
Notes to Reviewers
Votetest Test Suite Version 1.0 for the VVSG-NI
April 1, 2009

This document represents a test suite for certain requirements in Part 1 Section 7, Requirements by
Voting Activity, of the next iteration of the Voluntary Voting System Guidelines (VVSG-NI). When the
VVSG-NI is approved by the Election Assistance Commission (EAC), the test suites will be available for
use by voting system testing laboratories as a common basis for testing voting systems to determine
conformance to the VVSG-NI.

Test suite reviewers are advised to first read and understand the VVSG-NI, especially the sections
relevant to the test suites under review, before reviewing the test suites. Part 1 Section 7 can be found
at: http://www.eac.gov/vvsg/part1/chapter07.php/. A complete version of the VVSG-NI in HTML, MS-
Word, or PDF formats can be found at http://www.eac.gov/vvsg.

Votetest consists of its documentation and a set of data files that are bundled with it. This package is
distributed as an archive file in either zip or compressed tar format. A high-level description of the
contents of the Votetest distribution is given in Section 1.1 of the documentation; a more detailed
description that identifies the various data files is given in Section 3.1 and Section 3.2. Sections 3.8 and
3.9 detail which requirements in Part 1 Section 7 are addressed by Votetest.

Commenting:

Please send comments on the test suites, by July 1, 2009, to: crt-software-test@nist.gov.

You may provide comments directly in your email and/or send attachments in MS-Word or PDF. If you
wish, you may embed your comments within the Votetest PDF documentation using the instructions
provided below. In general, please tell us the features you like and provide us with comments,
corrections, and suggestions on how to improve the test suites. Please provide the following items:

• Test suite version number (found in the test suite documentation, currently Version 1.0)
• Your name and affiliation (include contact information if desired)
• Identification of the particular tests and requirements in the VVSG-NI for which your comment

applies
• If including suggestions for changes to the tests, a description of the suggested change including

an adequate justification for the change, or a draft replacement for the test including the
justification and any other necessary documentation or commentary

All comments will be considered. After all comments have been received and incorporated into the test
suites, a new version of the test suites will be posted on the NIST web site.

Embedding comments in PDF files:

If you wish to embed comments within the PDF documentation, you may do so using the free Adobe
Reader software available from Adobe. The following detailed instructions for commenting the PDF file
are current as of 2009-03-25 and Adobe Reader version 9.1.0. Versions 8.1.X are also usable.

1. Ensure that Adobe Reader is installed on your computer. Adobe Reader may be obtained from
http://get.adobe.com/reader/.

2. Open the documentation PDF file in Adobe Reader.

3. There should be a menu on the toolbar labeled Comment or Review & Comment. Select Show
Comment & Markup Toolbar from that menu to get a new toolbar that includes the Sticky Note
tool, the Text Edits tool, and others. (These tools can also be accessed via Tools → Comment &
Markup.)

4. To insert a comment someplace in the document, go to that page and use the Sticky Note tool.
Once the text of the comment has been entered, the yellow note icon can be dragged to place it
near the text in question.

5. To indicate desired textual changes, use the Text Edits tool to insert, delete, or replace text.

6. Save your changes using File → Save.

Votetest: Voting system logic testing for the VVSG-NI

Draft — Version 1.0

April 1, 2009

Legal notices

Test materials disclaimer

This document and associated files have been prepared by the National Institute of Standards and
Technology (NIST) and represent draft test materials for the Election Assistance Commission’s
next iteration of the VVSG. It is a preliminary draft and does not represent a consensus view or
recommendation from NIST, nor does it represent any policy positions of NIST.

Software disclaimer

This software was developed at the National Institute of Standards and Technology by employees
of the Federal Government in the course of their official duties. Pursuant to Title 17 Section 105
of the United States Code this software is not subject to copyright protection and is in the public
domain. This software is an experimental system. NIST assumes no responsibility whatsoever for
its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability,
or any other characteristic. We would appreciate acknowledgement if the software is used.

This software can be redistributed and/or modified freely provided that any derivative works bear
some notice that they are derived from it, and any modified versions bear some notice that they
have been modified.

Commercial products disclaimer

Specific computer hardware and software products are identified in this paper to support repro-
ducibility of results. Such identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply that the products identified are
necessarily the best available for the purpose.

