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} Motivation: enable scientists to use AI based 
models to derive measurements

} Significance: image-based measurements 
can become more accurate by introducing 
supervised AI-based models instead of using 
the traditional machine learning (ML) based 
models. 

Artificial 
Intelligence

Image 
Collections

Image-based 
Measurements

Improved Accuracy
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Motivation



Deep Learning: Why do we care?
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Deep Learning: Why do we care?
} Has improved modeling accuracy

} Image classification now has super human performance
} 25% ImageNet error rate reduced to 2%

} Learns intermediate representations of the data

} Revolutionized how machine translation is done
} Google translate might be the largest NN in the world right now

} End to end deep learning is out performing human tuned features in almost every 
application tested
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Deep Learning: Why do we care?

“It turns out that a large portion of real-world problems have the 
property that it is significantly easier to collect the data (or more 
generally, identify a desirable behavior) than to explicitly write the 
program.” 

– Andrej Karpathy
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The Deep Learning Revolution
} Key Components

} Data size
} Both Annotated and Unannotated 

} Model Capacity
} How large is the Neural Network

} Hardware Acceleration
} Enables Model Training 

} End Goal: 
} Deep Learning has improved modeling accuracy
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Dataset Size

Figure: Research Dataset size plotted against the year released. Source: “Deep Learning” by Ian Goodfellow
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Model Capacity 1. Perceptron (Rosenblatt, 1958, 1962) 
2. Adaptive linear element (Widrow and Hoff, 1960) 
3. Neocognitron (Fukushima, 1980) 
4. Early back-propagation network (Rumelhart et al., 1986b) 
5. Recurrent neural network for speech recognition 

(Robinson and Fallside, 1991) 
6. Multilayer perceptron for speech recognition (Bengio et 

al., 1991) 
7. Mean field sigmoid belief network (Saul et al., 1996) 
8. LeNet-5 (LeCun et al., 1998b) 
9. Echo state network (Jaeger and Haas, 2004) 
10. Deep belief network (Hinton et al., 2006) 
11. GPU-accelerated convolutional network (Chellapilla et al., 

2006) 
12. Deep Boltzmann machine (Salakhutdinov and Hinton, 

2009a) 
13. GPU-accelerated deep belief network (Raina et al., 2009) 
14. Unsupervised convolutional network (Jarrett et al., 2009) 
15. GPU-accelerated multilayer perceptron (Ciresan et al., 

2010) 
16. OMP-1 network (Coates and Ng, 2011) 
17. Distributed autoencoder (Le et al., 2012) 
18. Multi-GPU convolutional network (Krizhevsky et al., 

2012) 
19. COTS HPC unsupervised convolutional network (Coates 

et al., 2013) 
20. GoogLeNet (Szegedy et al., 2014a) 
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Figure: Research AI model size plotted against the year released. Source: “Deep Learning” by Ian Goodfellow



Model Capacity

Figure: ConvNet model size plotted against forward pass computation cost (x-axis) and ImageNet accuracy. 
Source: https://arxiv.org/pdf/1605.07678.pdf
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Hardware Acceleration
} GPU acceleration is an enabler for 

Deep Learning

} Training Deep Learning models 
involves lots of linear algebra
} GPUs are good at linear algebra

} Increased GPU GFlops for training 
larger models

Figure: Correlation between model size and GPU compute power. 
Source: https://ai.googleblog.com/2017/07/revisiting-unreasonable-

effectiveness.html
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Research Datasets vs Domain Datasets
} Gathering annotations is:

} Tedious (error prone)
} Time consuming
} Expensive

} ImageNet has 1M+ annotations. 
} Result of considerable effort over multiple years
} Recent NIST domain dataset: 1000 annotations

} https://isg.nist.gov/deepzoomweb/data/RPEimplants

} We cannot put forth that type of labeling effort for every new domain problem we 
encounter
} Not a practical cost to benefit
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Model Training
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Model Fitting
} Machine Learning is fitting a function to data

} Performance metric needed to judge quality of fit
} Metric is actively optimized over the training data
} Model accuracy is evaluated using the metric on 

unseen test data
} Cannot use data the model has seen to create an 

unbiased estimate of the accuracy

} Split limited annotations into 
} Training group (80%)
} Testing group (20%)

Figure: example regression model fit
Source: “Deep Learning” by Ian Goodfellow

2019-08-02Small Data Deep Learning14



Model Optimization - SGD

Gradient Descent Path
Local Gradient

} Model Training/Optimization Steps
1. Initialize all model parameters with random 

values (zero mean, small variance)
2. Compute loss/error for a batch of the training 

data
3. Compute the gradient of that loss surface
4. Use the gradient to update all parameters to 

reduce the loss value
5. Repeat 2-4 until converged

} Each iteration improves the model slightly

Figure: example SGD path through loss surface.
Source: “Deep Learning” by Ian Goodfellow
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Model Optimization
} Loss is a function of every parameter in the model

} Very high dimensional (millions of dimensions)

