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Nanoelectronics – Si CMOS
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Nanotechnology
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http://www.sciencemag.org/cgi/content/full/295/5553/299/F1
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Nanotechnology
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One day, it 
may replace 
Si CMOS…

http://www.sciencemag.org/cgi/content/full/295/5553/299/F1
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Key Challenges

Power / performance improvement and 
optimization

Variability

Integration
– Device, circuit, system
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Nanotubes and Nanowires

STM Image
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Length: several µm
Diameter: ~1 nm

20 nm

B.I.Yakobson and R.E.Smalley,American Scientist 85 (1997) 324 S.Iijima, Nature 354 (1991) 56

n,m=(10,10) -- metallic

n,m=(10, 0) -- semiconducting
STM Image

CNT Families and Structure
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1998 Carbon Nanotube FETs
Tans et al. Delft University
Nature 393, 49 (1998)

P-type, high contact resistance

Martel et al. IBM
App. Phys. Lett. 73, 2447 (1998)

P-type, high contact resistance
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Carbon Nanotube FET
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Carbon Nanotube FET

Data from:
S. Huang et al, IEDM, p. 237, 2001.
A. Javey et al., IEDM, p. 741, 2003.
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Carbon Nanotube FET is Promising...
CV/I, Gmsat/C are comparable to or better than Si nFET

Chemical synthesis controls a key dimension
– think of this as an ultra-thin body SOI with body thickness and device width 

controlled to atomic precision

Band structure of CNFET:
– Symmetric band structure

• electron and hole transport should be identical
• balanced nFET and pFET

– Thermal velocity / source injection velocity of CNFET higher than Si FET
– However, density of states is lower - lower gate capacitance

Carrier transport is one-dimensional - reduced phase space for scattering

Wrap-around (“double”) gate - thicker gate oxide possible

All bonds are satisfied, stable, and covalent

Device is not “wed” to a particular substrate - 3D plausible

Circuit design infrastructure preserved - no need to reinvent circuits
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CNFET vs. Si MOSFET

CNTFETs (VDD = 0.4V)

p-CNT MSDFET (projected)

CNT MOSFET (projected)

p-CNT MSDFET (Javey)

Source: M. Lundstrom, IBM Post-CMOS Deep Dive, 
Sept 21-22, 2004.

Si n-MOS data is 70 nm LG from 130 nm technology
from Antoniadis and Nayfeh, MIT 
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Key Issue: Materials and Fabrication
Right kind of tube (electronic properties) at the right places (placement, 
orientation), doping

Low parasitic capacitance/resistance, compact device (including isolation) 
structure

Process compatibility with Si CMOS

catalystsnanotubes nanotubes

D. Singh et al., unpublished (2003)



Stanford University

Department of Electrical Engineering14 H.-S. Philip Wong 2005.03.18

Si Nanowire Growth

Catalyst size controls 
nanowire size

Y. Cui...C. Lieber et al., Appl. Phys. Lett., 78, 
p. 2214 (2001)
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Courtesy of Lars Samuelson, Lund University, 2004.

Nanowires – 3D Heterogeneous Integration Fabric

MOVPE growth of GaAs (core) 
/ AlGaAs (shell) nanowire

A
B

A B B

InP/InAs nanowire

Core-shell Axial hetero-epitaxy
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NanowireNanowire NanotubeNanotube

1D Channel FET:

1D semiconductors (nanotube, nanowire)
– Chemical synthesis controls the critical dimension (reduces 

variation due to quantum confinement)

– Self-assembly or directed growth – new manufacturing 
methods

– Nanowire (Si, Ge, III-V, II-VI) is the next logical step after Si 
FinFET
• Bandgap engineering and strain engineering tricks still possible
• Both lateral (along axis) and radial (core-shell) engineering possible

– Excess noise for 1D conductors may be problematic – needs 
study
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Nanotubes and Nanowires

Net: basic science has progressed to a level 
where engineering work is feasible
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Molecular Electronics

As defined by the conceptual creators

Aviram and Ratner [1], molecular electronics is the “study

of molecular properties that may lead to signal processing”

[2]. However, making molecular electronics into a functioning,

manufacturable technology will require revolutions

in circuit architecture, fabrication, and design philosophy

in addition to gaining a fundamental understanding of

conduction and electronic interactions in single molecules.