1

Contents

1 Introduction 5

1.1 What Votetest Is . 5

1.2 What Votetest Is Not . 5

1.3 Structure of this document . 5

2 Background 6

3 Test materials 6

3.1 Overview of test materials . 6

3.2 File listing . 7

3.3 How to use Votetest . 7

3.4 Applicability to VVSG 2005 . 20

3.5 Data model . 20

3.6 Basic schema . 29

3.7 Basic test suite . 32

3.8 Required test cases not included in the basic Votetest test suite 41

3.9 Requirements trace . 42

4 Advanced schema 68

4.1 Conveniences . 68

4.2 Adaptation . 76

4.3 Integrity checks . 79

4.4 Translation of logic model . 79

5 Advanced test development environment 88

5.1 Software prerequisites . 88

5.2 Hardware prerequisites . 89

5.3 File listing . 89

5.4 Installation . 90

5.5 Infrastructure . 91

5.6 Test suite self-tests . 96

5.7 TestGenerator . 96

5.8 On performance and scalability . 99

*** DRAFT *** 2 *** DRAFT ***

5.9 PostgreSQL configuration help . 99

5.10 Votetest under Cygwin . 101

6 New test case walk-through 102

6.1 Introduction . 102

6.2 Example election . 102

6.3 Modelling the election in Votetest . 106

6.4 Representing the election in the database . 114

6.5 Generating relevant test cases . 119

6.6 Reports generated by Votetest . 126

6.7 Conclusion . 152

List of Figures

1 How to use a test . 11

2 Example Votetest test . 12

3 Example EMS interaction . 13

4 Example optical scan ballot . 14

5 Example DRE voting script . 15

6 “Observed results” for example . 18

7 “Expected results” for example . 19

8 Vote data model for core requirements . 21

9 Sample report . 92

10 Model subset for ballot styles . 107

11 Model subset for ballots . 109

12 Model subset for affiliations and endorsements . 111

13 Model subset for reporting . 113

*** DRAFT *** 3 *** DRAFT ***

List of Tables

1 Basic files in the Votetest distribution . 7

2 Basic test suite . 34

3 Additional required test cases . 41

4 Integrity checks . 80

5 Advanced files in the Votetest distribution . 89

6 ReportGenerator return codes . 93

7 Output of Infrastructure-PairsCoverage . 95

8 Key to headings appearing in Table 7 . 95

9 Constraint violation tests . 96

10 Scalability figures . 99

11 Party information . 105

12 Precinct relationships . 106

13 Ballot styles . 107

14 Endorsements . 112

15 Ballot style—reporting context associations . 113

16 BallotStyle . 114

17 Contest . 114

18 BallotStyleContestAssociation . 115

19 Choice (before write-ins) . 116

20 Party . 117

21 ReportingContext . 117

22 BallotStyleReportingContextAssociation . 117

23 Endorsement . 118

24 BallotCategory, rejected and blank ballot distributions 120

25 Precinct and BallotStyle distributions . 121

26 Undervote distributions . 121

27 Choices for anticipated write-ins . 122

28 Canonical choice and write-in distribution . 123

*** DRAFT *** 4 *** DRAFT ***

1 Introduction

1.1 What Votetest Is

The Votetest distribution, or simply “Votetest” for short, is a package of public domain data,
software, and documentation that the National Institute of Standards and Technology (NIST) is
developing. Its purpose is to provide conformance test materials for use by Voting System Testing
Laboratories. These test materials are used to assess conformity to the Voluntary Voting System
Guidelines (VVSG) [1].

Votetest defines abstract tests that exercise every phase of the voting process from election definition
through report generation. The scope of functionality that they cover to some extent is therefore
quite broad. The abstract tests are “realized” according to the specifics of the voting system being
tested.

In addition to the abstract tests, Votetest includes the expected results for each test, a means to
derive the expected results for newly developed tests, a test generator, and detailed documentation.

1.2 What Votetest Is Not

Votetest CANNOT simply be plugged into a voting system to obtain a verdict on conformity. The
tests that are defined abstractly by Votetest must be translated into concrete tests that can actually
be run on a given voting system. This task requires the same expertise and diligence that test labs
have employed in the past when developing their own tests from scratch.

Votetest, by itself, DOES NOT provide complete coverage of the VVSG. Votetest is only one tool
that is used in one part of the conformity assessment process. It is designed not to be used in
isolation, but rather to complement the other testing activities, which include the physical configu-
ration audit, documentation and design reviews, electromagnetic compatibility and environmental
testing, security reviews, usability and accessibility assessments, the volume test (mock election),
and the evaluation of reliability, accuracy, and misfeed rates. Test labs should consult Part 3 of the
VVSG [1] regarding the full scope of testing to be performed.

Votetest DOES NOT address “fitness for use.” Its scope is strictly limited to conformity assessment.
It is not a substitute for Voting System Testing Laboratories’ diligent assessments of the full scope
of voting system functionality (including vendor-specific functionality), nor does it obviate the need
for acceptance testing by jurisdictions.

1.3 Structure of this document

Section 2 provides additional background of general interest. Section 3 provides detailed technical
documentation on the portions of Votetest that are essential to performing conformity assessment.
Section 4 and Section 5 provide detailed technical documentation on the portions of Votetest that
could be used to develop additional test cases. Finally, Section 6 walks through the process of
defining a new test case based on an example election.

*** DRAFT *** 5 *** DRAFT ***

2 Background

By authorization of the 2002 Help America Vote Act (HAVA), NIST is assisting the Election
Assistance Commission (EAC) with the implementation of Voluntary Voting System Guidelines
(VVSG) for states and local governments conducting Federal elections. The EAC’s Technical
Guidelines Development Committee (TGDC) in collaboration with NIST researchers has developed
a draft of the next iteration of the VVSG. The draft document is a set of detailed technical
requirements addressing core requirements, human factors, privacy, security, and transparency of
the next generation of voting systems. The EAC plans to issue the next VVSG after receiving and
reviewing public comments.

NIST is developing a set of uniform public test suites to be used as part of the EAC’s Testing
and Certification Program. Test labs will be able to use these freely available test suites to help
determine that VVSG requirements are met by voting systems. The test suites address human
factors, security and core functionality requirements for voting systems as specified in the VVSG.
Use of the public test suites will produce consistent results and promote transparency of the testing
process. The test suites can also assist manufacturers in the development of conforming products
by providing precise test specifications. Also, they will help reduce the cost of testing since each
test lab would no longer need to develop its own test suites. Finally, a uniform set of public test
suites can increase election officials’ and voters’ confidence that voting systems conform to VVSG
requirements.

3 Test materials

3.1 Overview of test materials

This is the documentation for the test materials portion of the Votetest distribution. Its intended
audience is test labs accredited by the Election Assistance Commission to perform voting system
certification testing. The test lab is assumed to have competence with the following:

• The Voluntary Voting System Guidelines (VVSG) [1];

• Data modelling;

• Structured Query Language (SQL) [2].

Votetest includes the following components:

• The data model (Section 3.5) documents the world view inherent in the schema and test suite.
It is general enough to support arbitrary combinations of all of the voting variations defined
in the VVSG.

• The basic schema (Section 3.6) is an SQL realization of the data model.

• The basic test suite (Section 3.7) is a set of abstract test cases expressed in SQL using the
basic schema. The test cases are delivered as separate files in the Votetest distribution. These
tests trace primarily to the requirements of [3, Part 1 Chapter 7]; traceability details will be
provided in Section 3.9. However, because they exercise every phase of the voting process
from election definition through report generation, the scope of functionality that they cover
to some extent is quite broad.

*** DRAFT *** 6 *** DRAFT ***

• The expected results (Section 3.3.4.3) are text files providing the vote totals that a conforming
voting system should produce for each test case.

• The advanced schema (Section 4) is an SQL realization of the logic model of the VVSG [3,
Part 1 Section 8.3], which specifies the results that voting systems are required to report.

• The advanced test development environment (Section 5) includes the infrastructure and tool-
ing used to develop test cases and determine their expected results.

While Votetest includes both basic and advanced materials, only the data model (Section 3.5),
basic schema (Section 3.6), basic test suite (Section 3.7) and expected results (Section 3.3.4.3) are
essential to the conformance testing process. Section 3.3 explains in more detail how Votetest is
used in that process.

3.2 File listing

The Votetest distribution is provided as a zip file named votetest-YYYYMMDD.zip and alternately
as a compressed tar file named votetest-YYYYMMDD.tar.bz2, where YYYYMMDD is a sequence
of digits indicating the date of the release. The files contained in the distribution are described in
Table 1.

Table 1: Basic files in the Votetest distribution
Files Description Details

disclaimer.txt
Text file containing the test materials dis-
claimer.

Legal notices

COPYING Text file containing the software disclaimer. Legal notices

doc/
Subdirectory containing the source and PDF
of this documentation.

