

Setting the Stage: Is a Big G Consortium the Right Way?

Carl J. Williams, Chief

Quantum Measurement Division

Quantum Measurement Division (QMD)

QMD is at the center of the redefinition of the "Quantum SI"

- Mohr, Taylor, and E. Williams instrumental in basic idea
- CODATA (Committee on Data for Science and Technology) recommended values will be basis for fixing the constants

• QMD realizes electrical, mass, and force units

- Reorganization creates a *unique* opportunity for the <u>mise-en-</u> <u>pratique</u> for mass!
- Quantum based measurements provides foundation for advances in all units including beyond the standard quantum limit

INSTITUTE OF PHYSICS PUBLISHING Metrologia 43 (2006) 227–246

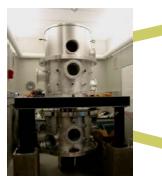
rad

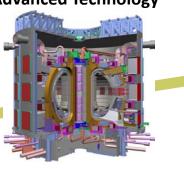
METROLOGIA doi:10.1088/0026-1394/43/3/006

Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005)

Ian M Mills¹, Peter J Mohr², Terry J Quinn³, Barry N Taylor² and Edwin R Williams²

2010 CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL CONSTANTS OF PHYSICS AND CHEMISTRY NIST SP 959 (Dec 2012)

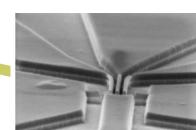

Values from: P. J. Mohr, B. N. Taylor, and D. B. Newell, *Rev. Mod. Phys.* 84, 1527 (2012) and *J. Phys. Chem. Ref. Data* 41, 043109 (2012). The number in parentheses is the one-sigma (1 σ) uncertainty in the last two digits of the given value.


Quantity	Symbol	Numerical value	Unit
speed of light in vacuum	c, c_0	299 792 458 (exact)	${\rm m~s^{-1}}$
magnetic constant	μ_0	$4\pi \times 10^{-7}$ (exact)	$N A^{-2}$
electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817 imes 10^{-12}$	${ m F~m^{-1}}$
Newtonian constant of gravitation	n G	$6.67384(80) imes 10^{-11}$	$m^3 kg^{-1} s^{-2}$
Planck constant	h	$6.62606957(29) imes 10^{-34}$	Js
$h/2\pi$	\hbar	$1.054571726(47) \times 10^{-34}$	Js
elementary charge	e	$1.602176565(35) \times 10^{-19}$	\mathbf{C}
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525698(24) imes 10^{-3}$	
inverse fine-structure constant	α^{-1}	137.035999074(44)	
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	R_{∞}	10973731.568539(55)	m^{-1}
Bohr radius $\alpha/4\pi R_{\infty}$	a_0	$0.52917721092(17) \times 10^{-10}$	m
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.400968(20) \times 10^{-26}$	$\mathrm{J}~\mathrm{T}^{-1}$

Vertically Integrated Measurements and Services within the Quantum Measurement Division

Research for Advanced Technology

Research to Support *Mise-en-pratique*



NIS	T /	1	roi	Mi	c S	S	DEC	TRA	D	AT	Ab	A	56	-
	ACCEPT		Dance		1.00									_
Fe XV: 84	Lines o	t Da	ta Four	hđ										
Norsiergit in	100-500	*												
Wesheigh at -	access ballow ;	A MIL	air beforeren	200 en	1 2000 A. 140		herry 20000 A							
Statut minister														
		_			_				_	_				_
CEnerved		-	44	Acc.	- 6		44	Configurations	Tertin	4 - 4		Type		u
Versiength	Ver 15													
A	interior.		1.6++00	D			192,010	2/21 - 2011	's - 'D	0 + 7	1-1	12	1	
	1-1.010		434-64	1		-		2/37-37	12- 10	0-2	1-5	12		
	176,764		8.10+65				102 415	2020-20	's . 'p	0.2	1-2	12		
	141,404		3.54-68	+			140.000	July - Jahr	10 10	1-2	2-2			
	101-011		3.84+68	E			174 101	302 - 3000	'0 - 'P	2-1	5+3		101	b
	100,741		1.84+67	E	- 200 - 200		182.000	342 - 3434	3p= - 10	2-2	5-5		3	
140,001	100-					+	142 113	30' - 3000	"D = ."F"	2+2	5+7			D
326.234	10.01	.00				-	100.004	20 - 2000	4 - 10	2+2	5+7			b
411.48	101-10-	.1			248.012	- 1	400 100	3034 - 34	'o- 'o	2-2	5-5			ß
	228.275		1.24+00	D	211 112		171 711	263p - 3450	17 - 10	0-2	1-5	142	1.0	
324,788	104.70	- 99	1.38e-10	¢	810 944	-	478.778	July - Sabi	3pr - 30	2-1	1-3		3,349	
218.220	224.201	. 5			828.245		879.885	3/24 - 24	4-4	2 = 2	5+5			Þ
	104,5%		1.98600		210.000		40.414	3x3p = 3x8x	10 10	8=3	3-7	142	. 8	
\$27.816	217-2-	1.00	1.84+12	C	228 945		476.765	Salp = Salat	1pr = 10	1=2	3+5		1,549	
327,734	307.77	140	9.84+09	C	225 685		810.172	2624 - 2434	3pt + 30	1-1	3-3		3,349	
110.700	100-	144					1000 1010	30 - 3030	0 - 0		5.07			

