An NGS Workflow Designed/Optimized for Sterility Testing in Gene and Cell Therapy Products

The NIST Rapid Microbial Testing Methods (RMTM) Consortium

April 8th, 2025 Scott Jackson Tyler Laird

Graphic Credit: Natasha Hanacek

int

RMTM CONSORTIUM WORKING GROUPS

Next Generation Sequencing (NGS)-Based Sterility Testing

 In 2023-ish, the RMTM WG02 committed to the development of NGS-based tools for microbial sterility testing in the biomanufacturing environment.

NGS-Based Metagenomics as an RMTM

- Untargeted microbial detection "see everything"
- "Agnostic Diagnostics"
- Being adopted across various fields/disciplines
 - Infectious Disease Diagnostics
 - Epidemiology
 - Environmental Biosurveillance
 - Biothreat Detection
 - Biomanufacturing QC Adventitious Agent Detection
- NIST has been developing standards for NGS-based microbial detection and identification for ~ 10 years

Metagenomics 101

DNA Sequence Data

National Institute of Standards and Technology U.S. Department of Commerce

Genomic DNA

NGS-Based Metagenomics A Multitude of Methodological Variables

A Multitude of Methodological Variables

An International Interlaboratory Study: Assessing the Impact of Metagenomic Methodological Variability

An Intralaboratory Assessment of Methodological Variables Associated with Metagenomic Measurements

RESEARCH ARTICLE February 2025 Volume 13 Issue 2 e00696-24 https://doi.org/10.1128/spectrum.00696-24

A sensitivity analysis of methodological variables associated with microbiome measurements

Samuel P. Forry () ¹, Stephanie L. Servetas¹, Jennifer N. Dootz¹, Monique E. Hunter¹, Jason G. Kralj () ¹, James J. Filliben², Scott A. Jackson¹

¹Complex Microbial Systems Group, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA

²Multimodal Information Group, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA

The experimental methods employed during metagenomic sequencing analyses of microbiome samples significantly impact the resulting data and typically vary substantially between laboratories. In this study, a full factorial experimental design was used to compare the effects of a select set of methodological choices (sample, operator, lot, extraction kit, variable region, and reference database) on the analysis of biologically diverse stool samples. For each parameter investigated, a main effect was calculated that allowed direct comparison both between methodological choices (bias effects) and between samples (real biological differences). Overall, methodological bias was found to be similar in magnitude to real biological differences while also exhibiting significant variations between individual taxa, even between closely related genera. The quantified method biases were then used to computationally improve the comparability of data sets collected under substantially different protocols. This investigation demonstrates a framework for quantitatively assessing methodological choices that could be routinely performed by individual laboratories to better understand their metagenomic sequencing workflows and to improve the scope of the datasets they produce.

National Institute of Standards and Technology U.S. Department of Commerce

FIG 6 Quantitative comparison between methodological parameters. The Bacteroidetes:*Leifsonia* ratio was calculated for each data set to enable comparison between protocols. The effect of each parameter was calculated by dividing the average ratio for all data sets at the denoted parameter level by the average ratio across all parameter levels, as shown in equation 1. This parameter effect was plotted as a fold change on a log2 scale, such that the horizontal line at 0 denotes the null hypothesis of no effect. The magnitude of the effect of protocol choices (e.g., extraction kit) can be directly compared between parameters and parameter levels. Data error bars showed 99% confidence intervals, and the points that are statistically significantly different from the mean (P < 0.01) were colored red.

Tools Needed for mNGS as an RMTM

- Custom Reference Genome Database with 'Relevant' Organisms
- Custom Bioinformatic Analysis Tools Sequence Alignment
- All analysis tools should be open-source
 - But proprietary (commercial) tools are welcome (cloud analytics)
- Spike-Ins and analysis framework for data normalization
- Benchmarking Studies Require Benchmarking Materials
 - In silico datasets metagenomes

Bacterial and Fungal Contaminants in Cell Therapy Products

Q

Journal of Clinical Microbiology

Clinical Microbiology | Minireview | 27 February 2023

Sterility Testing for Hematopoietic Stem Cells

 Authors: Tony Cundell, J. Wade Atkins, Anna F. Lau
 Authors

 INFO & AFFILIATIONS
 PDF

 DOI: https://doi.org/10.1128/jcm.01654-22

TABLE 4 Frequency of bacterial and fungal HSC contaminants and typical source ranked by frequency of organism occurrence based on literature reports spanning from 2003 to 2021