N/A

1-basic-description.sql
SQL, abstract test cases of the basic test suite
(92 files).

Section 3.7

sample output/
Subdirectory containing text files that provide
the expected results for each test case and each
integrity check (106 files).

Section 3.3.4.3

sample output kill-overvotes/
Same, but with overvoting suppressed (106
files).

Section 3.3.4.3

ChangeLog
Text file containing the change log for the
Votetest distribution.

N/A

... other files ...
Files pertaining to the advanced test develop-
ment environment.

Table 5

3.3 How to use Votetest

The steps listed in the following subsections fit within the context of the overall conformity as-
sessment process that is described in [3, Part 3 Chapter 2]. Thus, in practice, the steps will not
necessarily follow directly one to the next as is implied here, because there may be other conformity
assessment activities occurring in between or parallel to them.

*** DRAFT *** 7 *** DRAFT ***

3.3.1 Determine relevant voting variation classes—system level

The Technical Data Package received from the manufacturer is required to include an implementa-
tion statement, which is specified by the Conformance Clause of the VVSG [3, Part 1 Section 2.4].
This implementation statement includes the manufacturer’s classification of the voting system as
a whole and of the different devices of which it is comprised. For Votetest, the relevant voting
variation classes are determined by examining the implementation statement. (The completeness
and correctness of the manufacturer’s classification should have been established in a preceding
documentation and design review; see [3, Part 3 Req. 4.2-C].) The system and device classes that
the manufacturer may reference are defined in the Conformance Clause [3, Part 1 Section 2.5].

Usually, multiple classes will apply to a given voting system or voting device. For example, if a
DRE supports both N-of-M and ranked order voting variations, it will be classified as both an N-
of-M voting device and a Ranked order voting device in addition to being classified as a DRE . This
multiple classification allows multiple sets of tests to apply so that all of the supported functionality
will be tested.

At this stage, what is relevant are the system-level classes. If the system as a whole does not support
a particular voting variation, then support for that variation in isolated devices is irrelevant.

3.3.2 Determine applicable tests

Table 2 (coming up in Section 3.7) lists the tests in the basic Votetest test suite and indicates the
voting variations that are used by each test. The set of tests applicable to a given voting system is
the set of all tests that do not use any voting variations that the voting system does not support.
In other words, every test is applicable unless it is specifically excluded, and a test is excluded only
if it uses a voting variation that, according to the reviewed and accepted implementation statement,
the system does not implement.

For example, if a voting system did not support ranked order voting, the following tests would be
excluded:
1-basic-NoBallots-RankedOrder.sql
1-basic-RankedOrder-1.sql
1-basic-RankedOrder-2.sql
1-basic-StraightParty-RankedOrder.sql
1-basic-Primary-RankedOrder.sql
1-basic-BallotRotation-RankedOrder.sql
1-basic-AbsenteeByCategory-RankedOrder.sql
1-basic-Cumulative-RankedOrder.sql
1-basic-SplitPrecinct-RankedOrder.sql
1-basic-RankedOrder-WriteIns.sql
1-basic-RankedOrder-NofM.sql
1-basic-RankedOrder-Provisional.sql
1-basic-AbsenteeBySpecialPrecinct-RankedOrder.sql

There is a special case regarding absentee voting that will be addressed in Section 3.7.

*** DRAFT *** 8 *** DRAFT ***

3.3.3 Multiply tests for different interfaces and devices

At this point the test lab has the beginnings of a test plan with a list of the tests that are applicable
to the voting system as a whole. That plan must now be expanded down to the device level.

When a voting system offers multiple paths by which voting can occur, such as a touchscreen
interface and an audio ballot on one device plus optical scanning of paper ballots by another
device, each of these paths must be tested. It is entirely possible for a failure to be specific to a
particular user interface. For example, some controls that can be activated using a touchscreen
might be incorrectly skipped over if an input device with a navigational model (next option, previous
option) is used.

Several different strategies could be used to divide or replicate the testing among the available
interfaces and devices. However, since most tests in the basic test suite are small by design, with
relatively few ballots, the recommended approach is to repeat each test on each device and interface
separately. For large tests such as the volume test (mock election), one would instead divide the
ballots among the available devices and interfaces using a distribution that imitates a realistic
election.

Absentee voting is again a special case. In systems where absentee ballots follow a separate path
from other ballots (e.g., a dedicated central count optical scanner), it makes sense to repeat tests
over the absentee interface. However, the basic test suite also contains tests specifically designated
for absentee voting, that mix absentee ballots with non-absentee ballots. These designated tests
would be executed using both the absentee and non-absentee paths at the same time, not repeated
on each path separately.

As noted in [3, Part 1 Section 6.2], it is not necessarily the case that every device in the system
would support every voting variation claimed at the system level. Thus there may be cases where
it is not possible to multiply certain tests onto certain devices. However, other devices that do pass
those tests must be present to enable satisfaction of the system-level claim.

3.3.4 Perform testing

Once the test plan has been approved, work on implementing the plan can begin. The steps that
the test lab must do for each applicable Votetest test are summarized in Figure 1 and explained in
more detail in the following subsections.

3.3.4.1 Translate test from Votetest model to voting system

Since interfaces to voting systems vary widely, the test lab must use the basic test suite as input
from which to generate system-specific tests. For each applicable test, the test lab translates the
abstract, SQL version included in the basic test suite (Section 3.7) into a concrete test for the
voting system under test, thereby “realizing” the test. The data model (Section 3.5) and basic
schema (Section 3.6) are essential to understanding the abstract tests so that they can be realized
correctly.

Figure 2 shows an example of a Votetest test expressed in SQL. It specifies both the election
definition and the ballots and votes to be cast.

Things to be determined for the voting system under test would include:

*** DRAFT *** 9 *** DRAFT ***

• Initial state: Determine how the voting system should be set and reset to a starting state
prior to each test.

• Election definition:
– Read the Voting Equipment User Documentation supplied by the manufacturer to un-

derstand how election definition is performed using the Election Management System.

– Determine how the definitions of the ballot styles, contests, choices, and reporting con-
texts used in the Votetest basic test suite would be implemented in the voting system
under test.

Figure 3 shows an example of entering part of the election definition from Figure 2 into a
hypothetical voting system. In an actual voting system, entering the complete election defini-
tion might require many separate interactive steps, such as creating the election, enumerating
political parties, creating precincts, creating contests, creating choices within those contests,
adding ballot text, setting options, etc. Additionally, the test lab may need to synthesize con-
tent for system-specific details that are not specified by Votetest. This example only shows
the creation of a contest.