B. Mantooth, P. Weiss, Proc. IEEE, 91, p. 1785 (2003)
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Molecules = Small ?

L >2.5 – 3 nm

All devices are governed by electrostatics and eventually limited by 
tunneling

- difficult to be much smaller than 2 - 3 nm

Si FET Molecular Device

 TSi=7nm
 Lgate=6nm

 Source Drain

  Gate

B. Doris et al., IEDM , 
2002.
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Molecules
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M = V, Nb, Cr, Mo, W, Tc, 
Re, Fe, Ru, Os, Co, Rh, 
Ir, Ni, Pd, Pt, Cu, Ag …

Ligands chosen to tailor:
• Electronic coupling 

between dimetal units
• Electrochemistry
• Solubility
• Structure ….
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• link to form chains or 

onto surfaces
• stack vertically
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Akin to Biological 
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Nanotubes

Lower manufacturing cost
New functionality
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M. Reed, NNI/SRC Workshop on Silicon 
Nanoelectroincs and Beyond, Oct 2003.

Two-Terminal Electrical Measurements
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Molecular Memory and ROM-Based Logic

Y. Chen...J.F. Stoddart, R.S. Williams et al., Nanotechnology, 14, p. 462 (2003)
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Hysteresis – A Dime a Dozen
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Key Challenges

Power / performance improvement and 
optimization

Variability

Integration
– Device, circuit, system

Nanomaterials
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Impact of Statistical Variations
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Can These be Fabricated for 10 nm FET ?

Source: Toshiba, 

K. Uchida et al., IEDM 2003

Source: Samsung

J.-H. Yang et al., IEDM 2003
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Nanomaterials
1st pentacene
layer

pentacene
island

500 nm × 500 nm, VS = -2.0V

50 Å
50 Å

1st pentacene
layer

5 nm

10 nm

10 
nm

(200)

40 
nm

(100)

Co/Ni 9 nm A

60 nm

FePt 4 nmCo 8 nm Ni 9 nm

Courtesy of IBM Research
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Nano for Si Technology – Nano, Now !

To make these structures 

Source: Toshiba, 

K. Uchida et al., IEDM 2003

Source: Samsung

J.-H. Yang et al., IEDM 2003

Use techniques that 
produce these:
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Lithography Subdivision

Templated assembly of nanostructures

Combines top-down lithography with bottom-up assembly

Provides feature registration with larger, irregular features

2F 2FS

diblock copolymer molecule

PS

PMMA

microphase separation

C. Black et al., IEEE Trans. Nanotechnology, p. 412 (2004).
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Metrology and Characterization

Cannot manufacture if we cannot measure what 
we make
Wish list
– Fast AFM

• The equivalent of the CD SEM 
– Defect recognition for new materials

• nanotube, nanowire, organic molecules
– Defect repair
– Characterization methods for soft materials
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Strained Si, Ge, SiGe, III-V

isolation

buried oxide

Silicon Substrate

Transport-enhanced FET

back-gate

channel

isolation

buried oxide

channel

top-gate

Multi-Gate / FinFET

Source Drain

Gate

Nanowire

3D, heterogeneous 
integration Nanotube

Molecular devices
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A Possible Path

Spintronics

Embedded 
memory

Quantum 
cascade

Fine-grain FLA / PLA

Time 
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Questions? Please contact:

H.-S. Philip Wong
Professor of Electrical Engineering 
Stanford University, Stanford, California, U.S.A.
hspwong@stanford.edu
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