Organism	Typical source	Frequency reported	References
Coagulase-negative Staphylococcus spp.	Skin	17	9–11, 19, 24–26, 29–32, 36, 38, 39, 42, 47, 49
Staphylococcus aureus	Skin	9	11, 24, 27, 30–32, 38, 42, 47
Bacillus spp.	Environment	7	24, 25, 29, 32, 36, 47, 49
Corynebacterium spp.	Skin	7	11, 19, 25, 39, 42, 47, 49
Cutibacterium acnes	Skin	7	10, 11, 19, 24, 36, 42, 49
Escherichia coli	Enteric	7	9, 19, 25, 26, 30, 31, 42
Streptococcus spp.	Oral	7	24, 25, 30–32, 42, 49
Pseudomonas aeruginosa	Environment	6	9, 19, 29–31, 42
Ralstonia pickettii	Water	5	10, 24, 31, 39, 42
Enterococcus faecalis	Enteric	4	26, 31, 42, 49
Bacteroides spp.	Enteric	3	25, 27, 49
Clostridium spp.	Enteric	3	9, 10, 25
Enterobacter spp.	Enteric	3	11, 42, 47
Enterococcus faecium	Enteric	3	26, 27, 30
Klebsiella pneumoniae	Enteric	3	25, 26, 30
Sphinaomonas paucimobilis	Water	3	9. 38. 39
Acinetobacter spp.	Environment	2	24. 30. 42
Asperaillus spp	Environment	2	25.32
Candida parapsilosis	Environment	2	25,32
Chryseobacterium spp	Environment	2	10 42
Enterococcus spp.	Enteric	2	25 49
Lactobacillus spp.	Enteric	2	26, 29
Micrococcus spp.	Skin	2	32 42
Mold no further identification	Environment	2	32, 42
Penicillium son	Environment	2	10 32
Pentostrantosoccus spp	Entoric	2	25.40
Protous mirabilis	Enteric	2	38.40
Proteus mirabilis Pseudomonas fluorescens/Pseudomonas putida	Environment	2	12 AQ
Stanotronhomonas maltonhilia	Environment	2	42,49
Actinomycas cop	Oral	2	42, 49
Actinomyces spp.	Environment	1	49
Acromonas hydrophila	Wator	1	25
Reformentas invertegias	Valer	1	25
Bindobacterium spp.	Enteric	1	23
Bipolaris spicifera	Environment	1	11
Candida alhisans	Oral antaria	1	25
Canalaa albicans	Oral, enteric		10
Chaetomium spp.	Environment	1	42
Citrobacter spp.	Enteric	1	4/
Enteric Gram-negative rod, no further identification	Enteric		39
Histoplasma capsulatum	Environment	1	9
Kocuria spp.	Skin	1	32
Methylobacterium spp.	Environment, water	1	42
Moraxella spp.	Oral	1	42
Rhodotorula spp.	Environment	1	32
Roseomonas spp.	Water	1	26
Rothia spp.	Skin, oral	1	49
Salmonella enterica	Enteric	1	40
Shigella spp.	Enteric	1	38
Ustilago spp.	Environmental	1	10
Veillonella spp.	Oral	1	24

"Minimal List" of Microbial Strains for NGS-Metagenomics Database Developed via SCB RMM Consortium

Genus	spp.	Туре
Aspergillus	fumigatus	Mold
Aspergillus	versicolor	Mold
Aspergillus	niger	Mold
Bacillus	cereus	Bacteria, Gram positive rod
Bacillus	subtilis	Bacteria, Gram positive rod
Brevundimonas	vesicularis	Bacteria, Gram negative rod
Burkholderia	cepacia	Bacteria, Gram negative rod
Candida	albicans	Yeast
Candida	glabrata	Yeast
Candida	krusei	Yeast
Chryseobacterium	indologenes	Bacteria, Gram negative rod
Cladosporium	sphaerospermum	Mold
Clostridium	perfringens	Anaerobic bacteria, Gram positive rod
Clostridium	sporogenes	Anaerobic bacteria, Gram positive rod
Corynebacterium	spp.	Bacteria, Gram-positive rod
Fusarium	spp.	Mold
Klebsiella	pneumoniae	Bacteria, Gram negative rod
Lactobacillus	spp.	Anaerobic bacteria, Gram positive rod
Micrococcus	luteus	Bacteria, Gram positive cocci
Penicillium	spp.	Mold
Propionibacterium	acnes	Anaerobic bacteria, Gram positive rod
Pseudomonas	aeruginosa	Bacteria, Gram negative rod
Pseudomonas	flourescens	Bacteria, Gram negative rod
Ralstonia	pickettii	Bacteria, Gram negative rod
Serratia	marcesens	Bacteria, Gram negative rod
Sphingomonas	spp.	Bacteria, Gram negative rod
Staphylococcus	epidermidis	Bacteria, Gram positive cocci
Staphylococcus	aureus	Bacteria, Gram positive cocci
Stenotrophomonas	maltophilia	Bacteria, Gram negative rod
Streptococcus	pyogenes	Bacteria, Gram positive cocci
Yersinia	enterocolitica	Bacteria, Gram negative rod

Expanded List of 245 Microbial Strains for NGS-Metagenomics Database

Cloacibacterium	normanense	bacteria	Main genera from pyrosequencing reads	Park 2014 Bacterial Diversity in the indoor air of pharmace
Clostridium	spp.	bacteria	Listed as common microbial contaminant in biopharm	Clontz 2013 Biopharmaceutical Microbial Contamination C
Clostridium perfringens ATCC 13 124				from HPC sterility testing
Clostridium sporogenes		Anaerobic bacteria,		USP<71>/Ph. Eur. 2.6.1/JP 54/ Ph. Eur. 2.6.27
Clostridium spp.				from Cytotherapy 2014
Coagulase-negative Staphylococcus				from Cytotherapy 2014
Comamonas	spp.	bacteria	WFI genus	Sandle, Tim 2015 Characterizing the Microbiota of Pharma
Corynebacterium	spp.	bacteria	Review of 9000 microbial isolates from a range of differen	Sandle, Tim. A Review of Cleanroom Microflora: Types, Tr
Corynebacterium	spp.	bacteria	Most common genus - all human microbes	Rodriguez 2013 MS Thesis - Microbial survey of Ajinomoto

245 Environmental Isolates

Standards and Technology U.S. Department of Commerce

https://drive.google.com/drive/folders/13XAfcyMnZC95EmyxjzJ_99BcV8Z3aaYT?usp=drive_link

But Wait! There's More!

