Seamless Computing with WebSubmit

Ryan P. McCormack, John E. Koontz, Judith Devaney
Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD 20899
December 23, 1998

Abstract

WebSubmit is a Web-browser based interface to heterogeneous collec-
tions of remote high-performance computing resources. It makes these
resources easier to use by replacing a constantly changing range of un-
familiar, command-driven queuing systems and application environments
with a single, seamless user interface. WebSubmit lets users run in their
regular accounts on the remote system. Strong authentication using the
Secure Sockets Layer protocol allows registered users connect to the Web-
Submit authority. When validated by the authority they gain access to
a group of application modules. Each application module is presented as
an HTML form; this form is filled out and submitted to the server, which
then processes the request and executes the desired tasks on the specified
remote system using the Secure Shell protocol. The system is flexible and
extensible, and its modularity promotes ease of use, maintainability, and
interface development.

Keywords: high-performance computing, CGI applications, user interfaces,
computer security, remote login, Tcl/Tk

1 Introduction

Effective use of high-performance computing (HPC) systems can be a daunting
task. Users must deal with an array of constantly changing hardware fronted
by diverse operating systems. The tools for similar tasks — for example, job
queuing — can vary from system to system, even when the operating systems
(UNIX variants) are nominally the same. The barriers to using HPC systems
can be overcome by providing users with a single, easy-to-use interface that
insulates them from direct contact with the operating systems, tools, and ap-
plications on the HPC systems. WebSubmit,[1, 2, 3] a browser-based gateway
to remote applications, is one way to do this. It provides a friendly, system-
neutral environment in which trusted users can access application software on
HPC systems.

Trusted is the key word here. The Web is used mainly to transmit documents
and images; the introduction of Java has made it also a way to distribute client-
side executables safely. Apart from this, programs can be run on remote Web
server systems using the Common Gateway Interface (CGI). CGI programming
tasks have been restricted to those that can be accomplished anonymously.
They are executed as the server user (e.g., nobody) and have only the limited
privileges of this account. In most cases, this is appropriate: allowing random
users to execute any command on the server system would be giving away the
keys to the store. Still, it would be nice to be able to identify valid, trusted
users and give them the same privileges they would get with a regular login.

The contribution of WebSubmit is that it provides a framework for estab-
lishing just this sort of trust relationship in a CGI environment. In this way
WebSubmit adds a telnet-like functionality to the ftp-like functionality of the
existing Web. The client side execution facility of Java is supplemented by a
remote execution facility that can run user-owned jobs on existing, unmodified
legacy systems, including HPC systems, the application discussed here. The fa-
miliar, pleasant user interface used in Web browsing is extended from document
retrieval to remote execution.

The primary goal of the WebSubmit project is to provide users with seam-
less access to a collection of HPC resources. The ideal has been to create an
environment in which, from the user’s viewpoint, the distributed nature and
heterogeneity of the resources disappear. WebSubmit is not intended to be a
distributed computing system, although it is extensible in that direction. In this
sense, the scope of WebSubmit is not as large as that of projects like Globus
[4] or Legion,[5] which create and provide access to a distributed computer.
WebSubmit is more similar to UNICORE,[6] as both projects seek to provide
simplified access to existing HPC systems. Both UNICORE and WebSubmit
utilize the World Wide Web as the interface to their systems. Both address se-
curity similarly through SSL. They differ in the method of implementation and
scope. WebSubmit is based on CGI and Tcl, whereas UNICORE uses Java. The
scope of UNICORE is also larger, in that it is intended for interdependent tasks
targeted at multiple geographically distributed sites. WebSubmit is intended
to simplify access to software and HPC systems at a single site. WebSubmit
allows both batch and interactive use of the machines that it interfaces; it has
an interactive module that enables the user to submit commands to any of the
included computers as if they were logged on. UNICORE is intended for batch
access only.[7]

At present WebSubmit provides access to batch queues and to a range of in-
teractive utilities including file editing and file transfer on several HPC systems
at the National Institute for Standards and Technology (NIST). The currently
supported systems are an IBM SP2 running LoadLeveler,[8] two SGI Origins
2000s running SGI’s NQS,[9] and a Linux-based Pentium array running LSF.[10]
We hope it will be obvious that WebSubmit is not limited to these HPC sys-
tems, or to HPC applications generally, or, indeed, to any particular kind of
application at all.

In this paper we will illustrate the basic structure of WebSubmit, and de-

scribe the applications we are supporting with it. We will pay particular at-
tention to the security framework used to provide the strong authentication
we rely on. We will also address some of the policy issues faced by users and
administrators, and outline some future directions for the software and project.

