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| Covered topics )

« The presentation is organized into two main parts
e Part 1: overview on Machine Learning

= Basic concepts (supervised/unsupervised learning, neural
networks, etc.)

= Some algorithms Note: The objective is to
o Linear regression show how we applied ML

o Neural Networks to our research problems

o Part 2: applications of ML to optical-network problems
= Part 2a): QoT estimation and RSA
= Part 2b): Failure management

= Part 2c¢): Other application at physical and network layer
— Traffic prediction, virtual topology design,...
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|What IS Machine Learning? )

* “Field of study that gives computers the ability to learn
without being explicitly programmed” (A. Samuel, 1959)

e “Teaching a computer to automatically learn concepts
through data observation”

e For our purposes: An math/statistical instrument to make
decisions by inferring statistical properties of monitored data

...In the context of optical networks

« Sometimes confused with other terms: Al, Deep Learning,
Data Analytics, Data Mining, etc.

M. Tornatore: Tutorial on Machine Learning in Opt. Net. - I POLITECNICO DI MILANO




|Why only now In optical networks? )

e Dominating complexity
= Coherent Trasmission /Elastic Networks

o0 Several system parameters: channel bandwidth, modulation
formats, coding rates, symbol rates..

 New enablers @ Mngt&Cntr plane
= Software Defined Networking
= Edge computing
= OPM’s (some of them are for free.. as in coherent receivers..)

e Lack of skilled workforce

= NTT warning (orc 2017). aging population, increasing competition
for young STEM workforce
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Main categories of ML algorithms (1)

o Supervised-learning algorithms
o We are given “labeled” data (i.e., “ground truth”)

0 Main objective: given a set of “historical” input(s) predict an output
— Regression: output value is continuous
— Classification: output value is discrete or “categorical”

 An example: Traffic forecasts
= Given traffic during last week/month/year
o Predict traffic for the next period (regression)
o Predict if available resources will be sufficient (classification)

o Other examples
= Speech/image recognition
=  Spam classifier
= House prices prediction/estimation
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Supervised learning: an «optical» example

Training Phase

A=1550, path= nodes A-C-D-G-F,
Mod = QPSK, =» BER=107

A=1553, path= nodes B-G-D-F-E,
Mod = QPSK, =» BER=10"

Active/Test Phase

Create path: A= 1553, nodes A-C-D-G-F,
Mod QPSK = BER=?

Courtesy of Marco Ruffini and Irene Macaluso

Supervised Learning: the algorithm is trained on dataset that consists of paths, wavelengths, modulation,
and the corresponding BER. Then it extrapolates the BER in correspondence to new inputs.
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Main categories of ML algorithms (2)

Unsupervised-learning algorithms
= Available data is not “labeled”

= Main objective: derive structures (patterns) from available data
0 Clustering finding “groups” of similar data
0 Anomaly detection

An example: cell-traffic classification
= Given traffic traces
= understand if some cells provide similar patterns
0 Residential, business, close to theatre, cinema, stadium...
o This information can be used to make network resources planning

Other example

= Group people according to their interests to improve
advertisement
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Unsupervised learning: an optical example

Data:
=1550, path= nodes A-B-D-E, Mod = QPSK, BER=10"®

45, path=nodes B-D-G-F-E, Mod = 16-QAM, BER=
<1553, path= nodes A-C-D-G-F, Mod = BPSK, BER=10"

Anomaly
( detection
=1544, path= nodes C-D-E-F, Mod = DPQPSK, BER=102 .
\'\ for link C-D

Courtesy of Marco Ruffini and Irene Macaluso

Unsupervised Learning: the algorithm identifies unusual patterns in the data, consisting of

wavelengths, paths, BER, and modulation..
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Main categories of ML algorithms
Co_nt’d

= Semi-Supervised learning
o Hybrid of previous two categories

o0 Main objective: most of the training samples are unlabeled, only
few are labeled

— Common when labeled data are scarce or expensive
o Self-training: start with labeled data, then label unlabeled data
based on first phase
= Reinforcement learning
o Available data is not “labeled”

o0 Main objective: learn a policy, i.e., a mapping between in
Inputs/states and actions. Behavior is refined through rewards

0 Methodologically similar to «optimal control theory» or «dynamic
programming»
o0 Q-learning
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N Reinforcement learning: an example 10

state

reward

Agent action

Environment

A=1550nm, nodes A-B-D-E, No Change BER= 10
Mod QPSK, BER=10"3

A=1550nm, nodes A-B-D-E,  Change: output power BER= 102 -1
Mod QPSK, BER=10"3 channel +5 dBm

A=1550nm, nodes A-B-D-E,  Change: Mod BPSK BER= 10+ +1
Mod QPSK, BER=10"3

Courtesy of Marco Ruffini and Irene Macaluso

Reinforcement Learning: the algorithm learns by receiving feedback on the effect of modifying some

parameters, e.g. the power and the modulation
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Some algorithms

e Supervised

= Parametric
o Linear and logistic regression
o0 Neural Networks
o ..

= Non parametric
o0 K-nearest neighbor

scikit-learn
algorithm cheat-sheet

START

Ea - i
more

o Random Forest (r\ ’ﬁ;y |
o ... L2 F
e Unsupervised VJ

ot
focking 1

= Clustering
0o K-means

dimensionality
reduction

ﬂm“gl;a d
1

-— )
o Gaussian Mixture O
Models e
0
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. . . . | D
|Ba3|c Intuition behind neural networks

e |f we know the basic charateristics of relation between In
iInput and outputs, math gives us lot of tools:

= Regression
o Linear, quadratic, logistic, multivariate, polynomial..