Genus	spp.	Туре
Aspergillus	fumigatus	Mold
Aspergillus	versicolor	Mold
Aspergillus	niger	Mold
Bacillus	cereus	Bacteria, Gram positive rod
Bacillus	subtilis	Bacteria, Gram positive rod
Brevundimonas	vesicularis	Bacteria, Gram negative rod
Burkholderia	cepacia	Bacteria, Gram negative rod
Candida	albicans	Yeast
Candida	glabrata	Yeast
Candida	krusei	Yeast
Chryseobacterium	indologenes	Bacteria, Gram negative rod
Cladosporium	sphaerospermum	Mold
Clostridium	perfringens	Anaerobic bacteria, Gram positive rod
Clostridium	sporogenes	Anaerobic bacteria, Gram positive rod
Corynebacterium	spp.	Bacteria, Gram-positive rod
Fusarium	spp.	Mold
Klebsiella	pneumoniae	Bacteria, Gram negative rod
Lactobacillus	spp.	Anaerobic bacteria, Gram positive rod
Micrococcus	luteus	Bacteria, Gram positive cocci
Penicillium	spp.	Mold
Propionibacterium	acnes	Anaerobic bacteria, Gram positive rod
Pseudomonas	aeruginosa	Bacteria, Gram negative rod
Pseudomonas	flourescens	Bacteria, Gram negative rod
Ralstonia	pickettii	Bacteria, Gram negative rod
Serratia	marcesens	Bacteria, Gram negative rod
Sphingomonas	spp.	Bacteria, Gram negative rod
Staphylococcus	epidermidis	Bacteria, Gram positive cocci
Staphylococcus	aureus	Bacteria, Gram positive cocci
Stenotrophomonas	maltophilia	Bacteria, Gram negative rod
Streptococcus	pyogenes	Bacteria, Gram positive cocci
Yersinia	enterocolitica	Bacteria, Gram negative rod

There are >160 species of *Corynebacterium*

Corynebacterium comprises the following species:150 • C. accolens Neubauer et al. 1991 • C. glaucum Yassin et al. 2003 C. afermentans Riegel et al. 1993 • C. alucuronolyticum Funke et al. 1995 C. alimapuense Claverias et al. 2019 • C. glutamicum (Kinoshita et al. 1958) Abe et al. • "C. alkanolyticum" Lee and Reichenbach 2006 1967 (Approved Lists 1980) • C. glyciniphilum (ex Kubota et al. 1972) Al-Dilaimi • C. ammoniagenes (Cooke and Keith 1927) Collins et al. 2015 1987 • C. gottingense Atasayar et al. 2017 C. amycolatum Collins et al. 1988 C. guangdongense Li et al. 2016 • C. anserum Liu et al. 2021 • "C. haemomassiliense" Boxberger et al. 2020 • C. appendicis Yassin et al. 2002 • C. aquatimens Aravena-Román et al. 2012 C. halotolerans Chen et al. 2004 • C. hansenii Renaud et al. 2007 • C. aquilae Fernández-Garayzábal et al. 2003 C. argentoratense Riegel et al. 1995 • C. heidelbergense Braun et al. 2021 C hindlerae Bernard et al. 2021 "C. asperum" De Briel et al 1992 • C. atrinae Kim et al. 2015 C humireducens Wulet al 2011 • "C. ihumii" Padmanabhan et al. 2014 • C. atypicum Hall et al. 2003 • C. ilicis Mandel et al. 1961 (Approved Lists 1980) C aurimucosum Yassin et al. 2002 C auris Funke et al. 1995 C. imitans Funke et al. 1997 • C. auriscanis Collins et al. 2000 • "C. incognitum" Boxberger et al. 2021 • C. belfantii Dazas et al. 2018 • C. jeddahense Edouard et al. 2017 • C. beticola Abdou 1969 (Approved Lists 1980) • C. jeikeium Jackman et al. 1988 C. kalinowskii Schaffert et al. 2021 "C. bouchesdurhonense" Ndongo et al. 2017 • "C. bouchesdurhonense" Lo et al. 2019 "C. kefirresidentii" Blasche et al. 2017 • C. bovis Bergey et al. 1923 (Approved Lists 1980) C. kroppenstedtii Collins et al. 1998 • C. callunae (Lee and Good 1963) Yamada and • C. kutscheri (Migula 1900) Bergey et al. 1925 Komagata 1972 (Approved Lists 1980) (Approved Lists 1980) · C. camporealensis Fernández-Garavzábal et al C. lactis Wiertz et al. 2013. 1998 "C. lactofermentum" Gubler et al. 1994 • C. canis Funke et al. 2010 • C. jeikliangguodongiiium Zhu et al. 2020 • C. capitovis Collins et al. 2001 • C. lipophiloflavum Funke et al. 1997 • C. casei Brennan et al. 2001 • C. lizhenjunii Zhou et al. 2021 • C. lowii Bernard et al. 2016 C. caspium Collins et al. 2004 C. choanae Busse et al. 2019 C. lubricantis Kämpfer et al. 2009 C. ciconiae Fernández-Garayzábal et al. 2004 • C. lujinxingii Zhang et al. 2021 . C. comes Schaffert et al. 2021 C. macginleyi Riegel et al. 1995 C confusum Funke et al. 1998 • C marinum Du et al. 2010 C. covleae Funke et al. 1997 C. maris Ben-Dov et al. 2009 • C. crudilactis Zimmermann et al. 2016 • C. massiliense Merhej et al. 2009 . C. cystitidis Yanagawa and Honda 1978 (Approved C. mastitidis Fernandez-Garayzabal et al. 1997 Lists 1980) • C. matruchotii (Mendel 1919) Collins 1983 • "C. defluvii" Yu et al. 2017 C. minutissimum (ex Sarkany et al. 1962) Collins "C dentalis" Benehdelkeder et al. 2020 and Jones 1983 C. deserti Zhou et al. 2012 • C. mucifaciens Funke et al. 1997 • C. diphtheriae (Kruse 1886) Lehmann and C. mustelae Funke et al. 2010 Neumann 1896 (Approved Lists 1980) C. mycetoides (ex Castellani 1942) Collins 1983 • C. doosanense Lee et al. 2009 C. nasicanis Baumgardt et al. 2015 C. durum Riegel et al. 1997 "C. neomassiliense" Boxberger et al. 2020 . C. efficiens Fudou et al. 2002 • C. nuruki Shin et al. 2011 • C. endometrii Ballas et al. 2020 • C. occultum Schaffert et al. 2021 • C. epidermidicanis Frischmann et al. 2012 C. oculi Bernard et al. 2016 • C. faecale Chen et al. 2016 • C. otitidis (Funke et al. 1994) Baek et al. 2018 C felsenii Siödén et al. 1998 • "C. pacaense" Bellali et al. 2019 • C. felinum Collins et al. 2001 • "C. parakroppenstedtii" Luo et al. 2022 C. flavescens Barksdale et al. 1979 (Approved "C. parvulum" Nakamura et al. 1983. Lists 1980) C. pelargi Kämpfer et al. 2015 • C. fournieri corrig. Diop et al. 2018 • C. phocae Pascual et al. 1998 C. frankenforstense Wiertz et al. 2013. • "C. phoceense" Cresci et al. 2016 • C. freiburgense Funke et al. 2009 • C. pilbarense Aravena-Roman et al. 2010 • C. freneyi Renaud et al. 2001 C. pilosum Yanagawa and Honda 1978 (Approved