2 An Overview of WebSubmit

WebSubmit operates over a set of networked systems, linked by common Web
and Internet protocols in a simple transaction model. The user interface, which
appears in the user’s browser, is composed of a group of application modules,
each of which is implemented by a pair of CGI scripts. These CGI scripts refer-
ence some shared library code. The software is modular, flexible and extensible,
with hooks for including existing CGI code, and for developing and adding new
applications. The code is portable and can be modified to suit the needs of a
given site quickly and easily.

Client
(WebSubmit User)

@) ss.

\ A
// T A,

WebSubmlt Server

’ @SSH

Target2 o °

Figure 1: The basic WebSubmit transaction model. A client contacts the Web-
Submit server using a Web browser, which then forwards requests to any number
of target computing systems.

2.1 The WebSubmit Transaction Model

The WebSubmit user interface is set up to help users accomplish specific tasks
on one or more HPC (or other) systems. Each of these tasks is accomplished
within a basic transaction model with three parties (see Figure 1):

1. Clients: the systems of the users requesting performance of tasks

2. WebSubmit Server: the system that does user authentication and for-
mats and routes client task requests

3. Targets: the systems on which the tasks are performed

The WebSubmit server is configured to interact with a specific group of
one or more target systems (hereafter referred to as the WebSubmit cluster)
specified by the WebSubmit administrator. For security reasons, a particular
WebSubmit server can interact only with systems within its configured cluster.

The user uses a Web browser on the client system to obtain a secure con-
nection with the WebSubmit server’s master page, then follows a link on that
page to the application module (see Section 2.3) page for the task of interest.
The module page is the user interface to a task. It is an HTML form that the
user fills out and submits to the WebSubmit server. The form is generated by
the module’s form generator CGI script, which is designed to minimize error
checking by precluding entry of incorrect values where this is possible. Modules
can be in generic format, requiring the user to specify the target system in the
form, or in specific format, restricted to a particular target.

The WebSubmit server processes the submitted form with the module’s form
processor CGI script, which performs any target-side error checking of the input
data, and executes the specified task on the proper target system. Execution
may consist of submitting a job to the job queue on the target, or of running
a command script. Output from whichever is the case is then returned to the
user’s browser for viewing. This process is detailed in Figure 2.

If the task is a job queue submission, the output returned is that produced
by the act of submitting the job, not the final output of the job itself. As we
have formulated our interface, it is up to the user to keep track of the progress
of the job and to retrieve the final output and direct it to subsequent jobs.

2.2 Cluster System Requirements

The client system can have any kind of operating system that has a browser
with Secure Sockets Layer (SSL), HTML 3.0, and JavaScript 1.2 support. With
JavaScript we are skirting difficulties with JavaScript version compatibility and
the related Document Object Model (DOM) standards issue, but we have not
encountered any problems so far. The WebSubmit server system can be any
system that runs an SSL- and HTML 3.0-capable Web (HTTP) server (daemon)
and the Secure Shell (SSH) client code. The target systems can be any kind of
system that supports SSH servers (daemons). These requirements arise because
SSL is used to ensure a trusted connection between the client and server systems,
while SSH fills the same role between the server and the targets. HTML 3.0
and JavaScript are required to support the HTML forms we use.

The WebSubmit server must have certain administrative features for use with
WebSubmit. It must be possible to direct the Web server to place the client’s
certificate in the CGI environment when the client makes a request for restricted
resources. This is essential to allow WebSubmit authentication, during which

[File Edit View Go [File Edit View Go [File Edit View Go
[o e o o L o e [L o e []
Master Page Module 2 Output
Module Link1 Fidld THsissnpicodn
. Field mm Data returned to the browser can
Module Link2— Chegkboxes it
° EOEROOO by the requests
° Selection: ouputines
° PR .
3 Output line 2: ...oooccccceee
Module Linkn Submit :
H Output line N:

RaWEForm Data

--- Processed Data ---

K

CHOEERE

Servi

er 2
:m/////m//

Figure 2: A simple WebSubmit transaction. The client connects to the Web-
Submit master page and then selects the link for the desired application module.
The module page is an HTML form, which is filled out and submitted to the
server. The server processes the raw form data and executes any necessary code
on the target system. Once these commands are executed the target returns the
output to the server, from which it is then forwarded back to the user’s browser.

the certificate is mapped to the appropriate username for the specified target
system. The server should also allow specifying document MIME types on a per
directory basis.[11] This facility is used to ensure that downloaded files produce
a save-file-as-some-name dialog in the browser instead of viewing the file. The
same effect can be achieved more awkwardly if the MIME types can be specified
on a per extension basis.