• Voting: Determine how the pattern of votes used in each test would be cast in the voting
system under test. The system may support numerous different voting interfaces, each of
which would have a different process for casting votes. For example, if a DRE is to be tested,
scripts for “test voters” to follow must be produced. The scripts instruct the test voters on
what votes to cast using the electronic interface of the DRE. If an optical scanner is to be
tested, physical test ballots must be produced. This might be accomplished by handing a
similar script to test voters to instruct them on how to fill in the paper ballots, or the test
engineer might simply mark the ballots personally.

Figure 4 shows an example of how the ballot with ID 2 in Figure 2 would translate for the
precinct count optical scan interface of the hypothetical voting system. Figure 5 shows an
example of how the same ballot would translate for the DRE interface of the hypothetical
voting system.

• Reporting: Determine how to generate pre-election audit reports, system readiness audit
reports, in-process audit reports, and vote data reports (i.e., reports of ballot counts and vote
totals) in the voting system under test.

*** DRAFT *** 10 *** DRAFT ***

Figure 1: How to use a test

Votetest distribution

Voting system under test

Translate Compare

Test (Votetest SQL) Expected results

Test (translated) Observed resultsTabulation Reporting

*** DRAFT *** 11 *** DRAFT ***

Figure 2: Example Votetest test

\i Infrastructure-TestHeader.sql

\echo '$Id: 1-basic-NofM.sql 452 2008-01-09 14:24:56Z dflater $'
\echo
\echo 'Small 2-of-M contest, no write-ins, no rejected ballots.'
\echo 'Ballot styles: 1'
\echo 'Reporting contexts: 1'

\i Infrastructure-VoteSchema.sql

insert into ReportingContext values
('Precinct 1');

insert into Contest (ContestId, Description, CountingLogic, N,
MaxWriteIns, Rotate) values

(1, 'Parking Committee, vote for at most 2', 'N-of-M', 2, 0, false);

insert into Choice (ChoiceId, ContestId, Name, IsWriteIn) values
(0, 1, 'Nada Zayro', false),
(1, 1, 'Oona Won', false),
(2, 1, 'Beeso Tu', false),
(3, 1, 'Tayra Tree', false),
(4, 1, 'Car Tay Fower', false);

insert into BallotStyle (StyleId, Name) values
(1, 'Precinct 1 Style');

insert into BallotStyleContestAssociation (StyleId, ContestId) values
(1, 1);

insert into BallotStyleReportingContextAssociation (StyleId,
ReportingContext) values

(1, 'Precinct 1');

insert into Ballot (BallotId, StyleId, Accepted) values
(0, 1, true),
(1, 1, true),
(2, 1, true),
(3, 1, true),
(4, 1, true),
(5, 1, true),
(6, 1, true),
(7, 1, true),
(8, 1, true);

insert into VoterInput (BallotId, ChoiceId, Value) values
(1, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(3, 3, 1),
(4, 3, 1),
(4, 4, 1),
(5, 4, 1),
(6, 4, 1),
(7, 4, 1),
(8, 0, 1),
(8, 1, 1),
(8, 2, 1);

\i Infrastructure-TestHook.sql
\i Infrastructure-IntegrityChecks.sql
\! ReportGenerator/ReportGenerator "Precinct 1"
\i Infrastructure-TestFooter.sql

← Preamble

Election
definition

Ballots

← Conclusion

*** DRAFT *** 12 *** DRAFT ***

Figure 3: Example EMS interaction

*** DRAFT *** 13 *** DRAFT ***

Figure 4: Example optical scan ballot

OFFICIAL BALLOT
NO-SUCH JURISDICTION

GENERAL ELECTION
MAY 16, 2008

Precinct: 1

INSTRUCTIONS TO VOTERS: To vote for a candidate,
completely darken the oval next to that candidate’s name.
[…etc.]

PARKING COMMITTEE
Vote for at most 2

Nada Zayro
Test choice 0
Oona Won
Test choice 1
Beeso Tu
Test choice 2
Tayra Tree
Test choice 3
Car Tay Fower
Test choice 4

*** DRAFT *** 14 *** DRAFT ***

Figure 5: Example DRE voting script

If at any step you make a mistake performing the Action for tester, go directly to the Botched
Test Checklist.

If at any step the DRE does not respond as indicated under Expected DRE response, go directly
to the Anomaly Checklist.

Action for tester Expected DRE response
1. Insert the card that the poll worker gave
you into the slot on the front of the DRE.

The DRE should show the text “Ballot ac-
tivated” followed by instructions to voters.

2. Touch NEXT on the touch-screen.
The DRE should advance to the PARKING
COMMITTEE contest.

3. Touch the box to the left of Beeso Tu. The box should turn green.
4. Touch the box to the left of Tayra Tree. The box should turn green.

5. Touch NEXT on the touch-screen.
The DRE should advance to the summary
screen.

6. Touch CAST BALLOT on the touch-
screen.

The DRE should display “Please remove
the card and deposit it in the shoe box near
the exit.” and “Thank you for voting.”

7. Remove the card.
The DRE should return to its welcome
screen, which shows the text “Precinct 1”
and “Please insert card.”

*** DRAFT *** 15 *** DRAFT ***

3.3.4.2 Execute test

For each test case, the test lab executes the “realized” test case within the voting system under
test following the general test template specified in [3, Part 3 Section 5.2.2.1]:

1. Establish initial state (clean out data from previous tests, verify resident software/firmware);

2. Program election and prepare ballots and/or ballot styles;

3. Generate pre-election audit reports;

4. Configure voting devices;

5. Run system readiness tests;

6. Generate system readiness audit reports;

7. Precinct count only:

1. Open poll;
2. Run precinct count test ballots; and
3. Close poll.

4. Run central count test ballots (central count / absentee ballots only);

5. Generate in-process audit reports;

6. Generate data reports for the specified reporting contexts;

7. Inspect ballot counters; and

8. Inspect reports.

This template essentially puts the voting system through the technical paces of a very small election
for each test. Although the election definition is simple and the number of ballots small, the process
from beginning to end exercises all of the voting system functions that would be used in an election.
The surrounding procedures and environment are, of course, quite different, and vastly simplified
in the laboratory testing environment, so it is not a mock election in the sense that the volume test
is.

Also see [3, Part 3 Section 2.5] regarding the test conditions, test fixtures, test data requirements,
and test practices that apply.

3.3.4.3 Compare observed and expected results

As part of the test execution, the voting system under test is instructed to generate vote data
reports. These contain the “observed results” with respect to ballot counts and vote totals. Figure 6
shows an example report from the hypothetical voting system.

