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M. Tornatore: Tutorial on Machine Learning in Opt. Net.

• The presentation is organized into two main parts
• Part 1: overview on Machine Learning
 Basic concepts (supervised/unsupervised learning, neural

networks, etc.)
 Some algorithms

o Linear regression
o Neural Networks

• Part 2: applications of ML to optical-network problems
 Part 2a): QoT estimation and RSA
 Part 2b): Failure management
 Part 2c): Other application at physical and network layer

– Traffic prediction, virtual topology design,…

Covered topics

Note: The objective is to 
show how we applied ML 
to our research problems
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• “Field of study that gives computers the ability to learn
without being explicitly programmed” (A. Samuel, 1959)

• “Teaching a computer to automatically learn concepts
through data observation”

• …

• For our purposes: An math/statistical instrument to make
decisions by inferring statistical properties of  monitored data
…in the context of optical networks

• Sometimes confused with other terms: AI, Deep Learning,
Data Analytics, Data Mining, etc.

What is Machine Learning? 3
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• Dominating complexity
 Coherent Trasmission /Elastic Networks

o Several system parameters: channel bandwidth, modulation
formats, coding rates, symbol rates.. 

• New enablers @ Mngt&Cntr plane
 Software Defined Networking
 Edge computing
 OPM’s (some of them are for free.. as in coherent receivers..)

• Lack of skilled workforce
 NTT warning (OFC 2017): aging population, increasing competition

for young STEM workforce

Why only now in optical networks? 4
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• Supervised-learning algorithms
o We are given “labeled” data (i.e., “ground truth”)
o Main objective: given a set of “historical” input(s) predict an output 

– Regression: output value is continuous
– Classification: output value is discrete or “categorical”

• An example: Traffic forecasts
 Given traffic during last week/month/year

o Predict traffic for the next period (regression)
o Predict if available resources will be sufficient (classification)

• Other examples
 Speech/image recognition
 Spam classifier
 House prices prediction/estimation

Main categories of ML algorithms (1) 5
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Supervised learning: an «optical» example 6

Courtesy of Marco Ruffini and Irene Macaluso

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• Unsupervised-learning algorithms
 Available data is not “labeled” 
 Main objective: derive structures (patterns) from available data

o Clustering finding “groups” of similar data
o Anomaly detection

• An example: cell-traffic classification
 Given traffic traces
 understand if some cells provide similar patterns

o Residential, business, close to theatre, cinema, stadium…
o This information can be used to make network resources planning

• Other example
 Group people according to their interests to improve

advertisement

Main categories of ML algorithms (2) 7
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Unsupervised learning: an optical example 8

Courtesy of Marco Ruffini and Irene Macaluso

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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 Semi-Supervised learning
o Hybrid of previous two categories
o Main objective: most of the training samples are unlabeled, only

few are labeled
– Common when labeled data are scarce or expensive

o Self-training: start with labeled data, then label unlabeled data 
based on first phase

 Reinforcement learning
o Available data is not “labeled” 
o Main objective: learn a policy, i.e., a mapping between in 

inputs/states and actions. Behavior is refined through rewards
o Methodologically similar to «optimal control theory» or «dynamic

programming» 
o Q-learning

Main categories of ML algorithms
Cont’d
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Reinforcement learning: an example 10

Courtesy of Marco Ruffini and Irene Macaluso

No Change
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• Supervised
 Parametric

o Linear and logistic regression
o Neural Networks
o ..

 Non parametric
o K-nearest neighbor
o Random Forest
o ...

• Unsupervised
 Clustering

o K-means
o Gaussian Mixture

Models
o …

Some algorithms 11

These slides are not NIST's slides. NIST is not responsible for the content of these slides.



M. Tornatore: Tutorial on Machine Learning in Opt. Net.

• If we know the basic charateristics of relation between in 
input and outputs, math gives us lot of tools:
 Regression

o Linear, quadratic, logistic, multivariate, polynomial..

Basic intuition behind neural networks 12

What if the relation is completely unknown?
What if I cannot make any assumption

regarding input-output relation? 
Neural networks!