The WebSubmit server and target systems must support SSH, which is used
to ensure a trusted connection between the server and target systems. We have
so far avoided requiring SSH on the client systems, because SSH for MS Windows
systems is a commercial product, F-Secure SSH,[12] and we would like to make
it possible to use MS Windows client systems without this investment. This
restricts the means used to transfer files between the client and server to those
provided under HTML 3.0, which are rather weak and function asymmetrically
(see Section 2.4).

At this point we have no experience with WebSubmit on non-UNIX server
or target systems. However, because of the difference in approach to remote
execution with MS Windows systems it seems likely that it would take a fair
amount of work to adapt WebSubmit to handle a Windows NT system as a
target system. It is not normally possible to remote login to a Windows NT
system, and that, in essence, is how the WebSubmit server reaches a target
system. Given this, the applications, for example, would have to be set up as
Windows client /server applications, or the version of Windows NT would have

to be Windows NT Terminal Edition.[13] We have not investigated what it would
take to secure these connections. The commercial version of SSH could perhaps
be used. In any case, it seems likely that the CGI programs that communicate
with the target systems would need considerable reworking. So, for practical
purposes WebSubmit is restricted to UNIX targets. This is not true of the client
and WebSubmit server systems, as far as we can see.

2.3 Application Module Design Elements
2.3.1 Application Interfaces

An application interface must exist for each of the desired services on target
systems. HTML forms serve as the interfaces in WebSubmit, with each interface
and its supporting CGI code referred to as an application module. Application
modules used in the WebSubmit framework can come from either of two sources.
If a site should chance to have already a set of HTML forms and CGI processing
scripts (written in any language), then these can be plugged into the WebSubmit
hierarchy directly with little or no modification. Alternatively, new scripts and
forms can be written in a developer’s favorite implementation language and then
included. We are still considering ways of simplifying creation of new modules by
automating as much as possible the writing of the CGI code (see Section 2.3.4).

A form-based approach to applications was elected in WebSubmit for a vari-
ety of reasons. First, most users are already familiar enough with forms, includ-
ing HTML forms, to understand the basic elements of such interfaces. Second, a
standard implementation of forms within HTML exists and is supported off the
shelf by all browsers and servers, so that there is no need to develop or distribute
and install the code to support the necessary widgetry. Third, the HTML forms
interface is reasonably uniform in appearance, regardless of the browser and
platform. Fourth, HTML forms are a stable, well-known technology that are
easily used. Alternatives like Java would allow for a great deal more flexibility
in terms of interface design and functionality, but introduce some performance
and development issues.

In the future, it might be desirable to migrate to some other interface tech-
nology, when these have had time to develop and settle. Possibilities include
Java, or rather, user interface libraries based on it; other client-side user inter-
face development tools like the Tcl/Tk plug-in; or perhaps XML-based forms
or other user interface specifications.

2.3.2 Modes and User Skill Levels

In an attempt to address the needs of both experienced and infrequent users
of the system, most modules support at least two modes (advanced and basic).
Modes present users with different subsets of parameters, in this case addressing
different levels of control over the application, i.e., a varying number of elements
are presented on the form and default values are chosen appropriately where
elements are omitted in the basic mode. The modal approach can be extended
to other forms of modality, at the discretion of application module developers.

2.3.3 Sessions

WebSubmit supports a notion of state that makes the software easier to use and
more flexible from the user’s standpoint. A session in WebSubmit consists of
the set of values selected for the various form input elements for a single module.
For each module, a default session exists to assign values to these elements in
the absence of other information. In addition, a user can fill out any form and
save the result as a named session to be loaded at a later time, thus reducing
the need for repeatedly entering the same information.

2.3.4 Module Creation

One desideratum for WebSubmit has been to provide a method for producing
new application modules easily. Producing modules is a matter of providing two
CGI scripts, one to define the HTML form that solicits the input, and another
to capture the entered values, check them for errors, submit code to the target
system to accomplish the associated task, and produce a report on the execution
of the task.

At present new scripts are hand coded, generally by modifying an existing
pair of scripts. In practice this works rather well as a development strategy,
though it has deficiencies for maintenance, and it tends to restrict production of
modules to specialists. For these reasons we have been investigating alternative
approaches that reduce the extent to which specialized knowledge of CGI, the
WebSubmit programming environment, and the scripting language (Tcl/Tk) are
needed. One approach would be to treat the script to be run on the target system
as a procedure body and bind it to a list of parameters. The form generator
script would be a generic tool that processed the parameter list to produce the
form. The form processor script would be another generic tool that performed
error checking, associated the actual parameters with the formal parameters,
executed the task on the target system, and reported the resulting output.