Lists 1980)

C. gerontici Busse et al. 2019

• C. pollutisoli Negi et al. 2016 C. propinguum Riegel et al. 1994 . "C. provencense" Ndongo et al. 2017 • "C. provencense" Lo et al. 2019 • C. pseudodiphtheriticum Lehmann and Neumann 1896 (Approved Lists 1980) • "C. pseudokroppenstedtii" Luo et al. 2022 C. pseudopelargi Busse et al. 2019 • C. pseudotuberculosis (Buchanan 1911) Eberson 1918 (Approved Lists 1980) • C. pyruviciproducens Tong et al. 2010 • C. gintianiae Zhou et al. 2021 C renale (Migula 1900) Ernst 1906 (Approved Lists 1080) . C. resistens Otsuka et al. 2005 • C. riegelii Funke et al. 1998 • C. rouxii Badell et al. 2020 • C. sanquinis Jaén-Luchoro et al. 2020 "C. segmentosum" Collins et al. 1998 • "C. senegalense" Ndiaye et al. 2019 . C. silvaticum Dangel et al. 2020 • C. simulans Wattiau et al. 2000 C. singulare Riegel et al. 1997 • C. sphenisci Goyache et al. 2003 C. spheniscorum Govache et al. 2003 C. sputi Yassin and Siering 2008 • C. stationis (ZoBell and Upham 1944) Bernard et al. 2010 • C. striatum (Chester 1901) Eberson 1918 (Approved Lists 1980) C. suicordis Vela et al. 2003 • C. sundsvallense Collins et al. 1999 C. suranareeae Nantapong et al. 2020 • C. tapiri Baumgardt et al. 2015 • C. terpenotabidum Takeuchi et al. 1999 • C. testudinoris Collins et al. 2001 • C. thomssenii Zimmermann et al. 1998 C. timonense Merhei et al. 2009 • C. trachiae Kämpfer et al. 2015 • C. tuberculostearicum Feurer et al. 2004 C fuscaniense corrig Riegel et al. 2006 "C uberis" Kittl et al. 2022 . C. ulcerans (ex Gilbert and Stewart 1927) Riegel et al 1995 • C. ulceribovis Yassin 2009 • C. urealvticum Pitcher et al. 1992 C ureicelerivorans Yassin 2007 "C. urinapleomorphum" Morand et al. 2017 • C. urinipleomorphum corrig. Niang et al. 2021 • C. urogenitale Ballas et al. 2020 • C. uropygiale Braun et al. 2016 C. uterequi Hoyles et al. 2013 • C. variabile corrig. (Müller 1961) Collins 1987 • C. vitaeruminis corrig. (Bechdel et al. 1928) Lanéelle et al. 1980 • C. wankanglinii Zhang et al. 2021 C. xerosis (Lehmann and Neumann 1896) Lehmann and Neumann 1899 (Approved Lists 1980) • C. yudongzhengii Zhu et al. 2020

• C. zhongnanshanii Zhang et al. 2021

More Bacterial and Fungal Contaminants

Q

Journal of Clinical Microbiology

Clinical Microbiology | Minireview | 27 February 2023

Sterility Testing for Hematopoietic Stem Cells

TABLE 4 Frequency of bacterial and fungal HSC contaminants and typical source ranked by frequency of organism occurrence based on literature reports spanning from 2003 to 2021