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Neural Networks (NN) representation
A “collection” of interacting neurons
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2 observations:
1. NN can capture any
relation between x and y
2. Deep Learning: the 
more  layers, the less
decisions shall be taken
by a programmer (less
«feature engineering)
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Outline: Part 2
Applications

1. ML for QoT Estimation for Unestablished Lighpaths
• C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for QoT Estimation of 

Unestablished Lightpaths, in IEEE/OSA Journal of Optical Comm.& Netw. Vol. 10, No. 2, Feb. 2018 

2. ML for Failure Management
• Francesco Musumeci ,et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, in 

IEEE/OSA Journal of Lightwave Technology, available online

3. An overview of other applications at network layer
• F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”, 

Submitted to IEEE communication surveys and tutorials, 2019
• Javier Mata, et a., Artificial intelligence (AI) methods in optical networks: A comprehensive survey, Optical 

Switching and Networking, Volume 28, 2018, pp. 43-57

14
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Outline: Part 2
Applications

1. ML for QoT Estimation for Unestablished Lighpaths
• C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for QoT Estimation of 

Unestablished Lightpaths, in IEEE/OSA Journal of Optical Comm.& Netw. Vol. 10, No. 2, Feb. 2018 

2. ML for Failure Management 
• Francesco Musumeci ,et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, in 

IEEE/OSA Journal of Lightwave Technology, available online

3. An overview of other applications at network layer
• F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”, 

Submitted to IEEE communication surveys and tutorials, 2019
• Javier Mata, et a., Artificial intelligence (AI) methods in optical networks: A comprehensive survey, Optical 

Switching and Networking, Volume 28, 2018, pp. 43-57
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Why QoT estimation?

A

B

C

D

Route Wavelength Modulation 
format

BER

A-B-C 1550 nm BPSK 10-6

A-B-D-C 1553 nm 8-QAM 10-4

A-D-C 1556 nm QPSK 10-5

INTERFERENCE 
OF CO-

PROPAGATING 
CHANNELS

AMPLIFIER 
NOISE FIGURE

EXACT LINK 
LENGTH

NEW TRAFFIC REQUEST: 
ROUTE: B-C
MODULATION FORMAT: QPSK      
WAVELENGTH: 1559nm
BER/OSNR: ???
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How (pre-deployment) QoT estimation is done

• “Exact” analytical models (e.g., split-step Fourier method) 
• Accurate results
• Heavy computational requirements → not scalable / not real time

• Margined formulas (e.g., AWGN model…)
• Faster and more scalable

• Analitically accurate, but suffers from inaccurate parameter knowledge.
• High margination, underutilization of network resources (up to extra 2 

dB for design margins [1])

[1] Y. Pointurier, "Design of low-margin optical networks," in IEEE/OSA Journal of Optical Communications 
and Networking, vol. 9, no. 1, pp. A9-A17, Jan. 2017. doi: 10.1364/JOCN.9.0000A9
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Machine Learning as an alternative approach?*

• Machine Learning* methods have been proposed to
• estimate QoT of unestablished lightpaths
• using field data, e.g., monitored BER/OSNR at the receiver

• No need for complex analytical models
• Fast and scalable
• Requires training phase with historical data

• How long must the training phase be? 
• How accurate will the estimation be?
• Objectives of our numerical analysis….

18

*C. Rottondi, L. Barletta, A. Giusti, M. Tornatore “Machine-learning method for quality of transmission prediction of 
unestablished lightpaths,” IEEE/OSA J. of Optical Comm. and Netw., vol. 10, no. 2, pp. A286–A297, Feb 2018.
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Proposed ML classifier for QoT estimation

Input:      Lightpath features
Output: Prob{BER ≤ T*}

19

The classifier is trained 
on a set of L

experiments to generate 
ground truth

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Which Machine Learning Algorithm?

• We used a Random Forest (RF) classifier with 25 estimators
• To take this choice, we compared 5 RFs and 3 kNN classifiers 

and picked best “accuracy/complexity” tradeoff

• But knowledge is rapidly evolving!
• Neural Networks… SVMs… (parametric approaches)
• Gaussian processes (return confidence of classification!)

20
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Training and Testing Scenario

• Some results for a Japanese optical network

• Flexgrid @ 12.5 GHz 
• Transceivers @ 28 GBaud
• 6 Modulation formats 

• (DP) BPSK, QPSK, 8-QAM to 64-QAM,

• Traffic requests: [50;1000] Gbps
• 3 candidate paths per node pair
• BER threshold T = 4*10-3

• NB1: We used synthetic data!
• NB2: some data sets are becoming available

21

• Monia Ghobadi and Ratul Mahajan. "Optical layer failures in a large backbone." In Proceedings of the 2016 Internet 
Measurement Conference. ACM, 2016.