2.4 Current Application Modules

Applications are divided into generic modules, which are deemed useful for any
target system and therefore require the user to specify the target system, and
host-specific modules, which are geared towards a specific service on a target
system and specify the target implicitly.

2.4.1 Generic Modules

Three generic modules exist at this point: a command execution interface, a
simple file editor, and a file transfer utility. The command interface allows users
to execute arbitrary commands on remote (UNIX) systems. The file editor
allows users to make quick changes to text files on remote systems and save
them. The editing facilities are those of the HTML textarea element. The file
transfer utility provides a way to transfer single files (text or binary) between
systems. It, too, depends on the facilities of HTML.

The resulting transfer mechanism is somewhat asymmetric, due to the nature
of file transfer in HTML. Without going into detail, this file transfer behavior
is implicit in HTML browsers and our three part transaction model of client,
server, and target. To do better we would need some auxiliary tool on the client
system, such as SSH scp or SSH-protected ftp.

2.4.2 Host-Specific Modules

Host specific modules have been developed for three different HPC systems and
the job queuing software currently (third quarter 1998) used with these systems
at NIST:

1. the IBM SP2 with LoadLeveler
2. the SGI Origins 2000 with NQS/NQE

3. a Linux Pentium Cluster with LSF

The selection of systems is idiosyncratic to the NIST site. Other HPC sys-
tems and other queuing software could be supported.

For each of these systems we provide a general module for submitting batch
jobs to the queuing system (e.g., LoadLeveler) and another module to monitor
the jobs on the system. More specific interfaces have also been built for Gaussian
94 [14] (a quantum chemistry package), and for Message Passing Interface (MPI)
jobs. In principle, there are few constraints on the types of modules that can
be constructed. The limits are mainly the imagination and needs of the user
community and the time of the developers.

2.5 Implementation

The entire WebSubmit package is written in Tcl, the Tool Command Language.[15,
16] Tcl was chosen as a development language because it is fast and easy to use,
and supports rapid development and prototyping. Tcl has proved to be superbly
adapted to the application. WebSubmit is broken up into several separate bod-
ies of Tcl code: CGI scripts, service procedures, and configuration data. The
code assumes Tcl 8.0, since namespaces and some other features of version 8.0
are used throughout. The CGI scripts are designed around Don Libes’ excellent
cgi.tcl library.[17] The remainder of the code was written by the WebSubmit
development team.

2.6 Configuration

The WebSubmit configuration is stored in flat tables we call databases. The
major databases used with WebSubmit are:

1. Master Page Database: defines the structure of the user-browsable list
of modules

2. Authorization Database: defines the list of users and which systems
they can access

These databases and parameters in the code are maintained by the local
WebSubmit administrator with the aid of a maintenance tool, a graphical user
interface written in Tcl/Tk.

In an effort to support some level of data hiding and to make loading sets
of routines more transparent, the service routines are broken up into several
functionally-distinct Tcl packages. All of the procedures and data for each
package are then encapsulated inside a namespace whose name matches that
of the encapsulating package. In addition, each database is stored within a
specified, common data structure in its own namespace. In some cases, there is
a correspondence between packages and databases (e.g., auth.db is manipulated
by the authentication package wsAuth.tcl). Additional details about the Tcl
implementation of WebSubmit can be found in ref. [18].

2.7 Performance Issues

WebSubmit is being used as a frontend to computations on HPC target systems.
These computations consist of two sorts: invocation of system commands to
generate reports on job status or the target system environment generally, and
job submissions. The former typically involve short computations that users
expect to lead to immediate output. The latter involve lengthy computations for
which users expect immediate notification only of the success of the submission.
Clearly the overhead added by WebSubmit is only relevant to the expectations
of quick responses, for status and submission reports.

We have not attempted to measure the response times in question formally,
because they are in large measure dependent on the fluctuating behavior of the
local network and the load on target system, which would be factors whether or
not WebSubmit were used. Apart from the latency of the network and target,
there is also the issue of the time consumed by the CGI code on the WebSubmit
server, and by the target system in responding to SSH requests. We have not
observed any performance degradation due to CGI processing by our dedicated
WebSubmit server, with the following exceptions.