Organism	Typical source	Frequency reported	References
Coagulase-negative Staphylococcus spp.	Skin	17	9-11, 19, 24-26, 29-32, 36, 38, 39, 42, 47, 49
Staphylococcus aureus	Skin	9	11, 24, 27, 30–32, 38, 42, 47
Bacillus spp.	Environment	7	24, 25, 29, 32, 36, 47, 49
Corynebacterium spp.	Skin	7	11, 19, 25, 39, 42, 47, 49
Cutibacterium acnes	Skin	7	10, 11, 19, 24, 36, 42, 49
Escherichia coli	Enteric	7	9, 19, 25, 26, 30, 31, 42
Streptococcus spp.	Oral	7	24, 25, 30–32, 42, 49
Pseudomonas aeruginosa	Environment	6	9, 19, 29–31, 42
Ralstonia pickettii	Water	5	10, 24, 31, 39, 42
Enterococcus faecalis	Enteric	4	26, 31, 42, 49
Bacteroides spp.	Enteric	3	25, 27, 49
Clostridium spp.	Enteric	3	9, 10, 25
Enterobacter spp.	Enteric	3	11, 42, 47
Enterococcus faecium	Enteric	3	26, 27, 30
Klebsiella pneumoniae	Enteric	3	25, 26, 30
Sphingomonas paucimobilis	Water	3	9, 38, 39
Acinetobacter spp.	Environment	2	24, 30, 42
Asperaillus spp.	Environment	2	25, 32
Candida parapsilosis	Environment	2	25, 39
Chryseobacterium spp.	Environment	2	10, 42
Enterococcus spp.	Enteric	2	25, 49
Lactobacillus spp.	Enteric	2	26, 29
Micrococcus spp.	Skin	2	32, 42
Mold, no further identification	Environment	2	32, 42
Penicillium spp.	Environment	2	10.32
Peptostreptococcus spp.	Enteric	2	25, 49
Proteus mirabilis	Enteric	2	38, 49
Pseudomonas fluorescens/Pseudomonas putida	Environment	2	42, 49
Stenotrophomonas maltophilia	Environment	2	42, 49
Actinomyces spp.	Oral	1	49
Aerococcus spp.	Environment	1	25
Aeromonas hvdrophila	Water	1	31
Bifidobacterium spp.	Enteric	1	25
Bipolaris spicifera	Environment	1	11
Burkholderia cepacia	Environment	1	25
Candida albicans	Oral, enteric	1	10
Chaetomium spp.	Environment	1	42
Citrobacter spp.	Enteric	1	47
Enteric Gram-negative rod, no further identification	Enteric	1	39
Histoplasma capsulatum	Environment	1	9
Kocuria spp.	Skin	1	32
Methylobacterium spp.	Environment, water	1	42
Moraxella spp.	Oral	1	42
Rhodotorula spp.	Environment	1	32
Roseomonas spp.	Water	1	26
Rothia spp.	Skin, oral	1	49
Salmonella enterica	Enteric	1	40
Shiaella spp.	Enteric	1	38
Ustilaao spp	Environmental	1	10

Current Partner

- RMTM Consortium Member
- Expertise in microbial genomics, metagenomic analysis tool development, and building cloud analytic resources
- Curated database of 100's of k's of microbial genomes

Assessment of EzBiome NIST Sterility (ENSure) database / pipeline

Tyler Laird

Custom Genome Database – Sterility Relevant Taxa NIST

÷

Minimal Target List

1inimal list	Туре	
Bacillus cereus	Bacteria, Gram positive rod	
Bacillus subtilis	Bacteria, Gram positive rod	
Brevundimonas vesicularis	Bacteria, Gram negative rod	
Burkholderia cepacia	Bacteria, Gram negative rod	
Chryseobacterium indologenes	Bacteria, Gram negative rod	
Clostridium perfringens	Anaerobic bacteria, Gram positive rod	
Clostridium sporogenes	Anaerobic bacteria, Gram positive rod	
Corynebacterium spp.	Bacteria, Gram-positive rod	
(lebsiella pneumoniae	Bacteria, Gram negative rod	
actobacillus spp.	Anaerobic bacteria, Gram positive rod	
Aicrococcus luteus	Bacteria, Gram positive cocci	
Propionibacterium acnes	Anaerobic bacteria, Gram positive rod	
seudomonas aeruginosa	Bacteria, Gram negative rod	
seudomonas flourescens	Bacteria, Gram negative rod	
Ralstonia pickettii	Bacteria, Gram negative rod	
erratia marcesens	Bacteria, Gram negative rod	
phingomonas spp.	Bacteria, Gram negative rod	
taphylococcus epidermidis	Bacteria, Gram positive cocci	
taphylococcus aureus	Bacteria, Gram positive cocci	
tenotrophomonas maltophilia	Bacteria, Gram negative rod	
treptococcus pyogenes	Bacteria, Gram positive cocci	
ersinia enterocolitica	Bacteria, Gram negative rod	
Aspergillus fumigatus	Mold	
Aspergillus versicolor	Mold	
Aspergillus niger	Mold	
Candida albicans	Yeast	
Candida glabrata	Yeast	
Candida krusei	Yeast	
Cladosporium sphaerospermum	Mold	
usarium spp.	Mold	
Penicillium spp.	Mold	