What if the relation is completely unknown?
What if | cannot make any assumption

regarding input-output relation?
Neural networks!
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A “collection” of interacting neurons
|

WSR2

CRLRAIRAS
AT oA ho(x)

PR R —
: , \ \\ | 2 observations:

R 2 - 1. NN can capture any
X & \ P relation between x and y
2. Deep Learning: the
Input layer Hidden layers Output layer more layers, the less
decisions shall be taken
by a programmer (less
«feature engineering)
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| Neural Networks (NN) representation )

n
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Outline: Part 2
Aeplications

1. ML for QoT Estimation for Unestablished Lighpaths

. C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for QoT Estimation of
Unestablished Lightpaths, in IEEE/OSA Journal of Optical Comm.& Netw. Vol. 10, No. 2, Feb. 2018

2. ML for Failure Management

. Francesco Musumeci ,et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, in
IEEE/OSA Journal of Lightwave Technology, available online

3. An overview of other applications at network layer

. F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”,
Submitted to IEEE communication surveys and tutorials, 2019
. Javier Mata, et a., Artificial intelligence (Al) methods in optical networks: A comprehensive survey, Optical

Switching and Networking, Volume 28, 2018, pp. 43-57
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NI |Why QoT estimation? 1
m NEW TRAFFIC REQUEST: -
ROUTE: B-C
5 ? MODULATION FORMAT:  QPSK

_ T WAVELENGTH: 1559nm

| S v BER/OSNR: 272
A :x:ﬂl < Y,

e AMPLIFIER EXACT LINK

NOISE FIGURE LENGTH ]

format INTERFERENCE

A-B-C 1550 nm BPSK 106 OF CO-

A-B-D-C 1553 nm 8-QAM 104 PROPAGATING
CHANNELS

A-D-C 1556 nm QPSK 105 v,
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How (pre-deployment) QoT estimation is done

¢ Exact” analytical models (e.g., split-step Fourier method)

) Accurate results
Heavy computational requirements — not scalable / not real time

Do (&

Margined formulas (e.g., AWGN model...)
%9 Faster and more scalable

1 Nspan 1 span (k ) Pr(:[{e )
= OSNR = >
OSNR; ; OSNR{g gy X; OSNR{\’;L ASE.Rx

+¥ Analitically accurate, but suffers from inaccurate parameter knowledge.

2% High margination, underutilization of network resources (up to extra 2
dB for design margins [1])

[1] Y. Pointurier, "Design of low-margin optical networks," in IEEE/OSA Journal of Optical Communications
and Networking, vol. 9, no. 1, pp. A9-Al17, Jan. 2017. doi: 10.1364/JOCN.9.0000A9
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Machine Learning as an alternative approach?*

 Machine Learning* methods have been proposed to
- estimate QoT of unestablished lightpaths
- using field data, e.g., monitored BER/OSNR at the receiver

L >
L

No need for complex analytical models

Fast and scalable

Requires training phase with historical data
* How long must the training phase be?

« How accurate will the estimation be?
* Objectives of our numerical analysis....

(O(

L
(>

)

*C. Rottondi, L. Barletta, A. Giusti, M. Tornatore “Machine-learning method for quality of transmission prediction of
unestablished lightpaths,” IEEE/OSA J. of Optical Comm. and Netw., vol. 10, no. 2, pp. A286-A297, Feb 2018.
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N Proposed ML classifier for QoT estimation 19

Input: Lightpath features " The classifier is trained |
on a set of L

Output: Prob{BER =< T*} experiments to generate
ground truth

\ |
FEATURES N
M - . 1 TARGET
Lightpath  Longest link Numberof  Traffic Modulation| Left Right Left traffic Rightraffic Left Right True p,,
length length links volume  format guardband guardband volume volume modulation modulation
format format ]
Q . [ I I D B — I D /]
S ¢ | I I N S — I D ]
S| I N ) B I D B
o Z| I D N S — I D . [/
[ S N I D .
— « Lightpath length
s  Longestlink length
= | |+ Number of links
g 4 | + Trafficvolume Estimated p,;,
= * Modulation format
L i+ Guardbands, traffic volume and modulation |
i format of spectrally nearest channels i
[}
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|Which Machine Learning Algorithm?

 We used a Random Forest (RF) classifier with 25 estimators

* To take this choice, we compared 5 RFs and 3 kNN classifiers
and picked best “accuracy/complexity” tradeoff

Training Test time (s) Accuracy
time (s)

Dummy classifier 0.048979
1 Nearest Neighbor 1.183121
5 Nearest Neighbor 1.085116
25 Nearest Neighbor 1.211694
Random Forest 1 tree 0.076944
Random Forest 5 trees 0.180835

Random Forest 25 trees 0.721042
Random Forest 100 trees 2.830545
Random Forest 500 trees 14.052182

3.83 e-07
4.83 e-05
5.05 e-05
6.91e-05
3.96 e-07
6.24 e-07
1.56 e-06
5.32 e-06
2.63 e-05

« But knowledge is rapidly evolving!
- Neural Networks... SVMs... (parametric approaches)
- Gaussian processes (return confidence of classification!)
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0.501
0.959
0.991
0.996
0.991
0.995
0.996
0.996
0.996

0.539
0.957
0.965
0.965
0.965
0.970
0.968
0.966
0.966
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Training and Testing Scenario

e Some results for a Japanese optical network

 Flexgrid @ 12.5 GHz
e Transceivers @ 28 GBaud

e 6 Modulation formats
. (DP) BPSK, QPSK, 8-QAM to 64-QAM,

e Traffic requests: [50;1000] Gbps
« 3 candidate paths per node pair
 BER threshold T = 4*103

 NB;: We used synthetic data! %%'

* NB,: some data sets are becoming available

* Monia Ghobadi and Ratul Mahajan. "Optical layer failures in a large backbone.” In Proceedings of the 2016 Internet
Measurement Conference. ACM, 2016.