• Rachee Singh, Monia Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa Gill. "Run, Walk, Crawl: Towards Dynamic 
Link Capacities." In Proceedings of the 16th ACM Workshop on Hot Topics in Networks. ACM, 2017.
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How long shall training phase be?  
(1) Accuracy vs training set size

22

Take-Away 1: Training phase 
has a reasonable duration 

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• ML requires training phase with historical data
• Samples from faulty/malfunctioning lightpaths are rare
• With margined approaches, ligthpaths with risky BER are unlikely

deployed (thus never observed)

• Probe ligthtpaths are needed to explore regions of feature
space not covered by field data

How to reduce required data/probes?

ISSUES

Active learning

23

D. Azzimonti, C. Rottondi, M. Tornatore, “Using Active Learning to Decrease Probes for QoT Estimation in 
Optical Networks,” in Proceedings of OFC 2019, San Diego, Feb 2019.
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M. Salani, C. Rottondi, M. Tornatore, “Routing and Spectrum Assignment Integrating Machine-Learning-Based QoT
Estimation in Elastic Optical Networks,” in Proceedings of INFOCOM 2019, Paris, April 2019.

γ: Risk you
are 

willing to 
accept

Output of the classifier:
probabilty γ that BER ≤ T*

γ Savings
0.5 35.71%
0.7 32.08%
0.9 27.36%

0.99 26.61%

24Ok, but, what’s the impact on resource saving?
Relation between RSA and ML-based QoT estimation

(a) Current mode of operation

(c) Low-margin design (iterative procedure) 

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• General motivation
 If you have a model, you should use it!
 No need to reinvent the wheel

• So, for QoT estimation, if we know which parameter is
inaccurate (e.g., noise figure), we can use ML to estimate 
that parameter, and mantain the rest of the analytical model 

Another way of looking at this problem.. 
Estimating unknown parameters in GN model

25

E. Seve, J. Pesic, C. Delezoide, S. Bigo, and Y. Pointurier, "Learning Process for Reducing Uncertainties on Network 
Parameters and Design Margins," J. Opt. Commun. Netw. 10, A298-A306 (2018)
Similar concept in: S. Oda, M. Miyabe, S. Yoshida, T. Katagiri, Y. Aoki, T. Hoshida, J. C. Rasmussen, M. Birk, and K. Tse, 
“A learning iving network with open ROADMs,” J. Lightwave Technol., vol. 35, pp. 1350–1356, 2017These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• QoT estimation is challenging in multidomain networks, as 
each domain administrator discloses very limited 
intradomain information

• Authors estimate directly OSNR using NNs
 Note: regression vs classification

Experimental demonstration in multi-domain 
networks with alien wavelenghts

26

R. Proietti et al., "Experimental demonstration of machine-learning-aided QoT estimation in multi-domain elastic optical 
networks with alien wavelengths," in IEEE/OSA J. of Optical Comm. and Netw., vol. 11, no. 1, pp. A1-A10, Jan. 2019.

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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On dataset dimension for QoT estimation 27

R. M. Morais and J. Pedro, "Machine learning models for estimating quality of transmission in DWDM networks," 
in IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 10, pp. D84-D99, Oct. 2018

Different networks, different behaviors!

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Outline: Part 2
Applications

1. ML for QoT Estimation for Unestablished Lighpaths
• C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for QoT Estimation of 

Unestablished Lightpaths, in IEEE/OSA Journal of Optical Comm.& Netw. Vol. 10, No. 2, Feb. 2018 

2. ML for Failure Management
• Francesco Musumeci ,et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, in 

IEEE/OSA Journal of Lightwave Technology, available online

3. An overview of other applications at network layer
• F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”, 

Submitted to IEEE communication surveys and tutorials, available in ArXiv
• Javier Mata, et a., Artificial intelligence (AI) methods in optical networks: A comprehensive survey, Optical 

Switching and Networking, Volume 28, 2018, pp. 43-57
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Two main failure types in optical networks

• Hard failures*
• Sudden events, e.g., fiber cuts, power outages, etc.
• Require «protection» (reactive procedures)

• Soft failures:
• Gradual transmission degradation due to equipment malfunctioning, 

filter shrinking/misalignment…
• Trigger early network reconfiguration (proactive procedures)

