In-Line Detection and Measurement of Molecular Contamination in Semiconductor Processing Solutions

Jason Wang, Michael West, Ye Han, Bob McDonald, Wenjing Yang, Bob Ormond and Harmesh Saini

> Metara Inc. Sunnyvale, CA, USA

Outline

Introduction

Why the analysis of molecular contamination is important?

Discussion

- Use of the Metara Trace Contamination Analyzer (TCA) for molecular contamination measurement
- Problem solving examples
 - 1. A nitrogen-containing compound in H₂O₂
 - 2. Organic additives in SC-1
 - 3. Urea in UPW
 - Molecular contamination in UPW
 - Plasticizers in IPA
 - 6. Sulfur-containing compounds in IPA

Conclusion

Molecular Contamination Sources

- Process equipment
- Impurities in incoming process chemicals
- Transfer from earlier process steps
- Airborne molecular contamination
- Deliberate addition of organics to process chemicals
 - Surfactants and chelating agents
 - "Proprietary" additives

Gate Oxide Degradation Due To Organic Contamination

"Cost Effective Cleaning and High-quality Thin Gate Oxides",

IBM J. Res. Develop. Vol. 43, No. 3, May 1999, M. Heyns and et. al.

International Technology Roadmap for Semiconductor (ITRS)

(2003 Edition) Table 70a Surface Preparation Technology Requirements—Near-term

Year of Production	2003	2004	2005	2006	2007	2008	2009	Driver
Critical GOI surface metals (10 ¹⁰ atoms/cm ²) [F]	0.5	0.5	0.5	0.5	0.5	0.5	0.5	М
Critical other surface metals (10 ¹⁰ atoms/cm ²) [F]	1	1	1	1	1	1	1	М
Mobile ions (10 ¹⁰ atoms/cm ²) [G]	1.8	1.9	1.9	2	2.2	2.4	2.5	М
Surface carbon (10 ¹³ atoms/cm ²) [H]	1.8	1.6	1.4	1.3	12	1	0.9	D %, M

Surface Carbon

ITRS 2004 Updated, Table 114a Technology Requirements for wafer environmental contamination control

	30% H ₂ O ₂ total oxidizable carbon (ppb)	-	TBD	TBD	TBD	TBD	TBD	TBD
ADD	IPA: High molecular weight organics (ppb)	-	TBD	TBD	TBD	TBD	TBD	TBD
ADD	30% H ₂ O ₂ : Resin byproducts (ppb)	-	TBD	TBD	TBD	TBD	TBD	TBD

TCA (Trace Contamination Analyzer)

for Metallic, Organic and Molecular Contaminants

Example 1: H₂O₂ Excursion at a Production Fab

- Contaminated H₂O₂ suspected to cause yield crash at a fab
- Analyses of traditional lab methods show inconclusive results between the "Good" & the "Bad" H₂O₂ samples
 - ICP-MS (Inductively Coupled Plasma Mass Spectrometry),
 - IC (Ion Chromatography),
 - TOC (Total Oxidizable Carbon)
 - Assay
- Results of TCA showed Intensity of peak at m/z 118 was ~ 20x higher in "bad" sample than in "good" sample

Contaminant found from H₂O₂ Sample by TCA

Intensity of 118 peak was found to be ~ 20x higher in "Bad" sample

Identification of Contaminant in "Bad" H₂O₂ Sample

$$CH_3$$
 O CH_3 O O O O O O Possible compound: Tri-methyl-glycine CH_3

Contaminant from Ion Exchange Resin

Structure of Ion Exchange Resin

TCA In-Line Monitoring Molecular Contamination in SC-1 (NH₄OH:H₂O₂:H₂O) Bath at a Fab

High Organic Content in High Purity H₂O₂

Example 2: Deliberate Addition of Surfactant or Chelating Agents in Baths

- Industrial Trend for Using Diluted Chemistry
 - \square SC-1 NH4OH:H₂O₂:UPW from x:1:5 (x = 0.05-3), up to 1:1:500
 - \Rightarrow SC2 HCI:H₂O₂:UPW up to 1:1:1000
- Addition of Surfactant or Chelating Agents in Baths
 - Improve Particle & Metal Removal Efficiency
 - Improve Surface Wetability for Uniform Wafer Surface Preparation