Environmental organism list

enus	Species	Type of orgnaism
hromobacter	spp.	bacteria
inetobacter	spp.	bacteria
inetobacter	lwoffii	bacteria
inetobacter	spp.	bacteria
inetobacter	johnsonii	bacteria
inetobacter	junii	bacteria
remonium		fungi
tinomycetes	spp.	bacteria
romonas	spp.	bacteria
caligenes	spp.	bacteria
ternaria	spp.	fungi
ternaria	alternata	fungi
ternaria	spp.	fungi
throbacter	spp.	bacteria
pergillus	spp.	fungi
pergillus	spp.	fungi
pergillus	fumigatus	fungi
pergillus	versicolor	fungi
pergillus	niger	fungi
pergillus	spp.	fungi
pergillus	spp.	fungi
pergillus brasiliensis		Mold
pergillus fumigatus IHEM 22670		
pergillus niger (ATCC 16404)		
cillus	spp.	bacteria
cillus	sphaericus/fusiformis	bacteria
icillus	pumilis	bacteria
icillus	cereus	bacteria
icillus	cereus	bacteria

Spike-ins

Bacteria species1Brenneria nigrifluens2Delftia acidovorans

3 Deinococcus radiodurans

Other-taxa

Bacteria	group	#spp.
1	Actinomyces	48
2	Aerococcus	12
3	Citrobacter	21
4	Enterobacter	25
5	Enterococcus	64
	Enterococcus faecalis	1
	Enterococcus faecium	1
6	Roseomonas	16
7	Rothia	13
8	Veillonella	20
1	Proteus mirabilis	1
2	Salmonella enterica	1

Fungi	group	#spp.
1	Ustilago	15
2	Chaetomium	4
	Histoplasma capsulatum	1

ENSure DB

Target of 1 genome representative per species (based on OrthoANI calculations)

Work done by:

Hasan, Michael, Seon Young

EzBiome ENSure system bioinformatic pipeline NGT

¿EzBiome

Simulated Illumina Reads:

- In-silico read simulation of USP <71> genomes
- Comparison of ENSure with general purpose tools / databases
- Simulation with near-neighbor genome

Real Illumina Reads:

- Reads from USP <71> spike-in experiments
- Reads from USP <71> spike-in experiments (with pre-filtering)

In silico read simulation of USP <71> genomes NGT

Genome_name

Staphylococcus aureus ATCC 6538

Pseudomonas paraeruginosa ATCC 9027

Bacillus spizizenii ATCC 6633 = JCM 2499

Clostridium sporogenes strain FDAARGOS_1470

Candida albicans ATCC 10231

Aspergillus brasiliensis CBS 101740

Genome fasta file 📫

Staphylococcus aureus ATCC 6538 simulation NGT

Heatmap representing # of reads mapping to ENSure DB genes (1 million reads total)

Other Fungi

Summary metrics for all simulated USP <71> reads based on classification of reads at Species or Genus

	Specie	s Level	Genus	s Level	
Genome name	TPs	FPs	TPs	FPs	LOD
Staphylococcus aureus ATCC 6538	0.97	0.03	1.00	0.00	10 reads
Pseudomonas paraeriginosa ATCC 9027	0.95	0.05	1.00	0.00	100 reads
Bacillus spizizenii ATCC 6633 = JCM 2499	0.73	0.27	1.00	0.00	200 reads
Clostridium sporogenes strain FDAARGOS_1470	0.96	0.04	1.00	0.00	200 reads
Candida albicans ATCC 10231	0.61	0.39	1.00	0.00	500 reads
Aspergillus brasiliensis CBS 101740	0.85	0.15	0.99	0.01	200 reads
				<u> </u>	

- Vast majority of reads are correctly identified at genus level
- Limit of detection is roughly associated with genome

Comparison with other tools / databases

Same USP <71> data as on previous slides

Taxonomic classification results

Tool : Database Centrifuge: Refseq: bacteria & archaea compressed 2018.4.15 (6.2 GB) Kraken2 – Bracken : plusPFP database (8 GB) mOTUs : mOTU db v3.1.0 (3 GB)

Standardized results tables

Comparison with other tools / databases

Precision (Genus Level) Centrifuge Staphylococcus 1.00 Pseudomonas 0.98 Bacillus 1.00 Clostridium 0.99 Candida 0.00 Aspergillus 0.00 kraken2-bracken Staphylococcus 1.00 Pseudomonas 1.00 Bacillus 1.00 Clostridium 0.99 Candida 0.59 0.94 Aspergillus mOTUs Staphylococcus 1.00 Pseudomonas 1.00 Bacillus 1.00 Clostridium 1.00 Candida 0.00 Aspergillus 0.00 ENSure Staphylococcus 1.00 Pseudomonas 1.00 Bacillus 1.00 Clostridium 1.00 Not in DR Candida 1.00 Aspergillus 0.99

Near neighbor taxa simulation

How does ENSure handle taxa that are not in the DB, but are somewhat related to a genome in the DB?

