In-line tools for silicon semiconductor 
device manufacturers for process control 
of product wafers   

 

 

 

 

Silicon semiconductor metrology tools 
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JVX7300LSI 
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What can HRXRD give us, who uses it  
and for what? 

• High-resolution X-ray diffraction (HRXRD) provides a 
wealth of information about epitaxial materials 
• Crystal lattice misfit/strain, tilt and defectivity/quality… 
• Composition and thickness of planar films  
• Shape and lattice distortion in patterned structures 

• It is first-principles (no calibration) and non-
destructive characterization and metrology technique 
• Does not require material/process dependent optical 

constants 
• Accurate and precise with very few assumptions 

• Has been used for 30+ years in the compound 
semiconductor industry for a wide range of materials 
(III-V, III-nitride, II-VI…) and devices (LEDs, lasers, CPV, 
detectors…) 
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What can HRXRD give us, who uses it  
and for what (cont.)? 

• Introduced into the Si industry 
with strain engineering for 
sub-100 nm logic devices  
• Epitaxial SiGe S/D stressors for 

PMOS mobility enhancement  
• Also Si:C / Si:P S/D stressors for  

NMOS, but less widespread 

• Used for R&D, CVD chamber 
qual., process diagnostics / 
ramp and in-line metrology 

• Solid metrology pads less 
relevant / not available 
• Transition from planar to 3D 

(FinFET) devices 
• Novel channel materials, 

e.g. SiGe, Ge and III-V for sub  
10 nm nodes  

 
April 14, 2015 

Source: A. Steegen, “Logic Scaling Beyond 10 nm”, 
IMEC Technology Forum US (July 2013) 
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Principle of X-ray diffraction based  
stress/strain analysis 

April 14, 2015 

• X-ray diffraction uses the crystal lattice as a “strain gauge” 

• The relation between the lattice parameter and diffraction angle 
is defined by Bragg’s law, 2𝑑 sin 𝜃 𝐵 = 𝑛λ 

• Most sensitive stress/strain analysis method for semi. (ITRS 2011) 
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What do we mean by “high-resolution”? 

• Epitaxial films and structures have a high degree of 
crystalline perfection 

• The features (peaks and interference fringes) in the 
diffracted X-ray intensity from epilayer-substrate material 
systems are very closely spaced 
• angular range of a few degrees at most 

• High-resolution is needed to resolve these features 
∆𝑑

𝑑
=
∆λ

λ
+

∆𝜃

tan 𝜃𝐵
 

• High-resolution usually means highly collimated and 
monochromatic X-ray beams and precise goniometry 
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High resolution XRD setups 

April 14, 2015 
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• Most common setup uses a parallel beam and point (0D) detector 
• Source and detector angles scanned using a motorized goniometer 

• Large (mm) and small (~50 um) spot configurations are available  

• JV also developed an innovative small-spot, focused beam HRXRD 
approach for fast in-line measurements 
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Common Bragg diffraction geometries and 
anatomy of a HRXRD curve 
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• Symmetric Bragg geometry is sensitive to lattice parameter 
perpendicular to the surface  

• Asymmetric geometries are also sensitive to the lattice parameters 
both parallel and perpendicular to the surface 
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Example: Fully strained SiGe epilayer 

April 14, 2015 

Symmetric 004 reflection from 22.5 nm 
epitaxial film of Si1-xGex with x = 49% on a 
Si(001) substrate 

• Composition / strain 
determined from measured 
lattice misfit 

• Misfit normal to surface 
from layer peak position 

∆𝑑/𝑑 = −∆𝜔 cot θ𝐵 

• Thickness from interference 
fringe period 

𝑡 = λ/(2∆𝜔𝑓 cos θ𝐵) 

• No dependence on uncertain 
materials parameters 
  

Measurement 
Simulation 
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Example: Fully strained Si:C epilayer 