Chelating Agent found from a SC-1 (NH₄OH:H₂O₂:H₂O) by TCA

Possible Formulation:

A Mixture of Compounds with Functioning Groups R-COOand -(CH₂CH₂)_n-O

Chelating agents/surfactants

Need to be completely rinsed off
from wafer surface

Example 3: TOC (Total Oxidizable Carbon) Excursions at a Fab

- Seasonal TOC excursions at a fab
 - Urea (fertilizer) in UPW (Ultrapure Water) was suspected
 - "No way to confirm suspicions" because "no laboratory methods available to accurately measure low ppb concentrations of urea contamination in water"*

^{*}Ref. "Undetectable TOC in UPW can influence DUV photolithography processes", J. Rydzewski & R. Godec, proceedings of SPWCC 2002 (Semiconductor Processing with Wet Chemicals Conference)

TCA Quantitative Analysis of Urea in UPW

TCA Analysis of Urea by Ratio Technique

Ratio Measurement of ¹²C Urea/¹³C Urea

TCA Analytical Results of Urea

$$C_{s} = C_{sp} \left(\frac{V_{sp}}{V_{s}} \right) \frac{(A_{sp} - Ratio \times B_{sp})}{(Ratio \times B_{s} - A_{s})}$$

TCA Automatic Quantification

Calculated Results (10ppb C13 Urea Spike)

Example 4: Molecular Contamination in Pre-Gate Cleaning Processes at a Fab

- Yield problems at a Fab
 - Gate oxide breakdown voltage reduction
- Results of TXRF and VPD-ICP/MS
 - No metallic contamination
- Organic or molecular contamination was proposed
 - No significant suspect by routine lab methods

Contaminants Found from HQDR (Hot Quick Dump Rinse) UPW by TCA

Possible Contamination Sources in Fab

NMP = N-Methyl-2-pyrrolidone ($C_5H_9NO m/z = 99.068$)

- Photoresist stripper
- Wafer cleaning
- Semi-aqueous defluxing
- Degreasing
- Coatings (polyamide, epoxy, & polyurethane)

 H_3PO_4

Incomplete rinse from nitride etching?

Urea

Source water, re-cycling or reclaimed water?

TCA In-Line Monitoring Phosphorus Species in SC-1 Bath at a Production Fab

Example 5: Phthalate (Plasticizer) Contamination in IPA (Isopropyl Alcohol)

- It has been reported:
 - Dibutyl phthalate (DBP) in high density
 polyethylene (HDPE) containers leaching into IPA
 - Plasticizers deposit inside the gas nozzles and chamber in a dryer
- Phthalates have deleterious effects on wafers

TCA Analysis of Dioctyl Phthalate (DOP) and Dibutyl Phthalate (DBP) in IPA

Example 6: Molecular Contamination in IPA (Isopropyl Alcohol) at a Fab

- IPA from lot 1,2 3 suspected causing multiple excursions
- No significant difference between lot 1,2,3 and lot 4,5,6 by routine lab methods

Contamination Sources from IPA Manufacturing Processes

di-isopropyl sulfate isopropyl sulfate propene gas
$$\begin{array}{c} \text{CH}_3\text{CH=CH}_2 + \text{H}_2\text{SO}_4 \end{array} \begin{array}{c} \text{(CH}_3)_2\text{CH O-S-O CH(CH}_3)_2 + (\text{CH}_3)_2\text{CHO-S-O} \\ \text{O} \\ \text{O$$

Isopropyl sulfate is a highly suspect in IPA lot 1, 2, 3

Summary

- Using the TCA we have demonstrated the ability to:
 - Analyze molecular contamination in a variety of process solutions including UPW, SC-1 and IPA
 - Identify specific molecular contaminants
 - Provide quantitative concentration measurement
 - Make measurements in-line and in near real-time
 - Provide process chemistry trends that correlate to Wafer Fab yield problems

Conclusion

- We believe this new measurement capability will:
 - Enable statistically valid real-time process chemistry control decisions
 - Provide advanced warning of excursions
 - Enable chemical specifications and bath life decisions based on process data and yield correlation