We do notice the effect of overhead SSH requests to the target system. These
are requests hidden in the WebSubmit code, as opposed to the main one made
by the user. For example, WebSubmit might make additional SSH requests to
retrieve job class parameters or to do error checking such as determining the
existence of files referenced in the job. We have eliminated the first sort of
overhead request by performing it out of line at specified intervals. The second
sort of request we have elected to live with. Error checking always takes more
time than crashing.

3 Authentication and Security

One of the primary concerns in a system like WebSubmit is security. Indeed, this
is a primary concern in seamless and metacomputing systems in general.[4, 7, 6,
19] The definition of security varies with the context, but it usually encompasses
authentication, authorization, and encryption. In the context of WebSubmit,
the primary concern from a security standpoint is authentication. Since the
user is executing commands on remote systems using the WebSubmit server as a
proxy, it must be possible to establish the user’s identity with certainty. Without
strong authentication, unauthorized individuals — hackers — impersonating valid
users could abuse WebSubmit for nefarious purposes, corrupting files to which
the user has access, and possibly compromising in that fashion the integrity of
systems in the cluster. They could also consume system resources at the user
and the system’s expense. This would probably not be considered a feature in
most quarters, so systems have been incorporated into WebSubmit to prevent
such breaches of security.

The previous version of WebSubmit [1, 2] used a combination of basic HTTP
authentication or HT Access (via .htaccess files) with an SUID wrapper utility
(cgiwrap [20]) to allow execution of CGI scripts as the required user. This
architecture was not deemed adequate, since basic authentication is subject to
simple dictionary attacks [25] and network snooping. In addition this approach
was used in a two-party transaction model, in which the server and target were
identical. It would be difficult to extend it to the three party model used at
present.

The new, more robust, WebSubmit security architecture works in three
stages:

1. Client-Server SSL Authentication
2. Userld Determination (WebSubmit Authentication)
3. Remote Execution via the Secure Shell (SSH)

These stages are described in more detail below. The security system is docu-
mented in ref. [21].

3.1 Client-Server SSL Authentication

An HTTP server that is capable of using the Secure Sockets Layer (SSL) pro-
tocol [22] handles requests for execution of CGI scripts or retrieval of static
pages on the WebSubmit server system. Such a server is also referred to as an
HTTPS server, from the URL scheme, https, used to invoke the SSL protocol.
The WebSubmit Web server is configured to require bidirectional authentication
(server-to-client and client-to-server). SSL is the current de facto standard for
security, although this may change in the future to Transport Layer Security
(TLS). A transition to TLS will not affect operation of the server since the two
protocols are very similar and support the same functionality.

10

The server is configured only to accept certificates signed by Certificate Au-
thorities (CAs) that are considered trusted by the WebSubmit installation. We
have experimented with our own home grown CA, but we prefer and currently
rely upon a NIST site CA maintained independently of WebSubmit. The choice
of a CA is up to the WebSubmit administrator.

3.2 WebSubmit Authentication

Once the client’s certificate is accepted by the Web server, and the client is
requesting data in the WebSubmit directory hierarchy, the second stage of the
process occurs: identity establishment and authentication translation. These
processes occur on the WebSubmit server, and allow the WebSubmit user’s
username on the target system to be determined, so that the user’s task can be
executed in the associated account.

To support the mapping of the certificate to the username, the Web server
must write accepted certificates to the CGI environment. We have experimented
with extracting the identity of the user, in the form of a user identifier, from
the certificate, using Leerssen’s utility [23] to parse the certificate. The disad-
vantage of this approach is that it requires certificates to adhere to a structure
known to WebSubmit that incorporates this information. We now use a digest
of the certificate as the user identifier. This approach allows us to use any cer-
tificate at all that the Web server will accept. However, we need the digest of
a new user’s certificate before we can add the user to the WebSubmit authen-
tication database. To permit this, WebSubmit is set up to capture the digests
of all unauthenticated accessors’ certificates, and pass these to us together with
the text of the certificate. New users simply access WebSubmit once as an
unauthorized user. We identify and interview them before adding them to the
authentication database.

To produce a digest of the certificate it is hashed with the secure hash func-
tion MD5.[24] MD5 is a hash function that is difficult to invert and collision
resistant, making it suitable as a way to compute fingerprints, or digests, of
larger objects like a certificate. This digest serves as the WebSubmit user iden-
tifier. The authentication database maps pairs of user identifiers and target
system names to the corresponding usernames on that target system, for all
users and targets served by a given WebSubmit server. A user is allowed access
to the WebSubmit system if the following conditions are met;:

1. The WebSubmit server system Web server was accessed via the secure
protocol (HTTPS).

2. The MD?5 hash of the accepted certificate is contained in the authentica-
tion database.

3. Access privileges have not been coded as revoked for the certificate holder.

Failure to meet any of these criteria will result in a denial of access to Web-
Submit services and an error message. The complete process of SSL authenti-
cation and WebSubmit verification is illustrated in Figure 3.