The “expected results” for all of the test cases are saved as text files in two subdirectories of the
Votetest distribution. The subdirectory sample output contains the results expected from the test
cases as written, while the subdirectory sample output kill-overvotes contains the results expected
from the test cases with overvotes changed to undervotes.

Each results file has the following organization:

*** DRAFT *** 16 *** DRAFT ***

• Test header with timestamp and description of the test case.

• Some details that are not relevant to conformity assessment:

– Results of data integrity checks. These are checks of the integrity of the test cases
themselves and do not correspond to requirements on voting systems.

– View materialization log.

• Reports, for one or more ReportingContexts, that include the vote totals that voting systems
are expected to produce.

• Test footer including the report total volume and timestamp.

An example is shown in Figure 7. Comparing the “observed results” in Figure 6 and the “expected
results” in Figure 7, it is clear that the quantities reported for candidate vote totals are identical,
even though the form of the reports is somewhat different. The test lab would find no discrepancy in
those results. However, the observed results shown in Figure 6 are not in and of themselves sufficient
to satisfy all of the VVSG requirements on reporting. For example, [3, Part 1 Req. 7.8.3.2-A through
D] specify additional information that the voting system under test must provide in some report if
the system is to be found conforming.

The other reports generated as part of the test (pre-election reports, etc.) would also be inspected
to look for anomalies and to assess conformity to the L&A testing and auditability requirements of
the VVSG. Similarly, any unexpected behavior of the voting system observed by the tester would
be assessed by the resident expert (possibly but not necessarily the same person) to determine if a
nonconformity was demonstrated.

Some notes and cautions apply:

1. Many test cases contain overvotes. However, in some voting systems, overvoting is prevented.
Votetest handles this possibility through test transformation. For each ballot that overvotes a
particular contest, an SQL script (Infrastructure-KillOvervotes.sql) deletes that ballot’s votes
in that contest, with the effect that the contest is undervoted instead of overvoted. Expected
results are provided both for the test cases as originally written (in sample output) and for the
test cases transformed to remove overvotes (in sample output kill-overvotes).

2. For Ballot rotation tests, the test lab must check to make sure that the voting system does in
fact produce and utilize rotated ballots as specified in the VVSG [1]. The assignment of ballot
choices to specific ballot positions is abstracted out of the Votetest data model, so the rotation
behavior is not represented in the “expected results.”

3. Ranked order logic is not normative. The algorithm used to derive the “expected results”
for ranked order contests is only one example of conforming behavior. This algorithm is not
recommended or endorsed by the National Institute of Standards and Technology for use in
elections and it is probably not the best algorithm available for the purpose. It is used in
Votetest only to provide output for comparison in simple cases where the implementation-
dependent details have no impact.

*** DRAFT *** 17 *** DRAFT ***

Figure 6: “Observed results” for example

NO-SUCH JURISDICTION
GENERAL ELECTION

MAY 16, 2008

REPORT GENERATED AT 2008-05-16 16:12:23

Total % Election Day Early Provisional
Precincts Counted 1 100.00
Registered Voters 9
Ballots Cast / Turnout 9 100.00 9 0 0

PARKING COMMITTEE (Vote for at most 2)
FOWER, CAR TAY 4 40.00 4 0 0
TREE, TAYRA 3 30.00 3 0 0
TU, BEESO 2 20.00 2 0 0
WON, OONA 1 10.00 1 0 0
ZAYRO, NADA 0 0.00 0 0 0
Write-Ins (combined) 0 0.00 0 0 0
Overvotes 2 2 0 0
Undervotes 6 6 0 0

*** DRAFT *** 18 *** DRAFT ***

Figure 7: “Expected results” for example

##

BEGIN TEST CASE OUTPUT 2008-04-10 16:15:52-04

##

$Id: 1-basic-NofM.sql 452 2008-01-09 14:24:56Z dflater $

Small 2-of-M contest, no write-ins, no rejected ballots.
Ballot styles: 1
Reporting contexts: 1

$Id: Infrastructure-VoteSchema.sql 475 2008-02-21 20:49:51Z dflater $
$Id: Infrastructure-TestHook.sql 453 2008-01-09 14:38:46Z dflater $
$Id: Infrastructure-IntegrityChecks.sql 281 2007-07-19 15:32:59Z dflater $

----- Begin integrity check output -- All results should be empty -----

Out Of Range Voter Inputs
ballotid | choiceid | value
----------+----------+-------
(0 rows)

… other integrity checks deleted …

----- End integrity check output ---- All results should be empty -----

$Id: ReportGenerator.cc 460 2008-01-14 15:10:24Z dflater $
Materializing views (for large tests, this may take a while).
2008-04-10 16:15:51-0400 Materialization begun
2008-04-10 16:15:51-0400 FilteredContextChoiceAssociation
… other view materializations deleted …
2008-04-10 16:15:52-0400 Materialization finished

Report for context Precinct 1 generated 2008-04-10 16:15:52-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 9 9

Blank 1 1
Precinct 1 Style 9 9

Blank 1 1

VOTE TOTALS

Parking Committee, vote for at most 2
Car Tay Fower 4
Tayra Tree 3
Beeso Tu 2
Oona Won 1
Nada Zayro 0
Overvotes 2
Undervotes 6
Counted ballots 9
Balance 0

Report total volume: 67
- Includes optional reporting of blank ballots.
- Excludes separate reporting of ballots cast vs. read.

##

END TEST CASE OUTPUT 2008-04-10 16:15:52-04

##

← Test header

← Integrity
checks

← Materialization
log

← Report

← Test footer

*** DRAFT *** 19 *** DRAFT ***

3.4 Applicability to VVSG 2005

The 2005 Voluntary Voting System Guidelines (VVSG 2005) [4] have several important differences
from the next VVSG [1] that impact the application of Votetest.

• VVSG 2005 does not include a logic model [3, Part 1 Section 8.3] to define precisely what
values are expected to be reported for votes, overvotes, and undervotes. While the draft of the
next VVSG is believed to be consistent with the intent of VVSG 2005, it explicitly rules out
certain alternative interpretations that might have been found compliant to the less precise
wording of VVSG 2005. Use of Votetest to assess conformity to VVSG 2005 might therefore
require clarification and/or interpretation of requirements by the EAC.

• VVSG 2005 does not include specific functional requirements to define what it means to
“support” a given voting variation such as N-of-M voting. The manufacturer is only required
to document how a voting variation is supported [4, Volume I Section 2.1.7.2]. This weak-
ens the traceability of Votetest test cases to requirements and may require additional EAC
interpretation decisions.