Rachee Singh, Monia Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa Gill. "Run, Walk, Crawl: Towards Dynamic
Link Capacities.” In Proceedings of the 16th ACM Workshop on Hot Topics in Networks. ACM, 2017.

M. Tornatore: Tutorial on Machine Learning in Opt. Net. - I POLITECNICO DI MILANO




How long shall training phase be?
12 Accuracy vs training set size

L0 [ ————
........... * «ROC» curve
0.8
v
o o e Area under the
Q .
2 ROC curve (AUC)
B
& 0.4
" .
= - — = 1000 (AUC: 0.9
oL - - - 100 (AUC: 0.959)
s -+++ 10 (AUC: 0.731)
0.0
0.0 0.2 0.4 N 0.6 0.8 1.0 Take-Away 1: Training phase
False Positive Rate has a reasonable duration
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How to reduce required data/probes?

ML requires training phase with historical data
« Samples from faulty/malfunctioning lightpaths are rare

« With margined approaches, ligthpaths with risky BER are unlikely
deployed (thus never observed)

ISSUES

e Probe ligthtpaths are s of feature

space notcosT

Active Iearnlnq kernel — Mat52 -- SE
Initial training - T :
os7s il nfig_fipinAlimeniigsennasss
J' U;s R :
v ©0.050! Al
Minimize acquisition .| Evaluate BER 2
function “| update GP model
0.925
Y 0.900]
Final GP model ' 0 200 400 600
for QoT estimation Budget exhausted? No Iteration

Yes

D. Azzimonti, C. Rottondi, M. Tornatore, “Using Active Learning to Decrease Probes for QoT Estimation in
Optical Networks,” in Proceedings of OFC 2019, San Diego, Feb 2019.
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Ok, but, what’s the impact on resource saving?

Relation between RSA and ML-based QoT estimation

(a) Current mode of operation

>| Margined reach
<:| computations

Build ILP

Solve

(c) Low-margin design (iterative procedure)

IN
o ( j‘ Lightpath features >
Build ILP T ___/ | M'l%
\ J QoT classification \ classifier

Solve

| Check solution |

ML
classifier

Lightpath and neighbor
Add channel features

constraints p
&QoT classification ‘

with
neighbor
features

(b) ML-based operation

[ Build ILP

.‘

Solve

Lightpath features > ML
|

classifier

[
J <QOT classification

Output of the classifier:
probabilty y that BER < T*

0.5 35.71%
0.7 32.08%
0.9 27.36%
0.99 26.61%

M. Salani, C. Rottondi, M. Tornatore, “Routing and Spectrum Assignment Integrating Machine-Learning-Based QoT
Estimation in Elastic Optical Networks,” in Proceedings of INFOCOM 2019, Paris, April 2019.
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Another way of looking at this problem..
Es_timating unknown parameters in GN model

 General motivation
= |f you have a model, you should use it!
= NoO need to reinvent the wheel

e S0, for QoT estimation, if we know which parameter is
Inaccurate (e.g., noise figure), we can use ML to estimate
that parameter, and mantain the rest of the analytical model

| Route assignment for a set of Ny demands ‘ @

I
| Emulate actual parameters X .,q = Xe | @
L

| nF. = 5aB | ne. = 6d8 |ne. =708
Emulate the actual SNR u‘:;ing ..... r—————— T 7T T
a QoT took: SNRu ® 3_‘ mp=-2dB f| mp=-1dB )L p=0d8  JL  wp=+1dB | = +2dB
3}
E 2t 3 r
: I ll l
E1 1F 1r . .
@
% 0 ]I ]]I m o ne l ]I’ ]]I m 1 e | m I e Il “l ]]] Jn 1 n ‘l “| l]l I
5 1 T T TR TR 0012 |||||||||||||||||

Number of demands in the tralnmg set

E. Seve, J. Pesic, C. Delezoide, S. Bigo, and Y. Pointurier, "Learning Process for Reducing Uncertainties on Network
Parameters and Design Margins," J. Opt. Commun. Netw. 10, A298-A306 (2018)

Similar concept in: S. Oda, M. Miyabe, S. Yoshida, T. Katagiri, Y. Aoki, T. Hoshida, J. C. Rasmussen, M. Birk, and K. Tse,
“A learning iving network with open ROADMSs,” J. Lightwave Technol., vol. 35, pp. 1350-1356, 2017
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Experimental demonstration in multi-domain
networks with alien wavelenghts

e QoT estimation is challenging in multidomain networks, as
each domain administrator discloses very limited
Intradomain information

o Authors estimate directly OSNR using NNs
= Note: regression vs classification

. 50 T
Channel Power Hidden Layers i
Measurements of I's B s s St e —
. . : ! o .
Link #1 L1 SN S NN SV SN S e i _
Moise Level of L N -
Link #1 % 35
: (@ Ty ) IS N
Channel Power % oy AR N W
Measurements of  INput - = il T o
T - £ 20 o Eoged
nk #L 7] Pt
Wogg Lo
Noise Level of e !
Link #L 10 L=
10 15 20 25 30 a5 40 45 50
Allocated Channel Measured OSNR (dB)
Fig. 7. Structure of the OSNR estimator. Fig. 9. Comparison between measured (blue dashed line) and

estimated (red stars) OSNR.