29

RXTX

*F. Boitier et al., "Proactive Fiber Damage Detection in Real-time Coherent Receiver," 2017 European Conference on 
Optical Communication (ECOC), Gothenburg, 2017, pp. 1-3.These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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… Something can be done for hard failures!
Proactive fiber damage detection [1,2,3]

• “Algorithm extension for a coherent receiver, coupled with machine 
learning, to monitor mechanical stress of an optical fiber, for 
recognizing fiber breaks before they occur”

• Monitoring of State of Polarization (SOP) of an out-of-band unmodulated laser light
• Demonstrated 95% accuracy over real-time PDM-QPSK testbed
• No additional hardware thanks to DSP in receIver

30

F. Boitier et al., "Proactive Fiber Damage Detection in Real-time Coherent Receiver," 2017 European Conference on 
Optical Communication (ECOC), Gothenburg, 2017, pp. 1-3
J. Pesic et al., “Proactive restoration of optical links based on the classification of events,” Proc. ONDM, (2011). 
J. E. Simsarian et al., “Shake Before Break: Per-Span Fiber Sensing with In-Line Polarization Monitoring,” Proc. OFC, 
M2E.6 (2017) These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• How can we predict soft-failures?

Perform continuous monitoring of 
BER at the receiver…
… until some “anomalies” are detected

Early-detection helps preventing service 
disruption (e.g., through proactive reconfiguration)

Soft-failure early detection

RX

RX

TX

TX

time

BE
R

time

BE
R

time
BE

R

intolerable BER

time
BE

R

intolerable BER

detection

failure

reconfiguration

31

A. Vela et al., “BER degradation Detection and Failure Identification in Elastic Optical Networks”, in IEEE/OSA 
Journal of Lightwave Technology, vol. 35, no. 21, pp. 4595-4604, Nov.1, 1 2017These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• How can we identify the cause of the failure?
 Failures can be caused by different sources

o Filters shrinking/misalignment
o Amplifier malfunctioning
o Fiber bends
o …

Different sources of failure can be distinguished
via the different effects on BER (i.e., via different BER “features”)

Soft-failure cause identification
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time
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time
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intolerable BER
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S. Shahkarami, F. Musumeci, F. Cugini, M. Tornatore, “Machine-Learning-Based Soft-Failure Detection and 
Identification in Optical Networks,"in Proceedings, OFC 2018, San Diego (CA), Usa, Mar. 11-15, 2018
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Main Phase of our study
Tuning ML algorithm

33

BER window Features ML algorithm

- mean
- min/max
- standard dev.

Fault detection:
- Binary SVM
- Random Forest
- Multiclass SVM
- Neural Network
Fault identification:
- Neural Network

Validation (optimization of hyperparameters)

Select:
- BER sampling

time (TBER)
- window size

(duration of 
observation)

1. Data 
Retrieval

3. Prediction
and 

Evaluation

time

Pr
e-

FE
C

 B
ER

window
(x, y)W

TBER

3 decisions
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Testbed setup 34

– Ericsson 380 km transmission system 
o 24 hours BER monitoring
o 3 seconds sampling interval

– PM-QPSK modulation @ 100Gb/s 
– 6 Erbium Doped Fiber Amplifiers (EDFA) followed by Variable 

Optical Attenuators (VOAs)
– Bandwidth-Variable Wavelength Selective Switch (BV-WSS) is used

to emulate 2 types of BER degradation:
o Filter misalignment
o Additional attenuation in intermediate span (e.g., due to EDFA gain-reduction)

T
X

BV
WSS

1

R
X

BV
WSS

2

60km 80km 80km 80km 80km

E1 E2 E3 E4 E5 E6

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Numerical results: Detection
Accuracy vs window features

35

Take-away 1: Higher performance 
for with low sampling time
 Fast monitoring equipment is
required

Take-away 2: For 
increasing sampling time, 
longer “Windows” are 
needed for high accuracy

These slides are not NIST's slides. NIST is not responsible for the content of these slides.