• Votetest is structured on the assumption that manufacturers would formally state their claims
of having implemented particular voting variations in an implementation statement [3, Part 1
Section 2.4] and that both the testing and the certification of the affected systems would be
scoped according to those claims. The VVSG 2005 conformance clause requires manufacturers
to “identify optional features and capabilities supported by the voting system” [4, Volume I
Section 1.6.4], but those optional features and capabilities are not required to be drawn from
the list of voting variations defined in the next VVSG. To the extent that they are not, the
applicability of Votetest test cases will be subject to interpretation.

• VVSG 2005 identifies “partisan offices,” “non-partisan offices,” “primary presidential delega-
tion nominations,” and “recall issues, with options” as voting variations. In the drafting of
the next VVSG, these were all found to be subsumed by other voting variations with appro-
priately configured ballot text, so they are not called out explicitly in the draft VVSG. A
test lab wishing to test specifically to the 2005 list of voting variations would need to create
new tests and/or modify existing ones to exercise these special cases.

There is no technical incompatibility that would outright prevent the use of any of the Votetest test
cases in a conformity assessment for VVSG 2005, provided that the draft next VVSG accurately
reflects the intent of the requirements of VVSG 2005. A focused effort to develop test cases for
VVSG 2005 instead of the next VVSG would not necessarily arrive at a different set of test cases.

3.5 Data model

The data model for voting system core requirements is described in Figure 8 by a Unified Modeling
Language (UML) class diagram [5]. Following sections explain the diagram.

3.5.1 Assumptions

All entities in this data model are implicitly scoped by an election. It is assumed that different
elections are stored in different databases, and any reuse of definitions from one election to another
is accomplished by copying over the relevant data.

*** DRAFT *** 20 *** DRAFT ***

Figure 8: Vote data model for core requirements

Name : Text
ReportingContext

Name : Text
Party

0..*

0..*

0..* 0..*

0..*

0..*

Name : Text
IsWriteIn : Boolean

Choice

0..*

0..1

Affiliation

Description : Text
CountingLogic : ContestCountingLogic
N : NaturalNumber
MaxWriteIns : WholeNumber
Rotate : Boolean

Contest

Name : Text
BallotStyle

1..*

0..*

Categories[0..*] : BallotCategory
Accepted[1] : Boolean

Ballot

0..*

11..*

0..*

0..*0..*

0..* 0..*

Value : NaturalNumber
VoterInput

0..*

0..*

0..*

Precinct

ElectionDistrict

Tabulator

1

0..*

Alias

Value : NaturalNumber
Endorsement

0..*

0..*

Early
Regular
InPerson
Absentee
Provisional
Challenged
NotRegistered
WrongPrecinct
IneligibleVoter

«enumeration»
BallotCategory

N-of-M
Cumulative
Ranked order
Straight party selection

«enumeration»
ContestCountingLogic

*** DRAFT *** 21 *** DRAFT ***

This data model is constructed from an integrated, top-level viewpoint. In practice, different
portions of the system will deal with only a portion of the data at any given time. It is expected
that test labs will project and extract data from the integrated schema as needed to support these
limited viewpoints for testing.

The results of tabulation and reporting are derived from the content of the data model, but those
results are themselves outside the scope of the model.

3.5.2 POD (Plain Old Data) types

BallotCategory (enum) Arbitrary tag that may be applied to Ballots; e.g., Early, Regular, In-
Person, Absentee, Provisional, Challenged, NotRegistered, WrongPrecinct, IneligibleVoter.
Categories are jurisdiction-defined but are likely to include several classes of provisional.

Boolean Normal true/false data type.

ContestCountingLogic (enum) N-of-M, Cumulative, Ranked order, or Straight party selection.
(1-of-M is a special case of N-of-M.) The tabulation logic for a straight party selection Contest
is implicitly 1-of-M, but with side-effects for other Contests.

NaturalNumber Integer greater than zero.

Text Normal character string.

WholeNumber Integer greater than or equal to zero.

3.5.3 Classes

3.5.3.1 Ballot

The undefined primitive in all elections. The Contests that appear on a particular Ballot are defined
by its BallotStyle. The applicable ReportingContexts include all those specified for its BallotStyle,
but additional ReportingContexts may be specified for the individual Ballot.

Attributes of Ballot:

Categories Arbitrary, jurisdiction-defined tags applied to the Ballot; e.g., Early, Regular, InPer-
son, Absentee, Provisional, Challenged, NotRegistered, WrongPrecinct, IneligibleVoter.

Accepted True if the Ballot should be counted, false if not (e.g., for a provisional Ballot that was
not accepted).

3.5.3.2 BallotStyle

Set of Contests and ReportingContexts that is inherited by all Ballots of that style. Depending on
the type of election and local practices, a jurisdiction would define a separate BallotStyle for each
precinct, each split within a precinct, and/or for each political party.

[1] defines both “ballot style” and “ballot configuration.” This model assumes that the association
between styles and configurations is 1-to-1 and represents the combined concept with BallotStyle.

Attributes of BallotStyle:

*** DRAFT *** 22 *** DRAFT ***

Name Human-readable identifier.

3.5.3.3 Choice

One of the things you can vote on in a Contest, such as a candidate, a political party, or yes or
no. Choice is scoped by Contest, so even if the same person runs as a candidate in two or more
Contests, those separate candidacies are represented by separate Choices. Choices do not map 1:1
with ballot positions—a Choice uniquely identifies a candidate, while a given ballot position might
just be a generic write-in slot.

Attributes of Choice:

Name Human-readable identifier. (In a real system, Choices could have complex descriptive data
associated with them that must be displayed to the user somehow, but for logic testing
purposes a single field suffices.)

IsWriteIn True if the Choice is a write-in candidate, false if not.

3.5.3.4 Contest

Subdivision of a Ballot corresponding to a single question being put before the voters, consisting
of header text, a discrete set of Choices, and possibly write-in opportunities. It is possible for a
Contest to have zero Choices, e.g., if there are no registered candidates but write-ins are being
accepted. Choices corresponding to the candidates written in would be added later.

Attributes of Contest:

Description Human-readable header text.

CountingLogic Identifies the tabulation method used for the Contest.

N For CountingLogic other than ranked order, N is the maximum number of votes that may be
cast in the Contest by a given voter. In an N-of-M Contest, the voter may cast at most one
vote for each Choice, so N is equal to the maximum number of Choices that the voter may
select without overvoting.1 In a cumulative Contest, there is no such constraint—the voter
may cast more than one vote for a given Choice.