Methods: Simulated reads for Candidozyma auris ("Candida auris") ---> ENSure

Candidozyma_auris_B11220 simulation read mapping distribution to core genes

GCA 030585045.1 [Candida parablackwelliae] GCA 030582995.1 [Candida maltosa] GCA 030582635.1 [Candida metapsilosis] GCA 030582595.1 [Candida tropicalis] GCA 030582575.1 [Candida buenavistaensis] GCA 030582515.1 [Candida albicans] GCA 030581655.1 [Yarrowia lipolytica] GCA 030579455.1 [Pichia kudriavzevii] GCA 030579015.1 [Candida blackwelliae] GCA 030573215.1 [Candida orthopsilosis] GCA 030572435.1 [Candida labiduridarum] GCA 030569255.1 [Candida sakaeoensis] GCA 030568755.1 [Candida dubliniensis] GCA 030566835.1 [Candida viswanathii] GCA 030565125.1 [Candida pseudoviswanathii] GCA 030562845.1 [Candida oxycetoniae] GCA 030557105.1 [Candida frijolesensis] GCA 030557085.1 [Candida gigantensis] GCA 030557055.1 [Candida tetrigidarum] GCA_030555925.1 [Candida xiaguanensis] GCA 024628925.1 [Candida margitis] GCA 024610275.1 [Candida theae] GCA 024610245.1 [Candida pseudojiufengensis] GCA 019359905.1 [Candida africana] GCA 015344875.1 [Candida parapsilosis] GCA 000002545.2 [Nakaseomyces glabratus]

ENSure can detect near neighbor "Candida" species even if not explicitly in the database with hits to 12 genes across 26 genomes

400

350

300

250

200

150

100

50

*ignoring a core gene threshold

National Institute of Standards and Technology U.S. Department of Commerce 12 ENSure DB Core genes with hits

Analysis of raw sequencing data from spike-in experiment NIST

Sterility testing of USP <71> related spike-ins with Mesenchymal Stem Cell cultures (SRP161443)

A systematic sequencing-based approach for microbial contaminant detection and functional inference

Sung-Joon Park, Satoru Onizuka, Masahide Seki, Yutaka Suzuki, Takanori Iwata & Kenta Nakai 🖾

BMC Biology 17, Article number: 72 (2019) Cite this article

J.S. Department of Commerce

1100 CFU

- DNA-seq of hPDL-MSCs (1100 CFU x6 microbe species with Antibiotics)
- 14. 1 ILLUMINA (Illumina HiSeq 3000) run: 364M spots, 72.8G bases, 27.7Gb downloads Accession: SRX4668672

60 CFU

- DNA-seq of hPDL-MSCs (60 CFU x6 microbe species with Antibiotics)
- 1 ILLUMINA (Illumina HiSeq 3000) run: 365.5M spots, 73.1G bases, 27.5Gb downloads Accession: SRX4668671

List of spike-in microbes

- A. brasiliensis NCPF 2275
- B. splizizeni NCTC 10400
- C. albicans NCPF 3179
- C. sporogenes NCTC 12935
- P. paraeruginosa NCTC 12924
- S. aureus NCTC 10788

From original study: "one microbial read will exist when 100 million host reads are sequenced"

Analysis of raw sequencing reads from spike-in experiments

1100 CFU spike in

Looking at taxa detected (i.e. a read mapping to any of the core genes counts that taxa as present)

Species Level TPs: 5 / 6 FPs: 67

Genus Level TPs: 5 / 6 FPs: 45

> Standards and Technology U.S. Department of Commerce

Aspergillus Bacillus Candida Clostridium Pseudomonas Staphylococcus

- A. brasiliensis NCPF 2275
- B. splizizeni NCTC 10400
- C. albicans NCPF 3179
- C. sporogenes NCTC 12935
- P. paraeruginosa NCTC 12924
- S. aureus NCTC 10788

Many false positive detections (mainly of fungi) due to low complexity regions and host reads e.g. AAAAGGGGGGGAAA AAAA 60 CFU spike in

Species Level TPs: 1 / 6 FPs: 58

Genus Level

TPs: 3 / 6 FPs: 42

Aspergillus Bacillus Candida Clostridium Pseudomonas Staphylococcus

Example low-complexity region in fungal marker gene

>ATP6

ATGCGTCATTTAGATTTTGTATTAAGTCCATTAgaccaatttgaagttagagatttattttctataaatgct aacttattaggtaatttacacCTATCATTAACAaatataggtttatatttatcaattagtattttttaatattaacatatagctt attagctacaaataataataataatagtaCCAAATAACTGATCAATAAGTCAAGAAAGTATATATGC TACAGTACAcggtatagtagtaaatcaaattaaccCAAATAAAGGACAAATGTTCTTCCCTcttatgt atgtattattcatatttatattagtaaataatttaataggtttagtacCATACAGTtttgcatcaacatcacattttatattaacat tCTCAATTAGTTTTACTATTGTTTTAGGTGCAACAATATTAGGTTTCCAAAAAACATGG GTtaaaattcttctcattatttgtaCCTTCAGGTTGTCCATTAgcattattaccattattagtaataattgagTTTA TTTCTTACTTATCTAGGTTTCTTTAGGTTCCATTAgcattattaccattattagtaataattgagTTTA GGTCACATgcttttaagtatattaagtggatttacttataataatgactagtggtataatattctttatattaggATTAA TACCTTTAGCATTTATTGTTTTAGCATTCTCAGGTTTAGAGTTAGCAATAGCATTATTCA AGCACAAGTTTTCGTAGTTTTAGCTTgttcatatattaaagatggaTTAGATTTACACtaa

EzBiome ENSure system bioinformatic pipeline NGT

Analysis of raw sequencing reads from spike-in experiments (with filtering)

1100 CFU spike in

Looking at taxa detected (i.e. a read mapping to any of the core genes counts that taxa as present)

