I'TL Bulletin: WebSubmit

Ryan P. McCormack, John E. Koontz, Judith Devaney
January 4, 1999

1 Introduction

Effective use of high-performance computing (HPC) systems can be a daunting task. Users must deal with
an array of constantly changing hardware fronted by diverse operating systems. The tools for similar tasks
— for example, job queuing — can vary from system to system, even when the operating systems (UNIX
variants) are nominally the same. One barrier to using HPC systems can be overcome by providing users
with a single, easy-to-use interface that insulates them from direct contact with the operating systems, tools,
and applications on the HPC systems. WebSubmit, a browser-based gateway to remote applications, is
one way to do this. It provides a friendly, system-neutral environment in which trusted users can access
application software on HPC systems.

Trusted is the key word here. The Web is used mainly to transmit documents and images; the introduction
of Java has made it also a way to distribute client-side executables safely. Apart from this, programs can be
run on remote Web server systems using the Common Gateway Interface (CGI). CGI programming tasks
have been restricted to those that can be accomplished anonymously. They are executed as the server user
and have only the limited privileges of this account. In most cases, this is appropriate: allowing random
users to execute any command on the server system would be giving away the keys to the store. Still, it
would be nice to be able to identify valid, trusted users and give them the same privileges they would get
with a regular login.

The contribution of WebSubmit is that it provides a novel framework for establishing just this sort of
trust relationship in a CGI environment. In this way WebSubmit adds a telnet-like functionality to the
ftp-like functionality of the existing Web. The client side execution facility of Java is supplemented by a
remote execution facility that can run user-owned jobs on existing, unmodified legacy systems, including
HPC systems, the application discussed here. The familiar, pleasant user interface used in Web browsing is
extended from document retrieval to remote execution of user programs using their own files.

The primary goal of the WebSubmit project is to provide users with seamless access to a collection of HPC
resources. The ideal has been to create an environment in which, from the user’s viewpoint, the distributed
nature and heterogeneity of the resources disappear. The system is anticipated to have several impacts on the
user community: (1) HPC resources should be accessible to a wider class of users, (2) customized execution
environments should simplify and speed tasks, and (3) users should be insulated from changes in operating
or queuing systems assocaited with various HPC resources. WebSubmit is not intended to be a distributed
computing system, although it is extensible in that direction. In this sense, the scope of WebSubmit is not
as large as that of metacomputing projects that create and provide access to a distributed computer. At
present WebSubmit provides access to batch queues and to a range of interactive utilities including command
execution, file editing and file transfer on several HPC systems at the National Institute for Standards and
Technology (NIST). The currently supported systems are an IBM SP2 running LoadLeveler, two SGI Origin
2000 systems running SGI’s Network Queuing System (NQS), and a Linux-based Pentium array running the
Load Sharing Facility (LSF). We hope it will be obvious that WebSubmit is not limited to these HPC systems,
or to HPC applications generally, or, indeed, to any particular kind of application at all. In this report, a
general discussion of WebSubmit is given, along with a more detailed analysis of its security infrastructure.



2 An Overview of WebSubmit

WebSubmit operates over a set of networked systems, linked by common Web and Internet protocols in a
simple transaction model. The user interface, which appears in the user’s browser, is composed of a group
of application modules, each of which is implemented by a pair of CGI scripts. These CGI scripts reference
some shared library code. The software is modular, flexible and extensible, with hooks for including existing
CGI code, and for developing and adding new applications. The code is portable and can be modified to
suit the needs of a given site quickly and easily.

2.1 The WebSubmit Transaction Model

The WebSubmit user interface is set up to help users accomplish specific tasks on one or more HPC (or
other) systems. Each of these tasks is accomplished within a basic transaction model with three parties:

1. Clients: the systems of the users requesting performance of tasks

2. WebSubmit Server: the system that does user authentication and formats and routes client task
requests

3. Targets: the (remote) systems on which the tasks are performed

The WebSubmit server is configured to interact with a specific group of one or more target systems
(hereafter referred to as the WebSubmit cluster) specified by the WebSubmit administrator. For security
reasons, a particular WebSubmit server can interact only with systems within its configured cluster.

The user uses a Web browser on the client system to obtain a secure connection with the WebSubmit
server’s master page, then follows a link on that page to the application module page for the task of interest.
The module page is the user interface to a task. It is an HTML form that the user fills out and submits to
the WebSubmit server. Modules can be in generic format, requiring the user to specify the target system in
the form, or in specific format, restricted to a particular target.