Typically, N also is the number of winners for the Contest, but not necessarily. The voting
system only needs to gather votes and report the totals; the picking of winners may be an
external process impacted by election law, late-breaking judicial rulings, etc. However, for
ranked order Contests, N is specifically the number of Choices to be elected, and has no other
meaning.

MaxWriteIns The number of ballot positions allocated for write-ins; the maximum number of
candidates that the voter may write in. Any value between zero and N is possible. Zero would
mean that write-ins are not allowed; N would mean that write-ins are allowed; a number in
between would mean that write-ins must be approved and the number of approved write-in
candidates is less than N.

Rotate True if the ordering of Choices within the Contest should be rotated, false if not.
1The value of M, for N-of-M voting, is simply the number of Choices associated with the Contest and is not

explicitly modelled.

*** DRAFT *** 23 *** DRAFT ***

3.5.3.5 ElectionDistrict

Surrogate for real-world entity that may have associated ReportingContexts. Any relationship
between ElectionDistricts and Contests appearing on the ballot in those districts is implemented
by BallotStyles.

3.5.3.6 Party

Surrogate for real-world political party.

Attributes of Party:

Name Unique human-readable identifier.

3.5.3.7 Precinct

Surrogate for real-world entity that may have associated ReportingContexts. Any relationship
between Precincts and Contests appearing on the ballot in those Precincts is implemented by
BallotStyles.

3.5.3.8 ReportingContext

Particular scope within which the system must be capable of generating reports. E.g., to support
reporting at the precinct level, there must be a ReportingContext for each precinct. The association
between ReportingContexts and individual tabulators, precincts, election districts, political parties,
ballot categories, or other arbitrary scopes of reporting is jurisdiction-defined and jurisdiction-
managed, mostly using BallotStyles. The ways in which ReportingContexts overlap or include one
another is entirely determined by the assignment of multiple ReportingContexts to BallotStyles
and Ballots.

Attributes of ReportingContext:

Name Human-readable identifier.

3.5.3.9 Tabulator

Surrogate for real-world entity, e.g., a DRE or optical scanner, that may have associated Report-
ingContexts.

3.5.4 Named associations

3.5.4.1 Affiliation

Identifies the Party to which a candidate claims allegiance. Does not necessarily have anything to
do with Endorsements.

*** DRAFT *** 24 *** DRAFT ***

3.5.4.2 Alias

Identifies an alternative Choice that for tabulation purposes is considered equivalent to a particular
canonical Choice. Aliases will normally be variant spellings of a candidate’s name that appeared
in write-in positions.

3.5.4.3 Endorsement

Identifies a voter response that would be implied by a straight party vote for the endorsing Party.
Does not necessarily have anything to do with Affiliation.

Attributes of Endorsement:

Value Analogous to VoterInput Value, this is the vote recommended by the endorser.

In a 1-of-M or N-of-M Contest, an Endorsement with Value = 1 would exist for the single Choice
or for each of the Choices endorsed by the Party.

In a Cumulative Contest, Value may take on values greater than 1. For example, if the Party
recommended that voters cast two votes for the first Choice and one vote for the second, an
Endorsement with Value = 2 would exist for the first Choice and an Endorsement with Value = 1
would exist for the second Choice.

In a Ranked order Contest, Value contains the ranking that the Party recommends that voters
assign to each Choice.

3.5.4.4 VoterInput

The response that a particular Ballot provides for a particular Choice.

Attributes of VoterInput:

Value The response of the voter in some ballot position. The absence of a response is equivalent to
a Value of 0 except in ranked order contests, where the behavior is implementation-defined.

In a 1-of-M or N-of-M Contest, a VoterInput with Value = 1 would exist for the single Choice or
for each of the Choices for which the voter voted.

In a Cumulative Contest, Value may take on values greater than 1. For example, if a voter cast
two votes for the first Choice and one vote for the second, a VoterInput with Value = 2 would exist
for the first Choice and a VoterInput with Value = 1 would exist for the second Choice.

In a Ranked order Contest, Value contains the ranking that the voter assigns to each Choice.

*** DRAFT *** 25 *** DRAFT ***

3.5.5 Constraints

I. For N-of-M and straight party selection Contests, the Value attribute of VoterInput or En-
dorsement must be 1. For cumulative Contests, 1 ≤ Value ≤ N. (Deliberately, there is no
analogous constraint for ranked order Contests.)

II. N > 0.

III. 0 ≤ MaxWriteIns ≤ N.

IV. In Contests with CountingLogic = Straight party selection, N = 1 and MaxWriteIns = 0.

V. Every Ballot must be associated with at least one ReportingContext either directly or through
its BallotStyle. (Otherwise the Ballot would never be reported.)

VI. A Ballot cannot have a VoterInput for a Choice in a Contest that does not appear in its
BallotStyle.

VII. A given BallotStyle may contain at most one Contest with CountingLogic = Straight party
selection.

VIII. A Contest with CountingLogic = Straight party selection cannot be straight-party-votable
(i.e., there can be no Endorsements referring to its Choices).

IX. In Contests with CountingLogic = Straight party selection, the Names of the Choices must
match the Names of Parties.

X. Party names must be unique.

XI. A Ballot may not simultaneously have VoterInput for a Choice and an Alias of that Choice.
(The handling of double votes for a given candidate resulting from write-in reconciliation is
deliberately unspecified in the VVSG, so for testing purposes it is considered an error.)

XII. A Ballot may not simultaneously have VoterInput in a straight-party-votable Contest and a
straight party vote that implies votes in that same Contest. (Resolution of straight party
overrides is deliberately unspecified in the VVSG, so for testing purposes they are considered
to be errors.)

XIII. The Choice that an Alias cites as canonical cannot be aliased. (Corollary: There can be no
cycles or self-referential Aliases.)

XIV. The Choice that an Alias cites as canonical must be in the same Contest.

XV. The Choice referenced by an Endorsement must be canonical (it cannot be an Alias).

XVI. A Ballot cannot have VoterInput for more write-in Choices in a given Contest than is allowed
by the MaxWriteIns attribute of the Contest.

3.5.6 Usage for all standard voting variations

3.5.6.1 In-person voting

No special requirements.

*** DRAFT *** 26 *** DRAFT ***

3.5.6.2 Absentee voting

Absentee voting is implemented in several different ways in practice, and it can be implemented in
several different ways using this model.