R. Proietti et al., "Experimental demonstration of machine-learning-aided QoT estimation in multi-domain elastic optical
networks with alien wavelengths," in IEEE/OSA J. of Optical Comm. and Netw., vol. 11, no. 1, pp. A1-A10, Jan. 2019.
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On dataset dimension for QoT estimation

||
Training set impact Different networks, different behaviors!
100
TABLE 1V 7 o z
NumBER OF EXAMPLES IN THE EVALUATION SETS, S, § e §
= 97 pb—o =
P GBN TIM SPARKLE CORONET T o . B
Positive =~ — 2478 556 265 g 95— | wom ka2 | i i, 9 |
0.1% . & 94 = BN [acigh L, K101 5 M T
Negative — 2840 605 265 3 —lagc e 8 4 |
Total — 5318 1161 530 e Bt £ =
= & 5VM [Qausiban 1] 3
10 Positive 105 18,697 3193 1904 L JPYY I N A g
°  Negative 84 28,359 6030 2635 o ; emm——— |
Total 189 47,056 9223 4539 ' Percentage of Training Data [Log Scale] Percentage of Training Data [Log Scals]
50 Positive 437 72,789 9144 6478 (a) ()
“  Negative 412 141,785 30,140 13,165
Total 849 214,574 39,284 19,643 z = z
R ——— o
100, Positive 745 129,503 15,172 10,243 8 o = 8 .
¢ Negative 820 283,570 60,280 26,330 o8 B = s |
Total 1565 413,073 75,452 36,573 T - v s Ew® S e, a0
o I:'I'Il:'m'nlll L I:l_l| a g . ::: ;T:l:.r:;’( :’ .
sqq,  Positive 2848 498,104 27,232 31,307 B | i B +;:”“f:.: '
©  Negative 4008 1,206,895 301,395 131,650 | i o
Total 6856 1,704,999 328,627 162,957 3. g
Positive 8065 1,272,926 27,253 38,021 a0 L E: e
100% . . o 0 1 0 100 0.1 1 10 100
Negative 12,430 4,398434 1,178,322 488,579 Bercentage of Training Data [Log Scale] Percentage of Treining Deta [Log Scse]
Total 20,495 5,671,360 1,205,575 526,600 © (d)

Fig 7. Accuracy predicting 8 using machine learning models trained with 0.1%, 1%, 5%, 10%, 50%, and 100% of 5 for (a) GBN, () TIM,
() SPARKLE, and (d) CORONET.

R. M. Morais and J. Pedro, "Machine learning models for estimating quality of transmission in DWDM networks,"
in IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 10, pp. D84-D99, Oct. 2018
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Outline: Part 2
Aeplications

1. ML for QoT Estimation for Unestablished Lighpaths

. C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for QoT Estimation of
Unestablished Lightpaths, in IEEE/OSA Journal of Optical Comm.& Netw. Vol. 10, No. 2, Feb. 2018

2. ML for Failure Management

. Francesco Musumeci ,et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, in
IEEE/OSA Journal of Lightwave Technology, available online

3. An overview of other applications at network layer

. F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”,
Submitted to IEEE communication surveys and tutorials, available in ArXiv
. Javier Mata, et a., Artificial intelligence (Al) methods in optical networks: A comprehensive survey, Optical

Switching and Networking, Volume 28, 2018, pp. 43-57
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Two main failure types in optical networks

e Hard failures*
e Sudden events, e.q., fiber cuts, power outages, etc.
* Require «protection» (reactive procedures)

e Soft failures:

e Gradual transmission degradation due to equipment malfunctioning,
filter shrinking/misalignment...

» Trigger early network reconfiguration (proactive procedures)

RX

X

*F. Boitier et al., "Proactive Fiber Damage Detection in Real-time Coherent Receiver,” 2017 European Conference on

Optical Communication (ECOC), Gothenburg, 2017, pp. 1-3.
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... Something can be done for hard failures! =

Proactive fiber damage detection [1,2,3]
|

e “Algorithm extension for a coherent receiver, coupled with machine
learning, to monitor mechanical stress of an optical fiber, for
recognizing fiber breaks before they occur”

- Monitoring of State of Polarization (SOP) of an out-of-band unmodulated laser light
- Demonstrated 95% accuracy over real-time PDM-QPSK testbed
- No additional hardware thanks to DSP in recelver

7GBaud ASE
PDM-QPSK vOA Computer

A
iserial link

S LR LT LR P LR ELFTTTLY !. ...... :

X v

: ADC] —

coherent ADCP_ FPGAs [ BER
—

Filter

robot arm

F. Boitier et al., "Proactive Fiber Damage Detection in Real-time Coherent Receiver," 2017 European Conference on
Optical Communication (ECOC), Gothenburg, 2017, pp. 1-3