Calibration Services and Data Dissemination

Measurement Science Research

Quantum Materials and Quantum Based Measurements

Precision Measurements Realization of Mass, Force, and Electrical Units

2010 CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL CONSTANTS OF PHYSICS AND CHEMISTRY NIST SP 959 (Dec 2012) Values from: P. J. Mohr, B. N. Tuylor, and D. B. Newell, Rev. Mod. Phys. 84, 1021 (2012) and J. Phys. Chem. Ref. Data 41, 043109 (2012). The number in parentheses is the consensuing (1 or uncertainty in the last two didies of the driven value.									
Quantity	Symbol	Numerical value	Unit						
speed of light in vacuum	C. C)	299 792 458 (exact)	m s ⁻¹						
magnetic constant	JIO.	$4\pi \times 10^{-7}$ (exact)	N A-2						
electric constant 1/µ/c2	10	$8.854187817 \times 10^{-12}$	F m ⁻¹						
Newtonian constant of gravitation		$6.673.84(80) \times 10^{-11}$	m3 kg-1 s-2						
Planck constant	h	$6.62506957(29) \times 10^{-31}$	Js						
h/2m	h.	$1.054571726(47) \times 10^{-34}$	J s						
elementary charge	- 20	$1.602176565(35) \times 10^{-19}$	C						
fine-structure constant c2/4zcohe	0	$7.2973525608(24) \times 10^{-3}$							
inverse fine-structure constant	0-1	137.035999074(44)							
Rydberg constant $\alpha^2 m_e c/2\hbar$	Re	10 973 731,568 539(55)	III ⁻¹						
Bohr radius a/4zR.	an	$0.52917721092(17) imes 10^{-10}$	TIL						
Bohr magneton ch/2m		927 000 964/200 × 10-26	17-1						

Fundamental Constants/CODATA

rad

Quantum SI

Physical Measurement Laboratory

Why are we here?

- We have a problem with "G"
- As described at the Royal Society meeting the current discrepancy suggests that one more measurement doesn't help.
- Well a much better measurement could resolve the discrepancy at least until the 2nd improved measurement showed up!

- General Questions:
 - Do we need an advisory board?
 - Do we want a consortium?

NIST and G

- Paul Heyl measures G with a torsion balance:
 - 1930: 6.670(5) x 10⁻¹¹ m³/kg/s²
 - 1942: 6.673(3) x 10⁻¹¹ m³/kg/s²
- Gabe Luther & William Towler use a torsion balance: 1982: 6.6726(5) x 10⁻¹¹ m³/kg/s²
- Joshua Schwartz *et al.* (Faller) measure G in free fall: 1998: 6.6873(94) x 10⁻¹¹ m³/kg/s²

rad

 Harold Parks & Jim Faller use a simple pendulum: 2010: 6.67234(14) x 10⁻¹¹ m³/kg/s²

How to move ahead?

- 1. Do nothing just wait
- Form a consortium (NIST concept on this is on the next slide)*
- 3. Wait pending new results and then revisit the question
- 4. Other ideas for solution
- * If we agree on this choice, NIST Is prepared to consider designing and building one or more instruments as a "Hub member" of a consortium

Why a consortium?

- Numerous measurements
- More ways to look for systematics
 - Instrument Design
 - Operator Expertise
 - Data Analysis
 - Undiscovered physics

Our Concept of the Approach

- 3 methods 2 copies each ...
- "Hub members" willing to design and build multiple instruments
- Members willing to make independent measurements using an instrument provided

rad

 Lead Members – willing to make measurement on a non-transportable instrument

Problems and Issues

- Avoid group think
- Avoid intellectual phase locking (double/triple blind measurements)
- How do we do this blind?
- Do we want multiple offsets?
- Blind measurements are they really good?

International Support Exists

- Decision CIPM/103-23 The CIPM would welcome the presentation of a formal proposal on the creation of an advisory board on G experiments at its next meeting.
- IUPAP is willing to accept a proposal as well. This may end up under Commission C2 – SUNAMCO: (Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants)

Questions

rad

Ha

U DEL

Physical Measurement Laboratory