The WebSubmit server processes the submitted form, performing any target-side error checking of the
input data, and executes the specified task on the proper target system. Execution may consist of submitting
a job to the job queue on the target, or of running a command script. Output from whichever is the case is
then returned to the user’s browser for viewing. If the task is a job queue submission, the output returned is
that produced by the act of submitting the job, not the final output of the job itself. As we have formulated
our interface, it is up to the user to keep track of the progress of the job and to retrieve the final output and
direct it to subsequent jobs.

2.2 Generic Modules

Three generic modules exist at this point: a command execution interface, a simple file editor, and a file
transfer utility. The command interface allows users to execute arbitrary commands on remote (UNIX)
systems. The file editor (based on HTML text areas) allows users to make quick changes to text files on
remote systems and save them. The file transfer utility provides a way to transfer single files (text or binary)
between systems.

2.3 Host-Specific Modules

Host specific modules have been developed for three different types of HPC systems and the job queuing
software currently used with these systems at NIST:

1. an IBM SP2 with LoadLeveler
2. two SGI Origin 2000 systems with NQS/NQE

3. a Linux Pentium Cluster with LSF



For each of these systems a general module is provided for submitting batch jobs to the queuing system
(e.g., LoadLeveler) and another module to monitor the jobs on the system. More specific interfaces have also
been built for Gaussian (a quantum chemistry package), and for parallel Message Passing Interface (MPI)
jobs. In principle, there are few constraints on the types of modules that can be constructed. The limits are
mainly the imagination and needs of the user community and the time of the developers.

2.4 Primary Software Features

Uniform Interfaces for Similar Tasks: Interfaces exist for several different types of systems, but for a
specific task, the interfaces between systems look very similar. For example, the interfaces to submit
batch computing jobs on the LSF and NQS systems are almost identical.

Modes: In an attempt to support a range of user skill levels, each application module is equipped with
basic and advanced modes. These present different users with different levels of detail in the interfaces.

Session Libraries: Some interfaces require fairly lengthy HTML forms; repeatedly filling out these forms is
time-consuming and tedious. This problem was addressed by creating the concept of session libraries.
Users can fill out the elements in an application module and then save this data as a named library.
Any set of data from this collection of libraries can then be loaded at a later time, thus allowing the
user to create customized templates for future work.

Automatic Configuration Updates: Batch queuing systems often undergo changes in the structure of
the queues (e.g., how much memory they can use). WebSubmit removes the need for users to keep
track of such updates, since configuration information is updated automatically or maintained by the
software administrator.

3 Authentication and Security

One of the primary concerns in a system like WebSubmit is security. Indeed, this is a primary concern in
seamless and metacomputing systems in general. The definition of security varies with the context, but
it usually encompasses authentication, authorization, and encryption. In the context of WebSubmit, the
primary concern from a security standpoint is authentication. Authentication is a part of everyday life in
modern society, from ATM cards to driver’s licenses to passports; it is essential in many instances to be
able to demonstrate identity. The same is true in electronic environments like the Internet, where it is often
desirable to provide access to electronic resources for a limited set of authorized users. However, in these
environments, there is no recourse to physical means of identification such as photographs. One must resort
to other technologies to establish identity. In the past, electronic authentication was most commonly done
using login-password identification, but for most, if not all, of today’s applications, this method no longer
provides the needed level of security.

WebSubmit utilizes a combination of existing secure protocols to accomplish authentication and to allow
users to execute commands on remote systems. The basic transaction begins when the client requests access
to remote resources with their browser. The client provides authentication to the server, and the server then
propagates this authentication to connect to the remote resource. This authentication process can be broken
into three stages:

Stage I Client-to-Server authentication
Stage II Identity establishment and authentication translation
Stage III Server-to-Remote execution of client requests

The client provides authentication to the browser once at the outset of a session (usually by giving a
password for a local certificate database). This single authentication then offers access to any one of the
remote resources on which the client has privileges. This is in distinct contrast to the standard model
of login-password authentication with applications such as telnet, ftp, and rlogin. In these systems, a

3



login and password are normally presented for each resource accessed. In the present scheme, the server is
responsible for establishing the client’s identity, translating this identity into a login name on the remote
system, and then executing the client’s request. A single password usually suffices to access all systems with
a security superior to login-password authentication. At present, it does not appear that any other systems
use this novel form of authentication.