11

The inclusion of the digest in the database establishes the identity of the
user, and retrieving the username indexed by the digest and a target system
name provides the translation of the server’s authentication to the target’s au-
thentication, completing the mapping of the certificate to the user’s proper
account on the relevant target. It is, of course, imperative that this username
be determined correctly.

3.3 SSH Execution

Commands are executed on remote systems by the WebSubmit server using the
Secure Shell (SSH) protocol.[26] SSH has the virtues of encrypting all trans-
missions made with it, and of being able to use a public-key cryptography to
identify the remote system (the WebSubmit server) to the local system (the
target system). This latter feature prevents unauthorized individuals from ex-
ecuting commands on the target system using IP or DNS spoofing. To avoid
requiring users to enter their target system passwords to execute commands
on a target, the home directory for the username must contain a .shosts file
that allows the WebSubmit server user to execute commands in the user’s ac-
count. For example, if the WebSubmit Web server is running as nobody, then
the .shosts file must contain the following line:

serverName.serverDomain nobody

This raises some serious policy concerns that will be addressed in Section 5. The
would-be spoofer must convince SSH that they are nobody on the WebSubmit
server system, and this is where SSH’s ability to insist on strong authentication
of the host is important.

4 Administration

The WebSubmit administrator is responsible for several different tasks: instal-
lation, configuration of the Web server on the WebSubmit system, configura-
tion of application modules for the site, construction and maintenance of the
authentication database, installation and possible development of application
modules, and, of course, general troubleshooting. It may also be necessary for
the WebSubmit administrator to collaborate with (or perform as) the Certifi-
cate Authority for the system. The WebSubmit administrator is essentially the
system administrator for the WebSubmit virtual machine.

4.1 Site Configuration

Clearly, different sites will have different needs in terms of the applications avail-
able to users, and these needs have been addressed. The main entry point to
WebSubmit is a master page that has links to all relevant application modules,
help, and configuration information. Application modules are organized hier-
archically on the master page, each module under a relevant application class

12

or heading. WebSubmit allows administrators to turn modules or application
classes on and off as needed, or to add new applications, by changing the mas-
ter page. The master page is generated automatically from the master page
database, and adding a new module means adding a few lines to this database.
The configuration tool mentioned in Section 2.6 can be used to do this. Users
don’t have access to the site-wide databases, but they can use the configuration
features of WebSubmit to make undesired applications or classes invisible.

A very critical factor in WebSubmit security is the authentication database,
hence configuration and maintenance of this database is of the utmost impor-
tance. On initial installation, the database needs to be configured to specify
the systems in the cluster. The administrator must update the database as new
users are added, obtaining the usernames for these users on the systems in the
target cluster. If for some reason a user’s privileges on the system are revoked,
the database needs to be updated to reflect this fact. If this database is mis-
configured or contains inaccurate information, the security of WebSubmit can
be thoroughly compromised.

5 Policy Issues

Any meta- or distributed computing system must eventually grapple with issues
of policy. Existing policies may determine whether these packages can be used as
intended. With WebSubmit, we can differentiate internal policy issues, relating
to basic functionality and the WebSubmit server, from external issues, dealing
with interaction between the WebSubmit server system and the target systems
in the cluster.

5.1 Internal Policy
5.1.1 WebSubmit Server System

The WebSubmit server should ideally be a dedicated system. WebSubmit is a
collection of CGI and Tcl scripts; there is no single piece of compiled, executable
code that is impervious to examination by users. It is easy to prevent users on
client systems from examining or modifying the code, because they only see the
output of the code executed on the WebSubmit server. It is more difficult to
protect the code from users on the WebSubmit server. To prevent tampering
with the WebSubmit source code, we recommend a server system with very few
(or no) user accounts other than root and the WebSubmit HTTP user account.
In addition, the latter should be an account without a password, without a useful
home directory, and with minimal access privileges. Security measures are often
good at preventing unauthorized, outside users from accessing or tampering with
a system, but overlook the very real possibility that valid users may also attempt
to corrupt the system, or, at least, to take advantage of it. If the server has no
user accounts, this will not be a problem.