Species Level TPs: 5 / 6 FPs: 67 11

Genus Level TPs: 5 / 6 FPs: 45 4

> Standards and Technology U.S. Department of Commerce

Aspergillus Bacillus Candida Clostridium Pseudomonas Staphylococcus

- A. brasiliensis NCPF 2275
- B. splizizeni NCTC 10400
- C. albicans NCPF 3179
- C. sporogenes NCTC 12935
- P. paraeruginosa NCTC 12924
- S. aureus NCTC 10788

*still some false positives due to low complexity sequences e.g. AGAGAGAGAGAGAGA

Need to use additional tool bbduk since fastp does not account for all types of complexity 60 CFU spike in

Species Level TPs: 1 / 6 FPs: 58 6

Genus Level TPs: 3 / 6

FPs: 42 4

Aspergillus Bacillus Candida Clostridium Pseudomonas Staphylococcus

I National Institute of Standards and Technology U.S. Department of Commerce

For in Silico analysis

Conclusions

- TPs ranged from 0.61 to 0.97 (species level) and most FPs were in the same genus
- ENSure has high precision
- ENSure can detect near neighbors of database members

For Spike-in analysis:

- Analyzing real host data is important!
- Host read removal and filtering can remove many false positive hits

Challenges/Future work:

- Addressing the abundance of host reads in real samples
- What core gene threshold (if any) to use for low microbial abundance samples
- Adding optional mapping to whole genomes (not just core genes)
- Combining all tools used into a standardized reproducible Nextflow pipeline

Internal Standards – Spike-Ins

Before

National Institute of Standards and Technology U.S. Department of Commerce

The Spike-In Species

1. Deinococcus radiodurans

2. Delftia acidovorans

3. Brenneria nigrifluens

Summary: Spike-Ins

• We are developing spike-in control materials to increase confidence in mNGS data.

• Manufacturing - Microbiologics Pellets (250x)

• One pellet will be sufficient to process ~100 samples

A Fundamental Problem with NGS-Based Approach

National Institute of

Standards and Technology U.S. Department of Commerce

- In this scenario:
 - 99.99999% of gDNA is T-Cells
 - 0.000001% of gDNA is microbial
- Signal <<<<< Noise
- Using untargeted shotgun NGS, cost per sample will be ~\$1000 (because of signal:noise)

38

Enrichment Option

• Option 1 – Filtration – Using 5 μm Filter

Micronbial DNA Enrichment Kit

High Efficiency Microbial DNA Enrichment Kit (24 reactions)

 \cdot Include Devin® fractionation filters for host DNA depletion and much faster pathogen identification

- Fast and simple protocol (both manual and automated)
- · Compatible with downstream applications including next

generation sequencing on all platforms, qPCR and end point PCR · With PaRTI-Seq[®] enables pathogen identification and reporting within less than 24 Hours

Fractionation Filter Devin[®]

Ready-to-Use Syringe-driven Filter for Wide Use in Microbiology Applications

• Depletes white blood cells within 5 minutes

- Provide higher percentage of sequencing reads in comparison with other depletion methods
- \cdot For filtering of whole blood, plasma and other body fluids
- \cdot 100% integrity tested, individually packaged, and sterilized

Other Enrichment Options are Available

Follow this preprin	t 🔆 Previous	
EVALUATION OF A METAGENOMIC NEXT-GENERATION SEQUENCING ASSAY WITH A NOVEL HOST DEPLETION METHOD FOR PATHOGEN	Posted March 29, 2023.	
IDENTIFICATION IN SEPTIC PATIENTS	Download PDF	Email
Yen-Chia Chen, Po-Hsiang Liao, Yen-Wen Chen, Chia-Ming Chang, Maurice Chan, Deng Fong Chao, Yizhen Lin, Jiahao Chang, Hau Hung, Mengchu Wu, David Hung-Tsang Yen doi: https://doi.org/10.1101/2023.03.28.23287867	Author Declarations	Citation Tools

National Institute of Standards and Technology U.S. Department of Commerce

Microbial Signal Enrichment: The Plan

 We'll continue making test materials (T-cells + microbes) to test and optimize enrichment protocols

• Or we might adopt an amplicon sequencing approach....

 We'll establish SOPs for at least 2 enrichment methods and demonstrate performance

Coordinating Upcoming mNGS Interlab Study

- What's the point of the NGS ILS?
 - Lower the barrier to entry (let's cross the bridge together)
 - Get this technology in the hands of stakeholders (biopharma sterility testing)
 - Demonstrate performance in real-world (sensitivity and specificity)
 - Assess variability/reproducibility across labs
 - Deploy ENSure NGS bioinformatic workflow
 - Demonstrate utility of spike-ins for data normalization
- Who are participants?

Department of Commerce

- Biopharma Cell Therapy Manufacturers
- Academics
- Biotech

Coordinating Upcoming mNGS Interlab Study

- 1. Dates:
- 2. Sample Type:
- 3. Spike-In Materials:
- 4. Host Depletion:
- 5. **DNA Extraction:**
- 6. NGS Technology:
- 7. Bioinformatics:

Summer, 2025 T-cells spiked with microbes Provided by NIST TBD TBD TBD ENSure

We will ask participants to define their methods in advance.

Two Flavors of ILS

Every Lab Runs Same Method:

- Assess reproducibility across labs
 - Assess performance of specific method
 - Validation of a method

Labs Run Different Methods:

- Assess impact of methodological variability
- Hard to compare reproducibility
 across labs
- Hard to assess performance in a rigorous way

Questions