M. Tornatore: Tutorial on Machine Learning in Opt. Net.

Numerical results: Identification
Accuracy vs window features

36

Take-away 3: To perform 
failure-cause identification, 
much smaller sampling 
period is needed wrt failure 
detection

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Detection and Identification using 
Optical Spectrum Analyzers

• Cost-effective Optical Spectrum Analyzers (OSA) with sub-GHz 
resolution can be used to monitor spectrum along transmission line

37

B. Shariati, M. Ruiz, J. Comellas and L. Velasco, "Learning From the Optical Spectrum: Failure Detection and Identification," 
in Journal of Lightwave Technology, vol. 37, no. 2, pp. 433-440, 15 Jan.15, 2019

Flexgrid High Resolution Optical Channel Monitor (OCM). [Online].
Available: http://www.finisar.com, Accessed: Jun. 2018.

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Detection of attacks (I) 38

Y. Li, et al. , Optical spectrum feature analysis and recognition for optical network security with machine learning, 
Optics Express, to appear

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Detection of attacks (II)

• Different (simpler, but less controversial) intuition:
• Jamming attack affects physical properties legitimate signals

• Feature are typical parameters of coherent receivers:
• chromatic dispersion (CD) 
• differential group delay (DGD)
• Optical Signal-to-Noise Ratio (OSNR),
• Polarization dependent loss (PDL), 
• Q-factor 
• pre-FEC bit errors (BE-FEC), 
• pre-FEC bit error rate (BER-FEC)
• uncorrected block errors (UBE-FEC)
• optical power received (OPR)
• optical power transmitted (OPT)

• SVM and ANN reach 100% accuracy [1] 
• In case of unknown attacks:

• Unsupervised learning (Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [2])

39

[1] C. Natalino, et al. ”Field demonstration of machine-learning-aided detection and identification of jamming 
attacks in optical networks,” ECOC, 2018
[2] M. Furdek, et al. "Experiment-based detection of service disruption attacks in optical networks using data 
analytics and unsupervised learning." Photonics West, 2019.These slides are not NIST's slides. NIST is not responsible for the content of these slides.



M. Tornatore: Tutorial on Machine Learning in Opt. Net.

Outline: Part 2
Applications

1. ML for QoT Estimation for Unestablished Lighpaths
• C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for QoT Estimation of 

Unestablished Lightpaths, in IEEE/OSA Journal of Optical Comm.& Netw. Vol. 10, No. 2, Feb. 2018 
• D. Azzimonti, C. Rottondi, M. Tornatore, “Using Active Learning to Decrease Probes for QoT Estimation in 

Optical Networks,” in Proceedings of OFC 2019, San Diego, Feb 2019.
• M. Salani, C. Rottondi, M. Tornatore, “Routing and Spectrum Assignment Integrating Machine-Learning-

Based QoT Estimation in Elastic Optical Networks,” in Proceedings of INFOCOM 2019, Paris, April 2019.

2. ML for Failure Management
• S. Shahkarami, F. Musumeci, F. Cugini, M. Tornatore, “Machine-Learning-Based Soft-Failure Detection and 

Identification in Optical Networks,“ in Proceedings, OFC 2018, San Diego (CA), Usa, Mar. 11-15, 2018
• A. Vela et al., “BER degradation Detection and Failure Identification in Elastic Optical Networks”, in 

IEEE/OSA Journal of Lightwave Technology, vol. 35, no. 21, pp. 4595-4604, Nov.1, 1 2017
• Francesco Musumeci ,et al., “A Tutorial on Machine Learning for Failure Management in Optical Networks”, in 

IEEE/OSA Journal of Lightwave Technology, available online

3. An overview of other applications at network layer
• F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”, 

Submitted to IEEE communication surveys and tutorials, available in ArXiv
• Javier Mata, et a., Artificial intelligence (AI) methods in optical networks: A comprehensive survey, Optical 

Switching and Networking, Volume 28, 2018, pp. 43-57

40

These slides are not NIST's slides. NIST is not responsible for the content of these slides.



M. Tornatore: Tutorial on Machine Learning in Opt. Net.

Overview of other applications

Physical layer
1. Quality of Transmission (QoT) estimation
2. Optical amplifier control
3. Modulation format recognition
4. Nonlinearities mitigation
5. «Sensing»

Network layer
1. Traffic prediction and virtual topology design
2. Failure detection and localization
3. Flow classification

Classification taken from: F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical 
Networks”, IEEE Communication Surveys and Tutorials, 2019

These slides are not NIST's slides. NIST is not responsible for the content of these slides.