13

5.1.2 Web Server

Some installations, especially those with firewalls, take special care with access
to their systems. Various sorts of traffic are considered security risks, and fire-
walls often block such things as HTTP traffic to and from Web servers. They
may block logins from outside. However, if this is the case for a site trying
to implement WebSubmit, and if usage originating from outside the firewall is
deemed necessary, then at least one of these restrictions must be relaxed. One
possibility is for the WebSubmit server and targets all to be placed inside the
firewall, in which case the HT'TP(S) traffic between outside clients and the server
must be allowed to pass the firewall. The other possibility is for the WebSubmit
server to sit outside the firewall, which must then freely pass the SSH login
packets that flow between the server and the targets. Some satisfactory route
must also be provided for the HTTP packets passing between inside clients and
the WebSubmit server.

Even in the absence of a firewall, some versions of Web servers are considered
insecure, and administrators have requirements concerning the type of server
that their system uses. However, whatever Web server is used most support the
minimal requirements of WebSubmit (see Section 2.2).

5.1.3 Certificate Authority

For SSL authentication of clients to be meaningful, the public-key certificate
possessed by a client must be signed by a trusted third party (i.e., CA). Instead
of trusting users to present valid information to the system, the issue then
becomes trusting this issuer of certificates to vouch for the identity of the client.
The difficulty is then to decide who (or what) should act as the CA. The design
of WebSubmit can handle multiple CAs and any format of certificate. Extended
discussions of certificate authorities and the difficulties involved in public key
distribution can be found in ref. [25].

5.2 External Policy

The target systems in the WebSubmit cluster must meet certain requirements,
and must exchange some information with the WebSubmit administrator. The
primary software requirement for systems in the cluster is that an SSH daemon
must be installed and properly configured. This should not be an impediment,
since SSH has been ported to a vast array of systems,[26] and is increasingly
considered a critical system utility. At present, the SSH protocol has not been
formally adopted by the Internet Engineering Task Force (IETF), although the
protocol has been submitted in draft form.[27] As part of the WebSubmit instal-
lation activities SSH public keys must be exchanged between the WebSubmit
server and the target systems and added to the table of known hosts on the
respective systems.

One potential sticking point relative to SSH is the need for an .shosts file
in the home directories of WebSubmit users, configured to accept password free

14

access from the Web server username on the WebSubmit server. This require-
ment may worry some administrators (and/or users), and could be a stumbling
block, even though it should be impossible (i.e., impractically difficult) to spoof
SSH into believing an interloper system to be the WebSubmit server system.

The other pivotal issue involving cluster systems is obtaining usernames from
these systems for each valid WebSubmit user. This information is required in
order to propagate properly the chain of trust established during authentication
and authorization at the WebSubmit server, or, in short, to execute the user’s
task in the user’s own account. If a policy is in place that prevents distribution
of this information, then less reliable methods must be used (e.g., getting the
username from the user). Hopefully, the WebSubmit and target system admin-
istrators will know each other, or overlap, in which case the distribution of login
information will not be a major problem.

6 Conclusions

WebSubmit is a flexible, modular framework for accessing and using remote
computing resources across the World Wide Web. Though it has been devel-
oped at NIST for use as an interface to high-performance computing systems, it
is certainly not limited to this field of endeavor. WebSubmit should be useful in
any circumstance where a user community need authenticated individual access
to applications on remote systems and a certification authority is available. It
is designed to be portable and can be installed at most sites with a minimum of
effort. It can support an existing body of CGI code, as well as providing a frame-
work for developing new applications. The security implemented in WebSubmit
is robust and provides both strong user authentication and data encryption,
although it produces some policy issues that may need to be addressed before
it can be adopted. In summary, WebSubmit extends the basic conception of
the Web as a data archive and retrieval system to one of a general computing
environment.

7 Acknowledgments

The authors would like to acknowledge Robert Lipman and Katherine Pagoaga
for their previous work on the WebSubmit project. We would also like to thank
Don Libes for useful discussions of cgi.tcl. James Dray of the NIST security
division provided useful insights into the WebSubmit security architecture.

8 Author Biographies

8.1 Ryan P. McCormack

Ryan McCormack is a Physical Scientist in the Information Technology Labo-
ratory at the National Institute of Standards and Technology. He has a PhD

15

in Materials Science Engineering, and prior to performing work on WebSub-
mit, studied order-disorder phenomena and phase equilibria in transition metal
alloys and ceramics.

8.2 John E. Koontz

John E. Koontz is a Mathematician in the Information Technology Labora-
tory at the National Institute of Standards and Technology. He has an MS in
Computer Science and an MA in Linguistics.

