Design and Implementation

Example 000000000 Conclusion 0000

A web-based service for distributing curve fitting algorithms onto remote server clusters for improved performance

Raúl Negrón¹ Paul Kienzle²

¹University of Puerto Rico at Río Piedras

²NIST Center for Neutron Research

August 3, 2017

Introduction •••••••	Design and Implementation	Example 00000000	Conclusion 0000
Legal			
D ! !			

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this presentation to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.

Introduction	Design and Implementation	Example	Conclusion
000000	00000	00000000	0000
Introduction			
Project Idea			

Bumps

Software package written in Python for curve fitting and uncertainty analysis.

- Build a web service back-end for running remote jobs
- Extend *bumps* functionality to integrate the web service

Introduction	Design and Implementation	Example 00000000	Conclusion 0000
Introduction			
Project Goals			

• Allow for improved performance

Introduction 0000000	Design and Implementation	Example 00000000	Conclusion 0000
Introduction			
Project Goals			

- Allow for improved performance
- Minimal setup for both server administrators and clients

Introduction 0000000	Design and Implementation	Example 00000000	Conclusion 0000
Introduction			
Project Goals			

- Allow for improved performance
- Minimal setup for both server administrators and clients
- Lower barrier to entry for interested users

Introduction	Design and Implementation	Example 00000000	Conclusion 0000
Introduction			
Terms			

Computer cluster A collection of interconnected computers (nodes) that perform computationally-intensive work

Introduction	Design and Implementation	Example 00000000	Conclusion 0000
Introduction			
Terms			

Computer cluster A collection of interconnected computers (nodes) that perform computationally-intensive work

HPC "High performance computing"; Used to describe servers built for performance ("Supercomputers")

Introduction	Design and Implementation	Example 00000000	Conclusion 0000
Introduction			
Terms			

Computer cluster A collection of interconnected computers (nodes) that perform computationally-intensive work

HPC "High performance computing"; Used to describe servers built for performance ("Supercomputers")

Workload Manager Resource access control for a cluster. Common tasks include job scheduling and load management.

Introduction	Design and Implementation	Example 00000000	Conclusion 0000
Bumps			
Bumps basics			

Optimizers include...

- Levenberg–Marquardt
- Nelder-Mead
- DREAM

Some other features

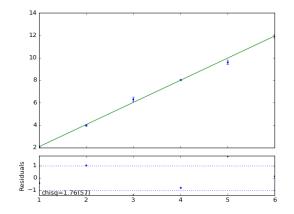
- Markov Chain Monte Carlo sampler
- Optional parallelism using MPI
- Built-in optional graphical interface

Design and Implementation

Example 000000000 Conclusion

Bumps

Bumps example (Linear Equation)


curve.py

```
from bumps.names import *
x = [1, 2, 3, 4, 5, 6]
y = [2.1, 4.0, 6.3, 8.03, 9.6, 11.9]
dy = [0.05, 0.05, 0.2, 0.05, 0.2, 0.2]
def line(x, m, b=0):
    return m * x + b
M = Curve(line, x, y, dy, m=2, b=2)
M.m.range(0, 4)
M.b.range(-5, 5)
problem = FitProblem(M)
```

Introduction	Design and Implementation	Example	Conclusion
00000000	00000	00000000	0000
Bumps			
Running th	ne curve fit		

\$ bumps curve.py --fit=newton --steps=100 --store=temp

produces...

Introduction	Design and Implementation	Example	Conclusion
○○○○○○●	00000	00000000	0000
Bumps			

Bumps performance and a motivation for the web service

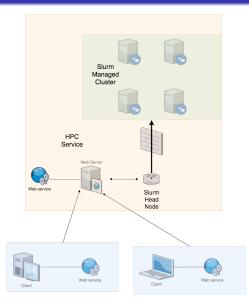
- Small problem space; efficient algorithms don't affect much
- Model functions can be somewhat expensive
- Running multiple models in parallel is an easy way to improve performance

Introduction 00000000	Design and Implementation ●0000	Example 00000000	Conclusion
Workload Managers		00000000	0000
Slurm			

Slurm basics

- Free and open-source software
- Job scheduler
- Progress monitor
- Load manager
- Available on many modern server clusters (Ex. UMD)

Introduction 00000000	Design and Implementation	Example 00000000	Conclusion 0000
Workload Managers			
Slurm exam	ple		


job.slurm

#!/bin/bash

- #SBATCH --mail-user=raul@upr.edu
- #SBATCH --nodes=2
- #SBATCH --ntasks=1
- #SBATCH --time=00:10:00
- #SBATCH --mem=500M
- #SBATCH --output=python_job.out

python problem.py

Introduction 0000000	Design and Implementation 00000	Example 00000000	Conclusion 0000
Workload Managers			
Service Diagra	m		

Introduction 00000000	Design and Implen 000●0	nentation	Example 00000000	Conclusion 0000
Workload Managers				
Primary Se	rvices			
(Flask	🔗 redis	deskor	

docker

- A Flask server is used to implement the web service API
- Redis is used to store web service metadata such as:
 - Job-User association
 - Job submission date
- Docker provides service containers for easy setup