J. Pesic et al., “Proactive restoration of optical links based on the classification of events,” Proc. ONDM, (2011).

J. E. Simsarian et al., “Shake Before Break: Per-Span Fiber Sensing with In-Line Polarization Monitoring,” Proc. OFC,

M2E.6 (2017)
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Soft-failure early detection

u
* How can we predict soft-failures? \ ‘“%H

time

BER

time

intolerable BER
Perform Contlnuous mOnItOFIng Of [ B R s
_ failure
BER at the receiver... %
m

... until some “anomalies” are detected detection —

Fd

y ]
Early-detection helps preventing service tm:ne :

disruption (e.qg., through proactive reconfiguration)
A. Vela et al., “BER degradation Detection and Failure Identification in Elastic Optical Networks”, in IEEE/OSA

e >
reconfiguration

Journal of Lightwave Technology, vol. 35, no. 21, pp. 4595-4604, Nov.1, 1 2017
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Soft-faillure cause identification

« How can we identify the cause of the failure?
= Failures can be caused by different sources
o Filters shrinking/misalignment
o Amplifier malfunctioning itolerable BER m‘
o Fiber bends S|

BER

BER/
=
o
@
2
®
os)
[
A
%

Different sources of failure can be distinguished time
via the different effects on BER (i.e., via different BER “features”)

S. Shahkarami, F. Musumeci, F. Cugini, M. Tornatore, “Machine-Learning-Based Soft-Failure Detection and
Identification in Optical Networks,"in Proceedings, OFC 2018, San Diego (CA), Usa, Mar. 11-15, 2018
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Main Phase of our study . window
Tuning ML algorithm & W
. X,y)
LU
L-
0
1. Data ' time
Retrieval e

3 decisions

Validation (optimization of hyperparameters)l

—

~

[BER wmdowH Features H ML algorithm j——>
3. Prediction

(duration of

- Window spectral
components

- Neural Network
Fault identificatio

Select: - BER statistics: Fault detection: and

- BER sampling - mean - Binary SVM Evaluation
time (Tgeg) - min/max - Random Forest

- window size - standard dev. - Multiclass SVM

- Feature Scaling

\\observation)

. fioation:
- Neural Network/
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|Testbed setup )

 Testbed for real BER traces

— Ericsson 380 km transmission system
0 24 hours BER monitoring
o 3 seconds sampling interval

— PM-QPSK modulation @ 100Gb/s

— 6 Erbium Doped Fiber Amplifiers (EDFA) followed by Variable
Optical Attenuators (VOAS)

— Bandwidth-Variable Wavelength Selective Switch (BV-WSS) is used
to emulate 2 types of BER degradation:
o Filter misalignment
o Additional attenuation in intermediate span (e.g., due to EDFA gain-reduction)

—
X
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Numerical results: Detection
Accuracy vs window features

|
Take-away 1: Higher performance
 Binary SVM for with low sampling time

— Fast monitoring equipment is
‘/ required

100 T OPNL
90+ .
.65_.;
= 85 .
s Take-away 2: For
2 80 - Tper=122s | increasing sampling time,
< g5l @ Tper=44s || longer “Windows” are
= IBeR =00 needed for high accuracy
70 + é/—%—TBEjg:BBS |
A —4—Tper =110s
65 A | | |

0 50 [00 150 200 250 300
Window size [minutes]
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Numerical results: Identification
Accuracy vs window features

» Neural Network

100 I ——ET""E I | /’
E/a e
e //

98 |- i i N
S 06 |- . i
E
5 94t -
<

= 3 Take-away 3: To perform

02 | TS IBER= 0S| | failure-cause identification,
@ Ippr=65s"_— h I I

o Tsr=9s muF sma er samp mg-

90 & | | | period is needed wrt failure

2.5 5 7.5 10 12.5 15 detection
Window size [minutes]
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Detection and Identification using

OQticaI Spectrum Analyzers

» Cost-effective Optical Spectrum Analyzers (OSA) with sub-GHz
resolution can be used to monitor spectrum along transmission line

Flexgrid High Resolution Optical Channel Monitor (OCM). [Onlineg].
Available: http://www.finisar.com, Accessed: Jun. 2018.

a)

MNwss *

Ingress

OSA

—

FeX

2 Wsss
- 4 WSSs

Classifier 6 WS5Ss

Feature-based approaches

bwy= 120,11,

b)

Nwss+

OSA

B

FeX

= Correction| [~ Classifier
Mask

I
feoy 11,+0.5%bw, :
syero= (o f1_0)— (12_0—12,) I I signal (a), a signal ex
1
[

e T —

Residual-based approach

c)

OSA

lﬁ

. Computation

MNwss

=)

ESC

i Al | Classifier

Fig. 4.

Approaches to solve the filter cascading problem: (a) multi-classifier,
(b) single-classifier. and (c) residual computation.

B. Shariati, M. Ruiz, J. Comellas and L. Velasco, "Learning From the Optical Spectrum: Failure Detection and Identification,"

in Journal of Lightwave Technology, vol. 37, no. 2, pp. 433-440, 15 Jan.15, 2019
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Detection of attacks (I)

| Masquerade Unauthonzed ] - 11} [Unauthorized signall RiSnassaasasas mo—
| attacker sngnal e | ‘Unauthorized - .,; | i

transmitted in b S |
QU= N i S ?.'Q[‘.@!.r_‘?_':?_gﬂ[t.'ﬁr.'. | , | authorized channel [ P, :Signal recognition;

__________________________

{ Optical spectrum: !
cc-llel:tmn

__________ D tical s ectrum
i |Authonized: P m”eghm :. |

| |_signals

Authﬂnzed

____________________________________________________________________________________________________________________________________________________________________________