8.3 Judith E. Devaney

Dr. Judith Devaney is a Project Leader in Information Technology Laboratory
at the National Institute of Standards and Technology. Besides leading a parallel
applications effort, she also does research in Machine Learning.

References

[1] Robert R. Lipman, Judith E. Devaney, “WebSubmit - Running Super-
computer Applications via the Web”, Proceedings of SuperComputing 96,
November 1996, Pittsburgh, PA.

[2] John. E. Koontz, Ryan P. McCormack, and Judith E. Devaney, “WebSub-
mit - A Paradigm for Platform Independent Computing”, presented at the
Workshop on Seamless Computing, Reading, England, Sept. 1997.

[3] Current details of the WebSubmit project can be found at
http://www.itl.nist.gov/div895/sasg/websubmit/websubmit.html.

[4] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit”, Int’l Journal of Supercomp. Appl. and High Perf. Computing,
11(2), 115-128 (1997).

[5] For information on the Legion project see
http://www.cs.virginia.edu/"legion.

[6] UNICORE project home page (http://www.kfa-juelich.de/zam/RD/coop/unicore/).

[7] Jim Almond, ¢“UNICORE: Secure and Uniform Access to Dis-
tributed Resources via the World Wide Web”, white paper at
http://www.kfa-juelich.de/zam/RD/coop/unicore/.

[8] For information on LoadLeveler see http://ppdbooks.pok.ibm.com:80/cgi-bin/bookmgr/bookmgr . cmd
[9] For information on NQS (NQE) see http://techpubs.sgi.com/library/infosearch.

[10] For information on LSF see http://www.platform.com.

16

[11] See for example, S. Spainhour & V. Quercia. “Webmaster in a Nutshell”,
O’Reilly & Associates (Bonn, etc., 1996), Chap. 25.

[12] For information on F-Secure SSH see http://www.datafellows. com.

[13] For information on Microsoft Windows NT Terminal Edition see
http://www.microsoft.com/ntserver/terminalserver/default.asp.

[14] Gaussian94 Home Page (http://www.gaussian.com).

[15] See for example, Brent Welch, “Practical Programming in Tcl/Tk”, 2nd
Edition, Prentice-Hall PTR (New Jersey, 1997).

[16] Tcl/Tk (Scriptics) Home Page (http://www.scriptics.com).

[17] Don Libes, “Writing CGI Scripts in Tcl”, Proceedings of the Fourth Annual
Tecl/Tk Workshop ’96, Monterey, CA, July 10-13, 1996, USENIX Associa-
tion (Berkeley, CA).

[18] R. McCormack, J. Koontz, J. Devaney, “WebSubmit: Web-Based Applica-
tions with Tcl”, NISTIR 6165, June 1998, National Institute of Standards
and Technology.

[19] W. A. Wulf, C. Wang, and D. Kienzle, “A New Model of Security
for Distributed Systems”, University of Virginia CS Technical Report
(http://www.cs.virginia.edu/~legion/papers/CS-95-34.ps).

[20] Nathan Neulinger, cgiwrap home page (http://www.umr .edu/~cgiwrap).

[21] R. McCormack, J. Koontz, J. Devaney, “An Authentication Framework
for WebAccess to Remote Hosts“, NISTIR, in preparation 1998, National
Institute of Standards and Technology.

[22] Netscape SSL Overview (http://sitesearch.netscape.com/eng/security/SSL_2.html).
[23] Scott Leerssen, certutil.c (http://www.mindspring.com/~leerssen/).

[24] Bruce Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons
(New York, 1996), pp. 429-430, 436-441.

[25] Bruce Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons
(New York, 1996), pp. 185-187.

[26] Tatu Ylonn, SSH Web site (http://wuw.ssh.fi).

[27] Internet Draft for SSH (http://www.ietf.org/ids.by.wg/secsh.html).

17

Resources from hostwame

l

(Client 8851 Request for J

Secure Hash
Function

Server Remote Execution Software

Figure 3: Identity establishment and authentication translation. The WebSub-
mit HTTPS server is contacted by the user’s client using an SSL connection
with client authentication; the user wishes to access target hostName. The
client’s certificate is made available to the server software, which constructs a
user identifier userID using a secure hash function applied to the certificate. The
authentication database, indexed by userID and hostName, yields the username
login for the client on hostName (if possible). The user’s request is then pro-
cessed, and all information is forwarded to the software to to invoke execution
for login on hostName.

18