• Si:C and Si:P can be used as 
source/drain stressors for 
NMOS transistors  
• Composition and thickness 

metrology possible using 
HRXRD due to large strain  

• Metrology is challenging 
using SE because of very 
low concentrations 

   
Symmetric 004 reflection from a 101.1 nm 
epitaxial  film of Si1-xCx with incorporated  
x = 1.4% on a Si(001) substrate 

Measurement 
Simulation 
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More complex SiGe/Si examples 

• More complex stacks give 
rise to more complex 
interference effects 

• Measured data can be  
automatically fit to  
dynamical X-ray diffraction 
theory by refining the 
parameters of a structural 
model 

 

April 14, 2015 

Periodic superlattice structure:  
[8.2nm Si0.9Ge0.1/ 22.4nm Si]×5 
on a Si(001) substrate 

NIST SRM2000 standard: 
23.7nm Si/ 48.2nm 
Si0.84Ge0.16 on Si(001) 
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Lattice deformation in epitaxial thin-films 

• If the lattice mismatch to the 
substrate and/or thickness is small, 
then an epilayer can be strained so 
that the in-plane lattice parameter 
is equal to that of the substrate 
(fully strained) 
• Tetragonal distortion of the unit cell 

• For large mismatch or thickness, it 
may become energetically 
favorable to relax 
• Creation of dislocations and/or 

roughening  

… more on this later 
Misfit  
dislocations 
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Comparison of HRXRD data from strained 
and relaxed SiGe epilayers 
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• Degradation of device 
performance and yield loss 
• Relaxed material has about 

50% less strain than a 
pseudomorphic layer   

• Relaxed material will contain 
dislocations at the interface 
and in the layer  - increased 
leakage? 

• HRXRD provides a unique, 
automated solution for strain 
metrology and assessment of 
lattice defectivity 

 No interference fringes 
“Triangular” layer peak 
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Diffraction in reciprocal space -  
Ewald sphere and Laue condition 

April 14, 2015 
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• Scattering vector 𝐐 = 𝐤′ − 𝐤 has magnitude 𝐐 = 2 sin 𝜃 ×2𝜋 λ  

• Reciprocal lattice vector G has magnitude 𝐆 = 2𝜋 𝑑𝐻𝐾𝐿  

• Laue condition 𝐐 = 𝐆 is exactly equivalent to Bragg’s law 
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Fast reciprocal space mapping - FastRSMs 

• Linear (1D) detector replaces analyzer crystal / slits and point (0D) detector 
and allows routine RSMs to be measured in the fab  

• Simultaneously  intensity acquisition over a large range of 2θ angles 

• x10-100 faster than conventional approach (minutes not hours) 

• Provides more information than available by single HRXRD curves 

• Automated RSM analysis for epi. process development and control of thin-
films and patterned nanostructures 

X-ray tube

Conditioning
crystal

Slits

Sample

Mirror Linear 
detector
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RSMs from fully strained epitaxial thin-films 

April 14, 2015 

• Layer peak position gives 
the lattice parameters 

∆𝑎 𝑎 = ∆𝐿 𝐿  
∆𝑎|| 𝑎 = ∆𝐻 𝐻  

• Composition and 
relaxation can be obtained 

• Peak in the asymmetric 
RSM is located at H = 1 
indicating the layer is fully 
strained (𝑎𝑆𝑖𝐺𝑒,|| = 𝑎𝑆𝑖) 

• Thickness fringes are 
visible in the L direction  
𝑡 ∝ 1/∆𝐿𝑓𝑟𝑖𝑛𝑔𝑒𝑠 

004 113ge 

37.6 nm Si0.81Ge0.19 on Si(001) 

Si 

SiGe 
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RSMs from relaxed epitaxial thin-films 

April 14, 2015 

• SiGe peak is shifted away from H=2 in the asymmetric 224ge map 
indicating relaxation  (𝑎𝑆𝑖𝐺𝑒,|| > 𝑎𝑆𝑖) 

