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Optical communication systems
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M-LiPS works
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Frequency combs noise 
characterization

• potential for becoming a reference tool

[1] B. Giovanni et al., Optical Frequency Comb Noise Characterization Using Machine Learning, accepted ECOC 2019.
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Laser noise characterization

• potential for becoming a reference tool
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[1] H. Chin, D. Zibar, N. Jain, T. Gehring, and U. L. Andersen, Phase Compensation for Continuous Variable Quantum Key Distribution, in CLEO 2019.

Use Bayesian inference to remove measurement noise (shot noise)
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M-LiPS works
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Raman amplifier for optical
communication

Employing O, E, S and L band requires rethinking optical amplification design

Raman pumps
(wavelength, powers)

Incoming signal
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- High complexity due to Raman solver

- Long convergence time

- Restart optimization for new gain profile

- Rely on genetic algorithms 

Raman amplifier inverse design

[1] D. Zibar et. al., Machine Learning-Based Raman Amplifier Design, OFC 2019, San Diego, CA, USA.

[2] D. Zibar et. al., Inverse System Design using Machine Learning: the Raman Amplifier Case, submitted JLT.
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M-LiPS works
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Learning to communicate using 
auto-encoders
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Objective: increase the transmitted information over a nonlinear channel
[1] R. Jones et al., Deep Learning of Geometric Constellation Shaping including Fiber Nonlinearities, in Proceedings of ECOC 2018.

[2] R. Jones et al., Geometric Constellation Shaping for Fiber Optic Communication Systems via End-to-end Learning, submitted to JLT

[3] R. Jones et al., End-to-end Learning for GMI Optimized Geometric Constellation Shape, accepted ECOC 2019.
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Learning to communicate using 
auto-encoders
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[1] R. Jones et al., Deep Learning of Geometric Constellation Shaping including Fiber Nonlinearities, in Proceedings of ECOC 2018.

[2] R. Jones et al., Geometric Constellation Shaping for Fiber Optic Communication Systems via End-to-end Learning, submitted to JLT

Auto-encoder learning constellation 
robust to channel impairments
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Group mission statement: 
research with impact

• Unifying framework for noise characterization of lasers, frequency combs 
and mode-locked lasers - move all functionalities into digital domain

• Nonlinear distortion-free communication over the nonlinear optical fibre
channel

• Orders of magnitude improvements in accuracy of optical fibre sensor 
and quantum measurements using machine learning
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Machine learning in optical 
communication

New topics 2019:

• Photonic neural network

• Optical Amplifier design

• End-to-end learning

• Back-propagation learning

[1] D. Zibar et al., Machine learning under the 
spotlight, Nature Photonics, (11) 749-751, 2017

[2] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. 
Zibar, M. Ruffini, M. Tornatore, "An Overview on 
Application of Machine Learning Techniques in Optical 
Networks," in IEEE Communications Surveys & 
Tutorials, vol. 21, no. 2, pp. 1383-1408, 2019.



20DTU Fotonik, Technical University of Denmark

Problems that will benefit from ML

• Communication over the nonlinear fiber-optic channel:
– Channel highly complex
– Capacity unknown?
– Optimum receiver architecture unknown
– Optimum modulation and pulse-shapes unknown

• Optical amplifiers for multiband-wavelength and SDM systems:
– Complex relation between pumps and gain
– Pump power and wavelength allocation for specific gain profile challenging
– Minimization of mode dependent loss

• Design of optical components (inverse system design):
– Given laser linewidth and noise find the physical parameters
– Given modulator bandwidth find the physical parameters
– Instead of running time-consuming simulation build fast ML based models

• Noise characterization of lasers and frequency combs:
– Optical phase tracking at the quantum limit 
– Noise correlation matrix of frequency combs lines

SDM: spatial division multiplexing
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Problems that will not benefit from ML

– EDFA design*

– Linear impairment compensation (chromatic dispersion) in coherent 
systems

• Problems that we have a good knowledge, (low cost) models and 
analytical solutions such as: 

* Possible in an SDM scenario
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State-of-the-art (physical layer)

• Number of solutions according to the use case[1-3] (2019)

Nonlinear mitigation* 

Quality of 
Transmission 

(QoT) 
estimation

Optical 
amplifier

Modulation 
format 

recognition

Optical 
performance 
monitoring

~35

~20

~15

~10
~10

[1] J. Mata, I. de Miguel, R. J. Durán, N. Merayo, S. K. Singh, A. Jukan, M. Chamania, Artificial intelligence (AI) methods in optical networks: A 
comprehensive survey, Optical Switching and Networking, 2018.
[2] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, M. Tornatore, "An Overview on Application of Machine Learning Techniques 
in Optical Networks," in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1383-1408, 2019.
[3] F. N. Khan, Q. Fan, C. Lu and A. P. T. Lau, "An Optical Communication's Perspective on Machine Learning and Its Applications," in JLT, vol. 37, 
no. 2, pp. 493-516, 2019.

* Including receiver/transmitter design and end-to-end learning
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What data matters (M-LiPS view)

Does it depend on the use case?

Nonlinear mitigation 
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What data maters for nonlinear 
mitigation
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― Received constellation
― Received symbols

— Decoded symbols with 
impairment estimated or 
mitigated

— Nonlinearity mitigated 
constellation points

— Symbol decision boundariesData generation: random sequence of bits

[1] F. Musumeci, et. al, in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1383-1408, 2019.
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What data maters for optical 
performance monitoring
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― Amplitude histogram
― Constellation
― Eye diagram

— OSNR
— PMD
— CD
— Q-factor

Noise

Data generation: vary the interested parameter (CD, PMD, noise) or a combination 
+ random sequence of bits

It will trigger actions depending on the current performance 

[1] F. Musumeci, et. al, in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1383-1408, 2019.
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What data maters for modulation 
format recognition
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― Stokes space parameter
― Received symbols
― Amplitude histogram

— modulation format

Data generation: vary the modulation format + random sequence of bits

Flexible transmitters/receivers

[1] F. Musumeci, et. al, in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1383-1408, 2019.
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What data maters for quality of 
transmition estimation
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[1] F. Musumeci, et. al, in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1383-1408, 2019.

Estimation before connection deployment

― Historical OSNR
― Historical SNR
― Lightpath features*

— BER
— OSNR
— SNR

Data generation: historical data collected from monitors or generate different 
connections with different lightpath features with the real QoT measured.
*Lightpath features: number of links, links’ lengths, number of amplifiers along the link, 
modulation format, baud rate, channel launch power, …
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What data matters (M-LiPS view)

Does it depend on the use case?
Yes

But for most of the cases on the literature, the input data can be 
represented by the received waveforms (after ADC)

And the output data will depend on the application
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Summarizing
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Thank you for your attention.
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