M. Tornatore: Tutorial on Machine Learning in Opt. Net.

Physical layer
Optical amplifier control

42

– typically not generalizable
– depend on the specific system (gain-control mechanism, EDFA 

gain tilt, nr of EDFAs…) which use to vary during their activity

Pmax

Pmin

λ1 λ2 λ3 λ4 λ5 λ1 λ2 λ3 λ4 λ5

Huang et al., “Dynamic mitigation of EDFA power excursions with machine learning”, Optics Express, vol. 25 n. 3, Feb. 2017
Bastos et al., “Mapping EDFA Noise Figure and Gain Flatness Over the Power Mask Using Neural Networks”, Journal of 
Microwaves, Optoelectronics and Electromagnetic Applications, vol. 12, n. SI-2, July 2013

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Physical layer
Modulation format recognition (MFR)

43

– additional delay for in signal detection

T
X

R
X

Khan et al., “Modulation Format Identification in Coherent Receivers Using Deep Machine Learning”, Photonics Technology 
Letters, vol. 28 n. 17, Sep. 2016
Khan et al., “Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical 
networks”, Optical Fiber Technology, vol. 20 n. 2, Mar. 2014
Tan et al., “Simultaneous Optical Performance Monitoring and Modulation Format/Bit-Rate Identification Using Principal 
Component Analysis”, Journal of Optical Communications and Networking, vol. 6 n. 5, May 2014

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Physical layer
Nonlinearities mitigation

44

– Kerr effect, self-phase modulation (SPM), cross-phase modulation (XPM)…

• Traditional methods require complex mathematical models and prior information on 
the traversed channel

• ML enables “safer” decision by learning from actual channel properties

Channel w/ fiber
nonlinearities

10 00

11 01
I

Q
I

Q
phase
noise

I

Q
I/Q
imbalance

Wang et al., “Nonlinear Decision Boundary Created by a ML-based Classifier to Mitigate Nonlinear Phase Noise”, in ECOC 2015
Wang et al., “Nonlinearity Mitigation Using a ML Detector Based on k-Nearest Neighbors”, Photonics Tech. Letters, 2016
S. Zhang, et. al, “Field and lab experimental demonstration of nonlinear impairment compensation using neural networks,” Nature 
Communications, 2019
F. Ye, et al., "A new and simple method for crosstalk estimation in homogeneous trench-assisted multi-core fibers," in Asia 
Communications and Photonics Conference 2014
D. Zibar, et al."Application of machine learning techniques for amplitude and phase noise characterization," J. Lightwave Technol. 
33(7), 1333–1343 (2015). These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Network layer
Traffic prediction and virtual topology design
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static
VTD

• No reconfiguration →           
peak-traffic dimensioning

• ML leverages online (live) traffic
monitoring/prediction to avoid
overprovisioning

threshold-based
VT reconf.“online”

VT reconf.

F. Morales et al., “Virtual Network Topology Adaptability Based on Data 
Analytics for Traffic Prediction”, IEEE/OSA Journal of Optical Communication 
and Networking, vol. 9 n. 1, Jan. 2017
R. Alvizu et al., “Matheuristic with machine learning-based prediction for 
software-defined mobile metro-core networks”, IEEE/OSA Journal of Optical 
Communication and Networking, vol. 9 n. 9, Sep. 2017These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Network layer
Flow classification
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 protocols (http, ftp, smtp…)
 services (VoD, data transfer, text messages…)
 requirements (latency, bandwidth, jitter…)
 network “customers” (human end-users, companies, sensors)

• E.g., “mice” vs “elephant” flows in Data Centers

SLAs, QoS…

4

Data
Centers

L. Wang, X. Wang, M. Tornatore, K. Joon Kim, S.-M. Kim, D.-U Kim, K.-E. Han, and 
B. Mukherjee, “Scheduling With  Machine-Learning-Based Flow Detection for 
Packet-Switched Optical Datacenter Networks, JOCN2018
Viljoen et al., “Machine Learning Based Adaptive Flow Classification for Optically 
Interconnected Data Centers”, in ICTON 2016, July 2016
Cao et al., “An accurate traffic classification model based on support vector 
machines”, International Journal on Network Management, 27:e1962, 2017.

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Sensing
An experiment with road traffic

47

G. Wellbroock, First Field Trial of Sensing Vehicle Speed, Density, and Road Conditions by using Fiber Carrying High Speed Data, post-
deadline, OFC 2019

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Conclusion: My personal opinion 48

• QoT estimation
• Partly. Ok for improving accuracy, or when unknowns are too many

• Failure management
• Yes! Root cause analysis (it is a complex semisupervised problem!)

