

A. D. Darbal^{1,4}, R. D. Narayan¹, C. Vartuli², G. Lian², R. Graham³, F. Shaapur³, S. Nicolopoulos⁴ and J. K. Weiss¹

^{1.} AppFive LLC, Tempe, Arizona, USA. ^{2.} Texas Instruments, Dallas, Texas, USA ^{3.} Nanotem Inc , Scottsdale, Arizona, USA ^{4.} NanoMEGAS SPRL, Brussels, Belgium

INTRODUCTION

- Measurement of strain with high spatial resolution and high precision in semiconductor devices is critical to monitor the designed and unintended strain distributions.
- Use of spot diffraction patterns with nanobeam illumination gives higher spatial resolution than other TEM techniques[1]. - Experiment is relatively simple.
- Technique is made possible by beam precession –Improves quality of diffraction patterns..

[1] D Cooper et al., Journal of Physics: Conference Series **326** 012025 (2011).

LIMITATIONS OF EXISTING TEM STRAIN MEASUREMENT METHODS

Technique	Advantages	Limit
Convergent beam electron diffraction	High spatial, strain sensitivity	 Needs the relatively to relatively to relatively to relatively to relatively to relatively to relation Needs the relatively to rel
Dark field holography	High spatial resolution (5 nm), large field of view (1 μm×1 μm)	 Requires un reference of crystallogr orientation strained re
High resolution imaging	High spatial resolution (< 1 nm)	 Limited fie nm² × 100 Stringent r on specime

CONVENTIONAL NANOBEAM DIFFRACTION

- Acquire spot diffraction patterns from strained and unstrained regions using a quasi-parallel nanoprobe (<5 nm)
- Use measured shift in spot positions to calculate strain
- Experiment is relatively straightforward

Limitations

- Presence of strong dynamical effects lead to rapid changes in spot intensities with small thickness and orientation changes
- Strong dependence of spot intensities on changes in local thickness and orientation makes automated analysis challenging - Requires manual intervention in identifying spot positions
- Inadequate sampling of higher order reflections limits the accuracy

Strain Measurement Using Nanobeam Diffraction Coupled with Precession

PRECESSION ELECTRON DIFFRACTION

tations

sample to be thick (>150 nm) eds to be way from a axis. tive to strain

unstrained with identical raphic n area close to egion eld of view (100 nm²) requirements nen quality

Diffraction patterns from two points 120 nm apart from Si/SiGe multilayered specimen

STRAIN MEASUREMENT ANALYSIS

- Diffraction patterns from strained region are matched against a reference pattern.
- Reference pattern from unstrained region.
- Correlation distance used as the metric for fitting reference to strained patterns.
- Results include strain in x and y-directions and shear (not shown). Relative to x-direction specified by user.

Y: Full precession Portillo, J., et al. (2010). *Materials Science Forum* 23, 1-7

- No particular beam is strongly diffracted – reducing strong dynamical effects
- Insensitive to small thickness and orientation changes
- Number of spots increases better sampling of higher order spots

RESULTS

- Data acquired with Zeiss Libra L200 TEM. - Field Emission Gun (FEG) – Scanning TEM (STEM) mode. NanoMEGAS DigiSTAR unit for precession and descanning of beam.
- compressive.
- 1. Strain profile of an Si/SiGe layer.

- Strain in x-direction is near zero, indicating a coherent interface.
- 2. Strain maps from a AlGaN/GaN HEMT. (provided by Cree)

- and this is seen here.
- region.

3. Strain maps from the Si region of a pMOS device.

- x and y-directions aligned with [220] and [002] directions in Si. • Localized biaxial tensile strain close to contact edges.

• Positive percentage strain values correspond to tensile strain, negative values

• Precision of strain measurement is 0.02% in profile below.

– Precision can depend on characteristics of data, such as resolution of spot patterns.

• For such devices, tensile strain is expected to be asymmetric on different sides of the gate, • Compressive strain perpendicular to the interface (x-direction) of $\sim 1\%$ is seen in the AlGaN