3.1 Client-to-Server Authentication

In the first stage of the authentication process, the client must authenticate itself to the server using a Web
browser. This transaction is to be mediated by a Web server running on the server machine. At present,
there are two standard methods for performing this type of authentication: (1) basic HT TP authentication
using a login-password combination, and (2) client authentication based on public-key cryptography. In basic
HTTP authentication, the server requests a login-password combination from the client when resources are
requested; the login-password combination is encoded (not encrypted) and returned to the server. The server
then compares the information presented against a database of registered users. Basic HI'TP authentication
is insecure since cleartext passwords are transmitted across the network, and in fact may be worse than
standard login-password methods (depending on how closely HTTP traffic is monitored on the server). It is
subject to password sniffing and dictionary attack (repeated login attempts using a known login name with
passwords taken from a carefully-chosen dictionary); it also does not provide the possibility of protecting
the user’s data during the transaction. Based on these two concerns, basic HI'TP authentication was not
deemed to be robust enough for the desired system.

Client authentication based on public-key cryptography can be implemented using a Web server that
implements the Secure Sockets Layer (SSL) protocol. This protocol allows for strong authentication (superior
to traditional methods) and also provides data encryption over the duration of the session. It has become
the de facto standard for secure communication on the Internet, and is in the process of being upgraded
to an Internet standard (TLS - Transport Layer Security). Finally, all recent versions of the two dominant
Web browsers support SSL. Based on these facts, SSL-based client authentication was chosen to perform the
Client-to-Server stage of the authentication process.

3.1.1 SSL and Digital Certificates

SSL uses a combination of public- and symmetric-key cryptography to perform authentication and encryp-
tion. Public-key authentication is performed using digital certificates, and allows for the exchange of a shared
secret, which is then used as an encryption key with a symmetric algorithm (e.g., DES). In the present work,
we require that authentication occurs in both directions: the client authenticates itself to the server and
vice-versa. SSL also supports server-only authentication and anonymous sessions, although these protocols
are not of interest in the present application.

Digital certificates are basically containers for public keys, and they act as a means of electronic iden-
tification. The certificate and public key are public documents that, in principle, anyone can possess. An
associated private key, only possessed by the entity to whom the certificate was issued, is used as a means of
binding the certificate to that entity. Users not in possession of this private key cannot use the certificate as
a means of authentication. Entities can prove their possession of the private key by digitally signing known
data, or by demonstrating knowledge of a secret exchanged using public-key cryptographic methods.

In practice, anyone can generate public-private key pairs and digital certificates, hence it is necessary
to determine whether the holder of a certificate is to be trusted. History has demonstrated that trusting
clients is often ill-advised, and centralizing trust simplifies matters greatly. Hence, a trusted-third-party
model is utilized with digital certificates. The trusted third party used in the realm of digital certificates is
a Certificate Authority (CA). A CA can either issue certificates using public keys provided by clients, or it
can generate a public-private key pair for the client and then issue the certificate along with the key pair. In
either case, the client must demonstrate their identity to the CA by some trusted means. For example, the
client could arrange a face-to-face meeting with the CA and present proof of identity. The CA can then issue
a certificate with its digital signature that contains this client’s public key, as well as information about the



identity of the client. This digital signature can be verified by people who have the public key of the CA,
thus establishing the chain of trust from client to CA to server.

3.1.2 Establishing a Secure Web Connection

Once the client has a digital certificate, they can attempt to access the SSL-enabled Web server. The client
browser and Web server software enter into a handshake protocol when a connection is requested. Certificates
are exchanged and verified, and the client generates a shared secret (encrypted under the public key of the
server). This shared secret is used to generate the symmetric encryption key, which then provides secrecy
for the session. Once the handshake protocol is completed and encryption keys have been established, client
and server are authenticated, and secret data can be exchanged safely. The process of establishing an SSL
session does not provide the Web server with the identity of the client. It merely demonstrates that the
client has a valid, signed certificate that the server trusts, and that the client has the associated private key.

3.2 Identity Establishment and Authentication Translation

Once a client has been authenticated by the server (i.e., they have presented a valid certificate and a verifiable
signature), the second stage of the process occurs: identity establishment and authentication translation.
These processes occur on the Web server host itself, and allow the client’s request for remote resources to
proceed to the proper target host.

3.2.1 Identity Establishment

After the formation of an SSL connection, additional action must be taken to obtain the certificate data and
to map that to a unique identity (a userID to be used with the authentication framework). Obtaining this
userID is crucial, because it allows the server to propagate the client’s request to the remote system. The
userID can be derived from the certificate in a variety of ways, and it should be associated with a single
client. This does not preclude a single client from having multiple certificates (and hence multiple, valid
userIDs); the mapping may be many-to-one from userIDs to clients.