• Traffic prediction
• Yes! (Check DC-NN*)

• Resource allocation (e.g., dynamic traffic allocation)
• Skeptical

• Several problems (traffic varies, scalability…)
• Sensing

*D. Andreoletti, S. Troia, F. Musumeci, S. Giordano, G. Maier, M. Tornatore, «Network Traffic Prediction based on Diffusion
Convolutional Recurrent Neural Networks», Infocom 2019 

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• Active Learning
 No explicit separation between training and testing, continuos training 

as new data arrives
 Great in situation where data is scarce expensive

• Transfer Learning
 Is the training performed over a network/link/failure still valid on a 

different scenario?

Some emerging concepts (I) 49

• P.  Deisenroth,  D.  Fox,  and  C.  E.  Rasmussen,  “Gaussian processesfor data-efficient learning in robotics and 
control,”IEEE Transactions onPattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408–423,Feb 2015

• D. Azzimonti, C. Rottondi, and M. Tornatore, “Using Active Learning to Decrease Probes for QoT Estimation in Optical 
Networks,” in Optica lFiber Communications Conference (OFC), Mar. 2019

• ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/torrey.handbook09.pdf
• W Mo, YK Huang, S Zhang, E Ip, DC Kilper, Y Aono, T Tajima, «ANN-based transfer learning for QoT prediction in real-time 

mixed line-rate systems», in Optical Fiber Communications Conference (OFC), Mar. 2019

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• Interpretability
 Go beyond black-box machine learning outcome!
 Can we gain insights on our problems

• Collaborative Self-Learning
 Different network nodes perform local estimations, then share part of 

their local knowledege to improve overall knowledge of other nodes
 4 phases: i) knowledge discover; ii) knowledge share; iii) knowledge 

assimilate; and iv) knowledge usage

Some emerging concepts (II) 50

• H.J. Escalante, I. Guyon, S. Escalera X. Baro, Y. Gucluturk, U. Guclu and M. van Gerven, Explainable and Interpretable 
Models in Computer Vision and Machine Learning, Springer Series on Challenges in Machine Learning, 2018.

• F. N. Khan, Q. Fan, C. Lu and A. P. T. Lau, "An Optical Communication's Perspective on Machine Learning and Its 
Applications," in Journal of Lightwave Technology, vol. 37, no. 2, pp. 493-516, 15 Jan.15, 2019.

• M. Ruiz, F. Boitier, P. Layec, and L. Velasco, “Self-Learning Approaches for Real Optical Networks,” in Proc. IEEE/OSA 
Optical Fiber Communication Conference (OFC), 2019

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Thank You! 51

Biswanath Mukherjee, Yu Wu
Lin Wang,Sabidur Rehman, 

Achille Pattavina
Francesco Musumeci
Shahin Shahkarami
Luca Barletta

Filppo Cugini (CNIT) 
Cristina Rottondi (PoliTo)
Dario Azzimonti, Matteo Salani, Alessandro Giusti 
(Dalle Molle Institute of Artificial Intelligence)

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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• Books (general refs. for ML):
 T. Hastie, R. Tibshirani, J. Friedman, 

“The Elements of Statistical Learning”, 
Ed. Springer

 G. James, D. Witten, T. Hastie, R. 
Tibshirani, “An Introduction to Statistical 
Learning with Applications in R”, Ed. 
Springer

• Prof. Andrew Ng lectures (Stanford 
University)

• … Google it!

Some material 52

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Some publications (1) 53

e Miguel et al., “Cognitive Dynamic Optical Networks”, Journal of Optical Communication and 
Networking, vol. 5, n. 10, Oct. 2013

et al., “Machine Learning Techniques for Optical Performance Monitoring From Directly Detected 
PDM-QAM Signals”, Journal of Lightwave Technology, vol. 35, n. 4, Feb. 2017

et al., “Experimental demonstration of a cognitive quality of transmission estimator for optical 
communication systems”, Optics Express, vol. 20, n. 26, Dec. 2012

et al., “A Cognitive Quality of Transmission Estimator for Core Optical Networks”, Journal of 
Lightwave Technology, vol. 31, n. 6, Mar. 2013These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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Some publications (2) 54

These slides are not NIST's slides. NIST is not responsible for the content of these slides.
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