} Stochastic Gradient Descent (SGD) algorithm
} Walks downhill on the loss surface finding sets of parameters with lower loss values
} Uses gradient information to descend the loss surface
} Minimizes loss, but no guarantee of global minima
} Empirical evidence suggests that most local minima are equivalent
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Model Capacity: Overfitting/Underfitting
} A machine learning practitioner has two 

goals for every model:
} Make the training error small
} Make the gap between training and test 

error small

} Underfitting: when a model cannot reach 
an acceptable training error

} Overfitting: when a model has to large a 
gap between train and test error

Figure: training accuracy convergence curves for 
UNet semantic segmentation CNN. Accuracy as a 

function of training step.
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Generalization

“The central challenge in machine learning is that we must 
perform well on new, previously unseen inputs – not just those 
on which our model was trained. The ability to perform well on 
previously unseen inputs is called generalization.” 

– Ian Goodfellow
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Small Data Mitigation
V
anno

tated
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Small Data Mitigation Techniques
1. Data Augmentation

} Create label preserving transformations of your data
} Builds invariances into your model

2. Transfer Learning
} Build a model on a large dataset before refining on your domain specific data
} Research Datasets

} Annotations from different domain

} Generative Adversarial Networks (GANs)
} Use your unlabeled data to learn a good representation
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Label Preserving Transformations
} Data augmentation: popular technique for generating additional labeled 

training examples through class-preserving transformations
} Critical to almost every current state of the art result 

Model Objective Augmentation Model Parameterization

Invariance

Rotation Uniform (random angle)

Reflection (x,y) Bernoulli 

Jitter (x,y) % of image size 

Robustness
Noise % change

SNR % change

Reproducibility
Scale (x,y) % change

Shear (x,y) % change
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Table: set of commonly used data augmentation models.



Label Preserving Transformations
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Figure: Label preserving data augmentation transformations applied to ‘6’ from MNIST dataset.
Source: https://dawn.cs.stanford.edu/2017/08/30/tanda/



abridg
ed

Literature Survey of Label Preserving Transformations
} cutout

} mixup
} cutmix
} sample paring
} Jitter
} scale
} shear
} sharpness
} blur
} contrast
} color shift
} Rotation
} reflection
} invert
} auto-contrast
} jpeg compression
} elastic deformation

} ImageNet Classification with Deep Convolutional Neural Networks
} Applying Data Augmentation to Handwritten Arabic Numeral Recognition Using 

Deep Learning Neural Networks
} Understanding data augmentation for classification: when to warp?
} Return of the Devil in the Details: Delving Deep into Convolutional Nets
} Very Deep Convolutional Networks for Large-Scale Image Recognition
} Some Improvements on Deep Convolutional Neural Network Based Image 

Classification
} Improved Regularization of Convolutional Neural Networks with Cutout
} Improving the Robustness of Deep Neural Networks via Stability Training
} Data Augmentation by Pairing Samples for Images Classification
} mixup: Beyond Empirical Risk Minimization
} The Effectiveness of Data Augmentation in Image Classification using Deep 

Learning
} Population Based Augmentation: Efficient Learning of Augmentation Policy 

Schedules
} CutMix: Regularization Strategy to Train Strong Classifiers with Localizable 

Features

Augmentation Method Papers Using these Methods

V
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Transfer Learning: General Approach
} Leverage a large research dataset 

} ImageNet/COCO

} Pretrain your model using the 
large dataset

} Save the model weights

} Load pre-trained weights
} Refine (continue training) on 

your domain data

Figure: Overview of training a network on COCO before 
transferring those weights to the target application. 
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Typical Source Datasets
} COCO - Common Objects in Context

} Semantic image segmentation
} 200K images over 80 categories

} COCO-Stuff
} Semantic image segmentation
} Extension of COCO with stuff classes
} 176K images over 172 categories

} ImageNet – ILSVRC
} Image classification
} 1.2M images over 1000 categories
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Unsupervised Representation Learning
} GANs operate on unannotated data
} Setup two networks in competition

} Discriminator: tries to determine if an images is real or fake
} Generator: tries to construct a realistic image from latent noise

} Networks compete until they find an equilibrium.
} Neither can improve without reducing the accuracy of the opponent

} Website lets you play with a GAN to see how they work/converge
} https://poloclub.github.io/ganlab/
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https://poloclub.github.io/ganlab/


GAN Representation Learning

Figure: Simplified outline of GAN architecture using MNIST data. 
Source: https://towardsdatascience.com/understanding-generative-adversarial-networks-4dafc963f2ef
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Leveraging the Learned Representation
} How are GANs useful for small 

data?

} Trained with unannotated data!
} Build an internal representation 

useful for fooling the discriminator

} We can leverage the learned 
representation for transfer 
learning

Figure: Overview of training a network on unannotated domain data 
before transferring those weights to the target application. 
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Leveraging the Learned Representation
} The fundamental usefulness of unsupervised representation learning is to start 

the network with features that will be useful for its task, instead of random 
weights.