Docker and the Docker logo are trademarks of Docker, Inc. Redis and the Redis logo are trademarks of Salvatore Sanfilippo

Introduction	Design and Implementation	Example	Conclusion
00000000	0000●	00000000	
Workload Managers			

Docker based installation of the web service

- \$ docker pull redis:latest
- \$ docker build . -t bumps
- \$ docker run --name bumps_redis -d redis
- \$ docker run --link bumps_redis -p 5000:5000 bumps

Introduction 00000000	Design and Implementation	Example ●00000000	Conclusion 0000
Web page example			
Video Demo			

https://youtu.be/rcegYcqtREo

https://vimeo.com/226938525

Introduction 00000000	Design and Implementation	Example o●ooooooo	Conclusion 0000
Web page example			
Landing page			

NCNR bumps Fitting Test Server

Welcome. Please use your user token to sign in or request a new user token.

Enter your token: Submit

Don't have access? Request

Note: This page currently uses cookies to remember your authorization token.

For help, please contact support.

Design and Implementation

Example 00●000000 Conclusion 0000

Web page example

User dashboard before job submission

NCNR bumps Fitting Test Server

Logged in as token c68727.

You currently have no jobs running.

Submit a new job... Go

Logout

For help, please contact support.

Design and Implementation

Example 000●00000 Conclusion 0000

Web page example

Setting up a bumps/slurm job

NCNR bumps Fitting Test Server

Specify job options

Limit this job to one node?	
Number of processor cores across all nodes:	64 🛔
Number of GPUs:	
Memory per processor core:	16
Memory Unit	GB 📀
Walltime (HH:MM:SS)	00:00:40
Jobname	My Very Important Job

steps:

burn: 600

Fit Optimizer: DREAM

Model file: Choose File poisson.py

Email address: raul@me.com

Submit Job

Back

Web page example	00000	000000000	0000
Introduction	Design and Implementation	Example	Conclusion

User dashboard after job submission

· Job submitted successfully.

NCNR bumps Fitting Test Server

Logged in as token c68727.

View the status of your jobs ...

Job #1 (Submitted on Mon Jul 24 14:08:41 2017) | Status: pending...

Submit a new job... Go

Introduction	Design and Implementation	Example	Conclusion
00000000		00000●000	0000
Web page example			

Results after job completion

NCNR bumps Fitting Test Server

Logged in as token c68727.

View the status of your jobs ...

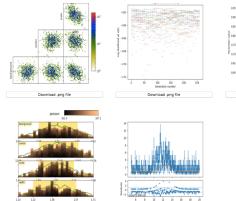
Job #1 (Submitted on Mon Jul 24 14:08:41 2017) | Results available!

- File: poisson-chain.mc Download
- File: poisson-point.mc Download
- File: poisson-stats.mc Download
- File: poisson.dat Download
- File: poisson.err Download
- File: poisson.log Download
- File: poisson.mon Download
- File: poisson.par Download

Download zipped results (excluding .mc files) Download

Generated graphs (click to interact)

Design and Implementation


Example 000000●00

Generation number

Download .png file

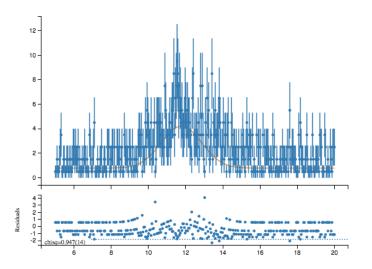
Web page example

Results after job completion (cont.)

Download .png file

Download .png file

Delete job #1: Delete


Submit a new job ... Go

Design and Implementation

Example 0000000●0 Conclusion 0000

Web page example

Resulting Matplotlib/D3.js HTML model graph

Introduction 00000000	Design and Implementation	Example 00000000●	Conclusion 0000
Web page example			
Resulting Sl	urm file		

#!/bin/bash

- #SBATCH job-name=My_Very_Important_Job
- #SBATCH --mail-user=raul@me.com
- #SBATCH --time=00:00:40
- #SBATCH --ntasks=64
- #SBATCH --mem-per-cpu=16G

```
bumps [...]/[user_folder]/poisson.py \
    --batch --stepmon --burn=600 --fit=dream \
    --store=[...]/[user_folder]/results
```

Introduction 00000000	Design and Implementation	Example 00000000	Conclusion ●000
Conclusion			
Reculto			

- Client/Server infrastructure using Flask
- Docker images for simple setup
- Slurm file parsing from web forms and command line
- Simple web page interface to the service
- MPLD3-based interactive, in-browser graphs

Introduction 00000000	Design and Implementation	Example 00000000	Conclusion o●oo
Conclusion			
Get the cod	е		

Project repository: https://github.com/rnegron/bumps

Public domain code!

Introduction 00000000	Design and Implementation	Example 00000000	Conclusion 00●0
Conclusion			
Acknowled	aments		

A big *thank you* to:

Paul Kienzle, Julie Borchers, Joe Dura, Brandi Toliver

Introduction 00000000	Design and Implementation	Example 00000000	Conclusion 0000
Conclusion			
Thank you!			

Questions?