Fig. 1. (a) Masquerade attacker gain access to network incognito and insert signals; (b). Unauthorized

users transmit unauthorized signals in authorized channels

« Intuition: each signal/transmitter has its own signature, if signature
unexpectedly changes, attacker is detected

« 1D-CNN and SVM are successfully used to detect attack on a testbed

Y. Li, et al. , Optical spectrum feature analysis and recognition for optical network security with machine learning,
Optics Express, to appear
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Detection of attacks (ll)

« Different (simpler, but less controversial) intuition:
- Jamming attack affects physical properties legitimate signals

» [Feature are typical parameters of coherent receivers:
- chromatic dispersion (CD)

. . In field optical ine — 280 km
dlffe.rentlgl group dellay (DG.D) 2\ B [ _____ >_
Optical Signal-to-Noise Ratio (OSNR), 5| [o) & spicalion scciom
Polarization dependent loss (PDL), . _{ ’; |

=5 | {
Q-factor | = |\ \ﬂf"—__b__ >
pre-FEC bit errors (BE-FEC), L In field optical line — 220 km
pre-FEC bit error rate (BER-FEC)
uncorrected block errors (UBE-FEC) " EHK /R o0% §
. . o 1031 . 0% &
optical power received (OPR) 28 Tunable | | = | 0sA ,)f
) ) 3 e jier [ A | P optical B
- optical power transmitted (OPT) = R \ D | 2 13%3—
v S L
« SVM and ANN reach 100% accuracy [1] N\

e In case of unknown attacks: Fig. 2: Setup used in the experiments.

Unsupervised learning (Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [2])

[1] C. Natalino, et al. "Field demonstration of machine-learning-aided detection and identification of jamming
attacks in optical networks,” ECOC, 2018

[2] M. Furdek, et al. "Experiment-based detection of service disruption attacks in optical networks using data

analytics and unsupervised learning." Photonics West, 2019.
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Outline: Part 2
Aeplications

1. ML for QoT Estimation for Unestablished Lighpaths

C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for QoT Estimation of
Unestablished Lightpaths, in IEEE/OSA Journal of Optical Comm.& Netw. Vol. 10, No. 2, Feb. 2018

. D. Azzimonti, C. Rottondi, M. Tornatore, “Using Active Learning to Decrease Probes for QoT Estimation in
Optical Networks,” in Proceedings of OFC 2019, San Diego, Feb 2019.
. M. Salani, C. Rottondi, M. Tornatore, “Routing and Spectrum Assignment Integrating Machine-Learning-

Based QoT Estimation in Elastic Optical Networks,” in Proceedings of INFOCOM 2019, Paris, April 2019.

2. ML for Failure Management

. S. Shahkarami, F. Musumeci, F. Cugini, M. Tornatore, “Machine-Learning-Based Soft-Failure Detection and
Identification in Optical Networks," in Proceedings, OFC 2018, San Diego (CA), Usa, Mar. 11-15, 2018

. A. Vela et al., “BER degradation Detection and Failure Identification in Elastic Optical Networks”, in
IEEE/OSA Journal of Lightwave Technology, vol. 35, no. 21, pp. 4595-4604, Nov.1, 1 2017

. Francesco Musumeci ,et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, in

IEEE/OSA Journal of Lightwave Technology, available online

3. An overview of other applications at network layer

. F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”,
Submitted to IEEE communication surveys and tutorials, available in ArXiv
. Javier Mata, et a., Artificial intelligence (Al) methods in optical networks: A comprehensive survey, Optical

Switching and Networking, Volume 28, 2018, pp. 43-57
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Overview of other applications

Physical layer

Quality of Transmission (QoT) estimation
Optical amplifier control

Modulation format recognition
Nonlinearities mitigation

«Sensing»

a & e

Network layer
1. Traffic prediction and virtual topology design
2. Fallure detection and localization
3. Flow classification

Classification taken from: F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical
Networks”, IEEE Communication Surveys and Tutorials, 2019
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Physical layer
Optical amplifier control

 When adding/dropping channels into/from a WDM system,
EDFA gain should be adjusted to re-balance output powers

 Analytical models:
— typically not generalizable

— depend on the specific system (gain-control mechanism, EDFA
gain tilt, nr of EDFAs...) which use to vary during their activity

« ML allows to self-learn typical response patters

Huang et al., “Dynamic mitigation of EDFA power excursions with machine learning”, Optics Express, vol. 25 n. 3, Feb. 2017
Bastos et al., “Mapping EDFA Noise Figure and Gain Flatness Over the Power Mask Using Neural Networks”, Journal of

Microwaves, Optoelectronics and Electromagnetic Applications, vol. 12, n. SI-2, July 2013
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Physical layer
Modulation format recognition (MFR)

« Elastic transceiver can to operate with different modulation formats

QPSK 16QAM 32QAM
> * s 0
* +* L] L ] * L ]
"N EEE R
¢ 4 &+ o C T
& & & & U I
T R & & & & & &
* + L T
. * & 9
X X 64QAM 128QAM 256QAM
bossbd
- 2-4-0-0-9-9-4 ..ii!ﬁ::iu 1
*EERENSS FHIS P TIPS T
*rerreRTY TIrIII T T Y
LR N R L LR S4B b s bbb |
3333354 $3i33ssisess
L E R T LR L
P44 40004
L R L 0000:0::0::9
reresees 12325358

« Traditional MFI requires prior information exchange between end
points (from upper layer protocols)

— additional delay for in signal detection
« ML enables automated MFR from features of the received signal

Khan et al., “Modulation Format Identification in Coherent Receivers Using Deep Machine Learning”, Photonics Technology
Letters, vol. 28 n. 17, Sep. 2016

Khan et al., “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical
networks”, Optical Fiber Technology, vol. 20 n. 2, Mar. 2014

Tan et al., “ Simultaneous Optical Performance Monitoring and Modulation Format/Bit-Rate Identification Using Principal
Component Analysis”, Journal of Optical Communications and Networking, vol. 6 n. 5, May 2014
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Physical layer
Nonlinearities mitigation

Optical signals are affected by fiber nonlinearities
—  Kerr effect, self-phase modulation (SPM), cross-phase modulation (XPM)...