} Weight Initialization Methods
} Transfer Learning 
} Semi/Self-Supervised Learning

} GANs
} Auto-Encoders 
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Example Application

RPE Stem Cell Segmentation (CVMI @ CVPR)
Code: 
https://github.com/usnistgov/small-data-cnns
Paper: 
http://openaccess.thecvf.com/content_CVPRW_2019/papers/CVMI/Majurski_Cell_Image_Segmentation
_Using_Generative_Adversarial_Networks_Transfer_Learning_and_CVPRW_2019_paper.pdf
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https://github.com/usnistgov/small-data-cnns
http://openaccess.thecvf.com/content_CVPRW_2019/papers/CVMI/Majurski_Cell_Image_Segmentation_Using_Generative_Adversarial_Networks_Transfer_Learning_and_CVPRW_2019_paper.pdf


Motivation – Non Destructive QA/QC
} Age Related Macular Degeneration
} Caused by loss of rod and cone cells due to Retinal Pigment Epithelial (RPE) 

cell death
} New Induced Pluripotent Stem Cell (iPSC) implant treatments 
} Cell Implants require quality control

} Destructive testing 
} Trans-Epithelial Resistance (TER)
} Vascular Endothelial Growth Factor (VEGF)

} Non-Destructing testing
} Imaging based assays

Figure: outline of the retina configuration
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Problem - QA/QC Via Image Segmentation
} AMD iPSC implant quality control image assays

} Segment boundaries between cells to determine junction quality

} Small/Limited Domain Datasets

1000 Annotated Images
80,400 Unannotated images

Data Available: isg.nist.gov
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Example of brightfield modality Absorbance image (left), ground truth mask (center), and 
reference fluorescent image (right) used to create the ground truth.



Experimental Configuration
} Subset Training Annotations: {50, 100, 200, 300, 400, 500}
} Test Annotations: {500}
} 6 Model Configurations

} {Baseline, TL-COCO, TL-GAN} × {With Aug, Without Aug}
} 1 Model: UNet
} 1 Set of hyperparameters 

} Data Augmentation Models
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Baseline Configuration
} Train UNet directly on the varying number of annotations
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UNet model architecture. Source: https://arxiv.org/pdf/1505.04597.pdf



Transfer Learning Configurations
} TL-COCO

} Train UNet to convergence on out of domain COCO dataset
} 200K images over 80 categories

} Initialize weights with parameters learned from COCO
} Refine model on N domain annotations

} TL-GAN
} Train UNet GAN to convergence on unannotated domain data

} 80,400 RPE Absorbance Images

} Initialize encoder model weights with the discriminator from the GAN
} Refine on N domain annotations
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TL-GAN

80,400
Unannotated 

Images

Real

Fake

Fake?

Real?

DiscriminatorGenerator

GeneratorDiscriminator
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} Trains UNet weights to 
produce realistic fake images

} Architecture motivated by 
DCGAN and adapted to UNet



Example GAN Images

Gan Fake: Epoch 0
Real:

Gan Fake: Epoch 400

Fake:



Results – Without Augmentation
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Results – With Augmentation
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Segmentation Results
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Result Summary
} TL-COCO outperforms TL-GAN representation learning

} This matches trends in big data ConvNets

} DICE metric: domain knowledge driven data augmentation is optimal
} ARI metric: TL-COCO is optimal

} Hypothesis: structure learned from COCO benefits cell edge segmentation

} GPU Costs of performing transfer learning:

* These times were generated on a single IBM “Witherspoon” node containing two 20-core Power9 CPUs and four Nvidia V100 GPUs with NVLink2 
interconnection fabric. Data augmentation has no impact on runtimes.

*
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Summary: Small Data Mitigation Techniques
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} Data Augmentation
} Create label preserving transformations

} Transfer Learning
} Leverage a model trained for a different task

} Research Datasets
} Unannotated Data

} Refine the model on the limited domain data



Compute/Code Resources
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} NIST GPU cluster: “Enki”
} https://gitlab.nist.gov/gitlab/aihpc/pages/wikis/home

} ConvNet (CNN) Code ready for Enki
} Single-Node Multi-GPU 

} Tensorflow 1.12 and 2.0

} Semantic Segmentation: https://github.com/usnistgov/semantic-segmentation-unet
} Classification: https://gitlab.nist.gov/gitlab/mmajursk/Classification
} Regression: https://gitlab.nist.gov/gitlab/mmajursk/Regression
} Object Detection: https://gitlab.nist.gov/gitlab/mmajursk/Object-Detection

https://gitlab.nist.gov/gitlab/aihpc/pages/wikis/home
https://github.com/usnistgov/semantic-segmentation-unet
https://gitlab.nist.gov/gitlab/mmajursk/Classification
https://gitlab.nist.gov/gitlab/mmajursk/Regression
https://gitlab.nist.gov/gitlab/mmajursk/Object-Detection


Thank you

Questions?
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