• Peak is broadened due to dislocations, 𝑤(𝐻)/𝐻 ∝ 1/√𝜌 
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Layer
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RSMs from strained thin-films on  
strain relaxed buffers (SRBs) 

April 14, 2015 

004 224ge • Ge peak is shifted away 
from H < 2 in the 
asymmetric 224ge map 
indicating relaxation   
(𝑎𝐺𝑒,|| > 𝑎𝑆𝑖) 

• GeSn peak is not shifted 
in H wrt to Ge peak 
(𝑎𝐺𝑒𝑆𝑛,|| = 𝑎𝑆𝑖) 

• Composition and 
relaxation of each layer 
can be obtained 
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Patterned epitaxial nanostructures 

April 14, 2015 

• In blanket epitaxy you have 
simple biaxial stress 
• Blanket pads are less relevant 

and / or no longer available 

• In epitaxial nanostructures 
you have 
• Micro-loading effects in 

selective growth 

• Stress-state is far more 
complex, i.e. elastic 
relaxation of the epi and 
distortion of the substrate 
lattice  
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• Fins act as a diffraction grating, 𝑃 ∝ 1/∆𝐻𝐺𝑇𝑅 = 42.2 ± 0.5 nm 

• X-pattern is characteristic of trapezoidal features, 𝛼 = 9 ± 1° 

• Evidence of significant pitch walking error from SDP lithography 

• Strong half-order GTR peaks (corresponds to 2 x pitch), ∆𝑃 = 5 ± 0.5 nm 

RSM from Si fins made using spacer double 
patterning (SDP) lithography 
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RSMs from epitaxial SiGe fins 
Symmetric 004 reflection 
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• H-spacing of the GTRs gives the pitch, 𝑃 = 42 nm 

• Components of the strain tensor can be determined from intensity 
envelopes by measuring asymmetric reflection at different azimuths 
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RSMs from epitaxial SiGe fins 
Asymmetric 113ge reflection 
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• SiGe in a uniaxial stress state, cf. biaxial stress state for thin-films 
• Elastic relaxation perpendicular to the line direction 

• Composition and thickness determined from fitting, x = 25%, t = 39.4 nm  
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RSMs from III-Vs deposited in narrow (60 nm) 
trenches etched into thick SiO2 layer on Si 

April 14, 2015 

• Interest as a high mobility channel materials in sub-10 nm nodes 

• GaAs and InGaAs peaks are very broad due to the high density of 
threading dislocations, 𝜌~1010cm-2  despite the ART structures  
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Synchrotron facilities 

April 14, 2015 

Source: EPSIM 3D/JF Santarelli, Synchrotron Soleil,  
via Wikimedia Commons 

Source:  X-ray Data Booklet 
(http://xdb.lbl.gov/) 

• Orders of magnitude more brilliant than lab / fab X-ray sources 

• Provide advanced measurement capabilities, but very offline 
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Comparison of FastRSMs from SiGe fins 
measured at the APS and in the fab 

• Increased dynamic range is valuable for model development / validation.  

• Analysis of single nanostructures is also possible… 
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Conclusions 

• High-resolution XRD delivers valuable information on epitaxial 
thin-films and patterned nanostructures 
• Materials include: SiGe, Si:C(P), Ge and III-Vs for current and future 

technology nodes 
• Parameters include: strain tensor components, composition, thickness, 

pitch, pitch-walk, height and SWA as well as crystalline quality 

• Complements techniques such as SE / scatterometry and SEM / 
TEM 

• The latest generation of lab / fab tools can yield good quality 
data in minutes not several hours 
• From patterned wafers  
• Including reciprocal space mapping using linear detectors  

• In-line X-ray metrology tools, like the JVX7300 series, enable 
advance materials and process development and provide novel 
solutions for production monitoring 

April 14, 2015 
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For more information 
contact us directly or via a 

local representative 

www.jvsemi.com 