Q
Q.
B phase
Q g%b noise
10 00 o.| i F1
Q- f-Q ©
é :> Channel w/ fiber :> Q
] nonlinearities <
O] o O ....... @ /Q
11 01 : imbalance
CY >

Possible solution: pre-distort symbols at trasmitter (pre-compensation)

. Traditional methods require complex mathematical models and prior information on
the traversed channel

. ML enables “safer” decision by learning from actual channel properties

Wang et al., “Nonlinear Decision Boundary Created by a ML-based Classifier to Mitigate Nonlinear Phase Noise”, in ECOC 2015
Wang et al., “Nonlinearity Mitigation Using a ML Detector Based on k-Nearest Neighbors”, Photonics Tech. Letters, 2016

S. Zhang, et. al, “Field and lab experimental demonstration of nonlinear impairment compensation using neural networks,” Nature
Communications, 2019

F. Ye, et al., "A new and simple method for crosstalk estimation in homogeneous trench-assisted multi-core fibers," in Asia
Communications and Photonics Conference 2014

D. Zibar, et al." Application of machine learning techniques for amplitude and phase noise characterization," J. Lightwave Technol.

33(7), 1333-1343 (2015).
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Network layer
Traffic prediction and virtual topology design

 New services with high spatio-temporal traffic dynamics

200 -

150

2
e
g 100
E M gt
pam *-'*'-J- I !
ol WD ey SN | threshold-based
""""""""""" “online” VT reconf.
a
o pli] a0 50 | 100 120 VT reconﬁ |

Time {min) I

* No reconfiguration —
peak-traffic dimensioning

* ML leverages online (live) traffic
monitoring/prediction to avoid
overprovisioning

F. Morales et al., “Virtual Network Topology Adaptability Based on Data
Analytics for Traffic Prediction”, IEEE/OSA Journal of Optical Communication
and Networking, vol. 9 n. 1, Jan. 2017

R. Alvizu et al., “Matheuristic with machine learning-based prediction for
software-defined mobile metro-core networks”, IEEE/OSA Journal of Optical
Communication and Networking, vol. 9n. 9, Sep. 2017
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Network layer
Flow classification

o Traffic flows can be heterogeneous in terms of:
= protocols (http, ftp, smtp...)
= services (VoD, data transfer, text messages...)
= requirements (latency, bandwidth, jitter...)
= network “customers” (human end-users, companies, Sensors)
« E.g.,, “mice” vs “elephant” flows in Data Centers
* Distinguish between different flows is crucial for resources
(i.e., capacity) allocation, scheduling, SLAs, QoS...

Data
Centers

ML enables traffic classification from direct
observation of traffic flows

L. Wang, X. Wang, M. Tornatore, K. Joon Kim, S.-M. Kim, D.-U Kim, K.-E. Han, and
B. Mukherjee, “Scheduling With Machine-Learning-Based Flow Detection for
Packet-Switched Optical Datacenter Networks, JOCN2018

Viljoen et al., “Machine Learning Based Adaptive Flow Classification for Optically
Interconnected Data Centers”, in ICTON 2016, July 2016

Cao et al., “An accurate traffic classification model based on support vector
machines”, International Journal on Network Management, 27:€1962, 2017.
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Sensing
An experiment with road traffic

||
2. Experimental Setup and Results
(a) sensing signal (b}
Route 1
______________ |
[ ]
I
! | 400-Gbps ( i Route 1 (55 km) 1
1 Rx ! Deployed
! : q ke operational life
1 Fiber I ' Fammers data traffic
: WSS | | ;
I'| Sensing i | i Branch carrying fiber
: System I | Texas cable I
i : ' | L
| I - ! e
1 | 400-Ghps Ir Lo e Richardson
- Tx - : . ’ Raoute 2 Texas
——————————— ity ' J (25 KM} | e Data + Sensing
RiEhardson Route 1 (55 km) == Sensing
Texas

Fig. 1: (a) Coexisting system setup (b) Map of deploved metro fiber route

Time Morth Sauth
& bound beownd
20:00:02 =
20:02:00 —
20:04:00— N Distance
km

Fig. 2: Examples of water-fall trace for fiber sensing system.

G. Wellbroock, First Field Trial of Sensing Vehicle Speed, Density, and Road Conditions by using Fiber Carrying High Speed Data, post-

deadline, OFC 2019
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Conclusion: My personal opinion

* Promising directions:

« QoT estimation

« Partly. Ok for improving accuracy, or when unknowns are too many
- Failure management

* Yes! Root cause analysis (it is a complex semisupervised problem!)
- Traffic prediction

* Yes! (Check DC-NN¥*)
- Resource allocation (e.g., dynamic traffic allocation)

« Skeptical

« Several problems (traffic varies, scalability...)