There is information in the certificate about the client’s identity (Name, Organization, Email), but this
information may not necessarily be unique. One would like to construct a userID that is based not only
upon this information, but also on the public key of the client. One simple solution that presents itself is
to require clients to possess specially-formatted certificates that contain information about their userID on
the system. This does not correlate the userID and public-key, however, and creates logistical difficulties
with issuing certificates in the required format. The entire certificate itself cannot be used, since this would
be cumbersome, but there is another alternative: construct a fingerprint (message digest) unique to a given
certificate. Fortunately, cryptographers and mathematicians have devised and analyzed one-way (or hash)
functions that accomplish precisely this task.

Message digests are used widely in cryptography for digital signature verification and for ensuring data
integrity. A hash function is a many-to-one function that takes an arbitrary-length input message M and
constructs a fixed-length output digest or hash h = H(M). In the present context, a unique userID is
determined by constructing the hash of the client’s certificate using a trusted algorithm (SHA-1 or MD5,
for example). In order for the userID to be unique, one must have reasonable certainty that another client’s
certificate will not hash to the same value. This requirement is satisfied as long as the hash function is
sufficiently collision resistant. In order to determine the userID in a web environment, code on the server
must have access to the client’s certificate. This can be accomplished by directing the Web server to place
the client’s certificate in the environment when needed. Server software constructs a hash of the certificate,
at which point the hash (userID) can be used for authentication translation.

3.2.2 Authentication Translation

Once a userID has been established for a client, an authentication database is used to translate this user’s
ID into login information on the remote hosts. This authentication database utilizes the userID as the key



for each record. Attributes of the database should include, but are not limited to, the following: user name,
user e-mail address, user status within the system (active or inactive), and the user’s login names on the
collection of machines that can be accessed by the system.

When a registered client makes a request to access a remote system, the user’s active status is first
verified. If they are not active within the system, they are not allowed access to resources. This essentially
amounts to the possibility for revocation of access privileges, in addition to those provided by the client
certificate’s validity period and any CA revocation lists in use. Once the user’s active status is verified, the
userID-remote host combination is used to index into the database, which determines the login of the user
on the remote system. At this point, the request can be propagated to the remote system by the server
software.

3.3 Server-to-Remote Execution

In the present architecture, the web server host acts as a proxy for handling client requests. The web server
is the agent that accomplishes remote execution, performed by running a command on the server that in turn
spawns the remote command. The commands on the server and remote system run under (possibly distinct)
usernames. Regardless of what server-side username is used to initiate remote command execution, there
needs to be a mechanism for this execution. The authentication system developed should utilize existing
technologies where possible, since this minimizes the amount of specialized, and possibly untrusted, software
running on the remote hosts. One common means for executing commands remotely on UNIX systems is via
the remote shell (rsh) command. Using appropriately configured user accounts, commands can be executed
from the server host in a client’s account on the remote system. However, rsh does not protect against
the possibility of unauthorized clients masquerading as the server host. A method of executing commands
remotely that is not subject to this attack, and that provides encryption, is the Secure Shell (SSH) protocol.

SSH has grown in popularity since its introduction, and is in the process of being considered for an
Internet standard. The software has been ported to a wide variety of UNIX platforms; both commercial and
non-commercial versions are available. SSH has several features that make it attractive in the present context:
(1) Strong authentication methods prevent identity spoofing, trojan horses, and similar means of attack, (2)
Encryption and compression of data, and (3) Secure means for file transfer. These qualities precisely meet
the needs of the problem being addressed, hence SSH was chosen as the means to execute commands on
the remote system. SSH uses a hybrid cryptosystem similar to SSL; a shared secret is exchanged using
public-key cryptography, and then data is encrypted using a symmetric cipher based on the shared secret.
Server authentication is performed using public key cryptographic methods, whereas several possibilities
are provided for client authentication. In the present approach, secure host-based authentication (called
RhostsRSAAuthentication) is used, since this allows the Web server proxy to execute commands on the
remote systems as the user, without the need for password exchanges.

4 Discussion: Policy Issues

4.1 Certificate Authorities

Certificate authorities are a means for centralizing trust, so that the server need not trust each individual
client. The server, however, must trust the CA to vouch for the identity of clients. As mentioned earlier,
numerous commercial CAs exist that can issue certificates to clients. However, it may be that there is no
reason to trust a commercial CA more than one would trust clients. In such a case, it will be necessary to
use and maintain a CA dedicated to the system in use. The use of a CA for digital certificates raises two
other concerns: the protocols used for issuing and distributing certificates to clients. Resolution of these
twin concerns depends largely on the site under consideration and on the CA ultimately chosen to perform
the task. Needless to say, however, the difficulty in choosing and using a CA should not be underestimated,
since the CA is one very crucial link in the entire authentication process.



