

Stanford University

Nanotechnology Overview

H.-S. Philip Wong Professor of Electrical Engineering Stanford University, Stanford, California, U.S.A. hspwong@stanford.edu

http://www.stanford.edu/~hspwong

Center for Integrated Systems

2005.03.18 Department of Electrical Engineering

Nanoelectronics – Si CMOS

Courtesy of Intel Corp.

100 nm

≤ 2F [→] 2F_s

 $\frac{1.0 \text{ nm}}{1.0 \text{ m}}$

S

1000 ni 2.8 K

Nanotechnology

One day, it may replace Si CMOS...

am

B

Ш

50 nm

\$

STM Image 1.0nm

Figures courtesy c

50

Key Challenges

Power / performance improvement and optimization

Variability

Integration

- Device, circuit, system

Nanotubes and Nanowires

CNT Families and Structure

n,m=(10,10) -- metallic

n,m=(10, 0) -- semiconducting

Diameter: ~1 nm Length: several µm

B.I.Yakobson and R.E.Smalley, American Scientist 85 (1997) 324

S.lijima, Nature 354 (1991) 56

1998 Carbon Nanotube FETs

Tans *et al.* Delft University Nature 393, 49 (1998)

 \rightarrow P-type, high contact resistance

Martel *et al.* IBM App. Phys. Lett. 73, 2447 (1998)

 \rightarrow P-type, high contact resistance

Carbon Nanotube FET

S

Carbon Nanotube FET

Drain current normalized by gate capacitance

- CV/I, G_{msat}/C are comparable to or better than Si nFET
- Chemical synthesis controls a key dimension
 - think of this as an ultra-thin body SOI with body thickness and device width controlled to atomic precision
- Band structure of CNFET:
 - Symmetric band structure
 - electron and hole transport should be identical
 - balanced nFET and pFET
 - Thermal velocity / source injection velocity of CNFET higher than Si FET
 - However, density of states is lower lower gate capacitance
- Carrier transport is one-dimensional reduced phase space for scattering
- Wrap-around ("double") gate thicker gate oxide possible
- All bonds are satisfied, stable, and covalent
- Device is not "wed" to a particular substrate 3D plausible
- Circuit design infrastructure preserved no need to reinvent circuits

CNFET vs. Si MOSFET

CNTFETs (V_{DD} = 0.4V) p-CNT MSDFET (Javey) p-CNT MSDFET (projected) CNT MOSFET (projected)

Source: M. Lundstrom, *IBM Post-CMOS Deep Dive*, Sept 21-22, 2004.

Si n-MOS data is 70 nm $\rm L_{G}$ from 130 nm technology from Antoniadis and Nayfeh, MIT

2005.03.18

Key Issue: Materials and Fabrication

- Right kind of tube (electronic properties) at the right places (placement, orientation), doping
- Low parasitic capacitance/resistance, compact device (including isolation) structure
- Process compatibility with Si CMOS

2005.03.18

Si Nanowire Growth

 Catalyst size controls nanowire size

Y. Cui...C. Lieber et al., *Appl. Phys. Lett.*, <u>78</u>, p. 2214 (2001)

[111]

Nanowires – 3D Heterogeneous Integration Fabric

Formation of heterostructure interfaces between lattice mismatched materials, e.g. InAs/GaAs (7%) & InAs/InP (3.5%): a comparison between 2D epitaxial growth and wire growth

Growth from patterned catalysts

AlGaAs

1D Channel FET:

- 1D semiconductors (nanotube, nanowire)
 - Chemical synthesis controls the critical dimension (reduces variation due to quantum confinement)
 - Self-assembly or directed growth new manufacturing methods
 - Nanowire (Si, Ge, III-V, II-VI) is the next logical step after Si FinFET
 - Bandgap engineering and strain engineering tricks still possible
 - Both lateral (along axis) and radial (core-shell) engineering possible
 - Excess noise for 1D conductors may be problematic needs study

Nanotubes and Nanowires

 Net: basic science has progressed to a level where engineering work is feasible

Molecular Electronics

As defined by the conceptual creators Aviram and Ratner [1], molecular electronics is the "study of molecular properties that may lead to signal processing" [2]. However, making molecular electronics into a functioning, manufacturable technology will require revolutions in circuit architecture, fabrication, and design philosophy in addition to gaining a fundamental understanding of conduction and electronic interactions in single molecules.

B. Mantooth, P. Weiss, Proc. IEEE, 91, p. 1785 (2003)

Molecules = Small ? Si FET

- All devices are governed by electrostatics and eventually limited by tunneling
 - difficult to be much smaller than 2 3 nm

Molecular Device

Molecules

Lower manufacturing cost New functionality

M. Reed, NNI/SRC Workshop on *Silicon* Nanoelectroincs and Beyond, Oct 2003.

Two-Terminal Electrical Measurements

Molecular Memory and ROM-Based Logic

Y. Chen...J.F. Stoddart, R.S. Williams et al., Nanotechnology, <u>14</u>, p. 462 (2003)

Key Challenges

Power / performance improvement and optimization

- Variability
- Integration

Device, circuit, system

Nanomaterials

Impact of Statistical Variations

Courtesy of Intel Corp.

P. Gelsinger, 41st Design Automation Conference (DAC), June 8, 2004.

Can These be Fabricated for 10 nm FET ?

Source: Toshiba, K. Uchida et al., *IEDM* 2003

Source: Samsung J.-H. Yang et al., *IEDM* 2003

H.-S. Philip Wong

D

Courtesy of IBM Research

C

100 nm

500 nm × 500 nm, V_s = -2.0V

1st pentacene layer

005.03.18

1st pentacene layer

pentacene island

Nano for Si Technology – Nano, Now !

Use techniques that produce these:

To make these structures

Lithography Subdivision

- Templated assembly of nanostructures
- Combines top-down lithography with bottom-up assembly
- Provides feature registration with larger, irregular features

C. Black et al., IEEE Trans. Nanotechnology, p. 412 (2004).

Metrology and Characterization

- Cannot manufacture if we cannot measure what we make
- Wish list
 - Fast AFM
 - The equivalent of the CD SEM
 - Defect recognition for new materials
 - nanotube, nanowire, organic molecules
 - Defect repair
 - Characterization methods for soft materials

Stanford University

Questions? Please contact:

H.-S. Philip Wong Professor of Electrical Engineering Stanford University, Stanford, California, U.S.A. hspwong@stanford.edu

http://www.stanford.edu/~hspwong

Center for Integrated Systems

2005.03.18 Department of Electrical Engineering