- Sensing

*D. Andreoletti, S. Troia, F. Musumeci, S. Giordano, G. Maier, M. Tornatore, «Network Traffic Prediction based on Diffusion
Convolutional Recurrent Neural Networks», Infocom 2019
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Some emerging concepts (I)

e Active Learning

= No explicit separation between training and testing, continuos training
as new data arrives

= Great in situation where data is scarce expensive

 P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processesfor data-efficient learning in robotics and
control,”IEEE Transactions onPattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408-423,Feb 2015

* D. Azzimonti, C. Rottondi, and M. Tornatore, “Using Active Learning to Decrease Probes for QoT Estimation in Optical
Networks,” in Optica IFiber Communications Conference (OFC), Mar. 2019

 Transfer Learning

= |s the training performed over a network/link/failure still valid on a
different scenario?

 ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/torrey.handbook09.pdf

« W Mo, YK Huang, S Zhang, E Ip, DC Kilper, Y Aono, T Tajima, «ANN-based transfer learning for QoT prediction in real-time
mixed line-rate systems», in Optical Fiber Communications Conference (OFC), Mar. 2019
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Some emerging concepts (ll)

e Interpretability
= Go beyond black-box machine learning outcome!
= Can we gain insights on our problems

H.J. Escalante, I. Guyon, S. Escalera X. Baro, Y. Gucluturk, U. Guclu and M. van Gerven, Explainable and Interpretable
Models in Computer Vision and Machine Learning, Springer Series on Challenges in Machine Learning, 2018.

* F. N.Khan, Q. Fan, C. Lu and A. P. T. Lau, "An Optical Communication's Perspective on Machine Learning and Its
Applications," in Journal of Lightwave Technology, vol. 37, no. 2, pp. 493-516, 15 Jan.15, 2019.

e Collaborative Self-Learning

= Different network nodes perform local estimations, then share part of
their local knowledege to improve overall knowledge of other nodes

= 4 phases: i) knowledge discover; ii) knowledge share; iii) knowledge
assimilate; and iv) knowledge usage

* M. Ruiz, F. Boitier, P. Layec, and L. Velasco, “Self-Learning Approaches for Real Optical Networks,” in Proc. IEEE/OSA
Optical Fiber Communication Conference (OFC), 2019
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. | D
|Some material

 Books (general refs. for ML):

= T. Hastie, R. Tibshirani, J. Friedman,
“The Elements of Statistical Learning”,
Ed. Springer

= G. James, D. Witten, T. Hastie, R.
Tibshirani, “An Introduction to Statistical
Learning with Applications in R”, Ed.
Springer

fhata Mining, Inferenie, and Prediction

* Prof. Andrew Ng lectures (Stanford
University)

e ... Google it!

with Applications in R
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Some publications (1)

Surveys & Tutorials

« F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”,
Submitted to IEEE communication surveys and tutorials

« Javier Mata, et a., Atrtificial intelligence (Al) methods in optical networks: A comprehensive survey,
Optical Switching and Networking, Volume 28, 2018, pp. 43-57

* Machine learning for network automation: overview, architecture, and applications [Invited Tutorial]D
Rafique, L Velasco Journal of Optical Communications and Networking 10 (10), D126-D143

Some Motivations

e Y. Pointurier, "Design of low-margin optical networks," in IEEE/OSA Journal of Optical Communications
and Networking, vol. 9, no. 1, pp. A9-Al17, Jan. 2017. doi: 10.1364/JOCN.9.0000A9

QoT estimation

 Barletta et al., “QoT Estimation for Unestablished Lighpaths using Machine Learning”, in OFC 2017
Conference, Mar. 2017

 De Miguel et al., “Cognitive Dynamic Optical Networks”, Journal of Optical Communication and
Networking, vol. 5, n. 10, Oct. 2013

 Thrane et al., “Machine Learning Techniques for Optical Performance Monitoring From Directly Detected
PDM-QAM Signals”, Journal of Lightwave Technology, vol. 35, n. 4, Feb. 2017

« Caballero et al., “Experimental demonstration of a cognitive quality of transmission estimator for optical
communication systems”, Optics Express, vol. 20, n. 26, Dec. 2012

 Jimenez et al., “A Cognitive Quality of Transmission Estimator for Core Optical Networks”, Journal of

Lightwave Technology, vol. 31, n. 6, Mar. 2013
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Some publications (2)

Failure recovery

* S. Shahkarami, F. Musumeci, F. Cugini, M. Tornatore, \Machine-Learning-Based Soft-Failure Detection
and ldenti cation in Optical Networks,"in Proceedings, OFC 2018, San Diego (CA), Usa, Mar. 11-15,
2017

« A Velaetal., “Soft Failure Localization during Commissioning Testing and Lightpath Operation”, Journal
of Optical Communication and Networking, vol. 10 n. 1, Jan. 2018

* A Velaetal., “BER degradation Detection and Failure Identification in Elastic Optical Networks”, in
Journal of Lightwave Technology, vol. 35, no. 21, pp. 4595-4604, Nov.1, 1 2017

Others

* E Seve, J Pesic, C Delezoide, A Giorgetti, A Sgambelluri, N Sambo, “Automated Fiber Type Identification
in SDN-Enabled Optical Networks, Journal of Lightwave Technology 37 (7), 1724-1731, 2019

Projects
. EU ORCHESTRA and CHRON projects
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