4.2 Firewalls

Firewalls protect one network from another by filtering traffic, and their use is becoming more widespread,
especially for large organizations. Many firewalls are configured to block Web server traffic (HTTP or HTTPS).
In addition, many firewalls block rsh requests, and may consider ssh requests equally unreliable. For these
reasons, firewall policy for the server host and the remote systems must be considered. If the server host is
behind a firewall, then one must consider whether clients outside the firewall will be using the Web server
to access remote hosts. If this is the case, then the firewall must pass at least HT'TPS traffic to allow SSL
connections to the Web server. If all clients of the system are within the firewall, then this is of no concern.
In order for clients to have access to remote (target) systems, these systems must be open to SSH traffic
from the server host. Any remote system with a firewall that does not pass SSH packets from the server
host will be unusable in the present scheme.

4.3 SSH

Some systems discourage the use of rsh with no-password access because of the danger this poses to the
system through identity spoofing. SSH can be similarly configured (i.e., to provide access without passwords),
but the means through which this is achieved are totally different. SSH strong authentication essentially
prevents identity spoofing. Hence, the only concern with the present approach is whether the client and
remote host are comfortable with allowing the server host Web user to execute commands on behalf of the
client. By accepting the server host’s public SSH key, the remote system acknowledges trusting the server
host. A client’s trust in the server host is equivalent to the trust they place in any system administrator.
The administrator of the Web server would be the only one who could act in their stead (barring root
compromises of the server host). Concern regarding the trustworthiness of the server is thus in the hands of
the remote system and the client; either can disable trust at any time with little effort.

4.4 Remote System Policy

One pivotal issue involving cluster systems is obtaining usernames from these systems for each valid Web-
Submit user. This information is required in order to properly propagate the chain of trust established
during authentication and authorization at the WebSubmit server, or, in short, to execute the user’s task in
the user’s own account. If a policy is in place that prevents distribution of this information, then less reliable
methods must be used (e.g., getting the username from the user). Hopefully, the WebSubmit and target
system administrators will know each other, or overlap, in which case the distribution of login information
will not be a major problem.

5 Conclusions

WebSubmit is a flexible, modular framework for accessing and using remote computing resources across
the World Wide Web. Though it has been developed at NIST for use as an interface to high-performance
computing systems, it is certainly not limited to this field of endeavor. The system impacts the user com-
munity by making resources more accessible, simplifying and speeding task execution, and insulating users
from changes in the way remote resources are controlled. WebSubmit should be useful in any circumstance
where a user community needs authenticated individual access to applications on remote systems (assuming
a certification authority is available). It is designed to be portable and can be installed at most sites with
a minimum of effort. It can support an existing body of CGI code, as well as providing a framework for
developing new applications. The security framework implemented in WebSubmit is novel and robust; it
provides both strong user authentication and data encryption, although it produces some policy issues that
may need to be addressed before it can be adopted. In summary, WebSubmit extends the basic conception
of the Web as a data archive and retrieval system to one of a general computing environment.



6 Acknowledgments

The authors would like to acknowledge Robert Lipman and Katherine Pagoaga for their previous work on
the WebSubmit project. We would also like to thank Don Libes for useful discussions of cgi.tcl. James
Dray of the NIST security division provided useful insights into the WebSubmit security architecture. John
Wack was also very helpful in discussions related to Certificate Authorities.

7 Further Reading

e Ryan McCormack, John Koontz, and Judity Devaney, Seamless Computing with WebSubmit, Con-
currency: Practice and Ezperience (in press)

e Bruce Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons (New York, 1996)
e Netscape SSL Overview, http://home.netscape.com/eng/ssl3/ssl-toc.html

e T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, S. Lehtinen, SSH Internet Draft (work in progress),
http://search.ietf.org/internet-drafts/draft-secsh-architecture-02.txt

e cert R. Housley, W. Ford, W. Polk, D. Solo, PKIX Working Group Internet Draft (work in progress),
http://search.ietf.org/internet-drafts/draft-ietf-pkix-ipki-parti-11.txt

S. Garfinkel and G. Spafford, Practical UNIX & Internet Security, 2nd Edition, O’Reilly & Assoc.
(Sebastopol, 1996)