1. Absentee Ballots can be tagged with the Absentee category and otherwise mingled with other
Ballots.

2. A separate ReportingContext can be created for absentee Ballots and applied to the individual
absentee Ballots.

3. A separate BallotStyle can be used for absentee Ballots.

While the first option is the least invasive, absentee Ballots are in practice sometimes processed
as a separate precinct, which usually means both a separate ReportingContext and a separate
BallotStyle.

3.5.6.3 Review-required ballots

Use Categories and Accepted attributes of Ballot as needed.

3.5.6.4 Write-ins

The number of write-ins permitted is an attribute of the Contest. If the write-in is new, a new
Choice is created for it (with IsWriteIn = true). Votes are then associated with that Choice. Alias
associations are created as applicable during write-in reconciliation.

3.5.6.5 Split precincts

Ballots are associated with the ReportingContexts pertaining to the applicable Precinct and Elec-
tionDistrict. If different BallotStyles are used for each split, the associations can be made on the
BallotStyles. Otherwise, each Ballot must be individually associated.

3.5.6.6 Straight party voting

A single Contest is created with CountingLogic = Straight party selection and Choice Names
being equal to the Names of the available Parties. In every other Contest that is straight-party-
votable, the straight party behaviors are configured by creating Endorsement associations between
the Choices and the Parties.

3.5.6.7 Cross-party endorsement

See straight party voting. Create additional Endorsement associations as needed for multiply
endorsed Choices.

*** DRAFT *** 27 *** DRAFT ***

3.5.6.8 Ballot rotation

Rotate is a Boolean attribute of Contest. The implementation of variable mapping between Choices
and ballot positions is out of scope because ballot positions are abstracted out of the model.
However, in paper-based systems, rotation may involve a proliferation of BallotStyles that would
have to be added.

3.5.6.9 Primary elections

Create BallotStyles and ReportingContexts as needed to support the different political parties
and unaffiliated voters. Non-party-specific Contests appear in all BallotStyles while party-specific
Contests only appear in those BallotStyles applicable to the relevant Party.

3.5.6.10 Closed primaries

Assignment of BallotStyles to voters is procedural and out of scope.

3.5.6.11 Open primaries

Assignment of BallotStyles to voters is procedural and out of scope.

3.5.6.12 Provisional / challenged ballots

Use Categories and Accepted attributes of Ballot as needed.

3.5.6.13 1-of-M voting

Set ContestCountingLogic = N-of-M and set N = 1.

3.5.6.14 N-of-M voting

Set ContestCountingLogic = N-of-M and set N appropriately.

3.5.6.15 Cumulative voting

Set ContestCountingLogic = Cumulative and set N appropriately.

3.5.6.16 Ranked order voting

Set ContestCountingLogic = Ranked order and set N appropriately. VoterInput Values specify the
rankings as provided on each Ballot.

*** DRAFT *** 28 *** DRAFT ***

3.6 Basic schema

The following transforms were used to render the UML model as SQL.

1. At the most basic level, a table represents a class, the columns of the table represent the
attributes of that class, and the rows of the table represent the instances of that class.

2. Object identity (haecceity) is implemented either by using an existing identifier as primary key
or by using a synthetic identifier of integer type, as convenient.

3. Associations to at most 1 instance of another class are implemented using foreign keys within
the relevant table with a not-null constraint if the minimum multiplicity is 1. Associations of
higher multiplicity are reified as separate tables.

4. Attributes of multiplicity greater than 1 are treated as associations and reified as separate
tables.

5. Enums are implemented using the names of the enum values as identifiers. Integrity is main-
tained by creating a table containing the enum values and making attributes of that enum type
into foreign keys on that table.

The classes Tabulator, Precinct and ElectionDistrict are not represented. They were modelled only
to clarify how the more general concept ReportingContext relates to the real world and are not
needed by the test suite.

-- enum
create table BallotCategory (
Name Text primary key

);
insert into BallotCategory values
(’Early’), (’Regular’), (’InPerson’), (’Absentee’), (’Provisional’),
(’Challenged’), (’NotRegistered’), (’WrongPrecinct’), (’IneligibleVoter’);

-- enum
create table ContestCountingLogic (
Name Text primary key

);
insert into ContestCountingLogic values
(’N-of-M’), (’Cumulative’), (’Ranked order’), (’Straight party selection’);

-- class
create table ReportingContext (
Name Text primary key

);

-- class
create table Party (

*** DRAFT *** 29 *** DRAFT ***

Name Text primary key
);

-- class
create table Contest (
ContestId Integer primary key,
Description Text not null,
CountingLogic Text not null references ContestCountingLogic,
N Integer not null check (N > 0),
MaxWriteIns Integer not null check (MaxWriteIns between 0 and N),
Rotate Boolean not null,

-- Straight party selections must be 1-of-M with no write-ins.
check (CountingLogic <> ’Straight party selection’ or

(N = 1 and MaxWriteIns = 0))
);

-- class
create table Choice (
ChoiceId Integer primary key,
ContestId Integer not null references Contest,
Name Text not null,
Affiliation Text references Party, -- named association
IsWriteIn Boolean not null

);

-- class
create table BallotStyle (
StyleId Integer primary key,
Name Text not null

);

-- class
create table Ballot (
BallotId Integer primary key,
StyleId Integer not null references BallotStyle,
Accepted Boolean not null

);

-- attribute Ballot::Categories
create table BallotCategoryAssociation (
BallotId Integer references Ballot,
Category Text references BallotCategory,

*** DRAFT *** 30 *** DRAFT ***

primary key (BallotId, Category)
);

-- association class
create table VoterInput (
BallotId Integer references Ballot,
ChoiceId Integer references Choice,
Value Integer not null check (Value > 0),
primary key (BallotId, ChoiceId)

);

-- association class
create table Endorsement (
Party Text references Party,
ChoiceId Integer references Choice,
Value Integer not null check (Value > 0),
primary key (Party, ChoiceId)

);

-- named association
create table Alias (
AliasId Integer primary key references Choice, -- The unwanted alias
ChoiceId Integer not null references Choice, -- The canonical choice
check (ChoiceId <> AliasId) -- Circular aliases are no good

);

-- unnamed association
create table BallotStyleContestAssociation (
StyleId Integer references BallotStyle,
ContestId Integer references Contest,
primary key (StyleId, ContestId)

);

-- unnamed association
create table BallotStyleReportingContextAssociation (
StyleId Integer references BallotStyle,
ReportingContext Text references ReportingContext,
primary key (StyleId, ReportingContext)

);

-- unnamed association
create table BallotReportingContextAssociation (

*** DRAFT *** 31 *** DRAFT ***

BallotId Integer references Ballot,
ReportingContext Text references ReportingContext,
primary key (BallotId, ReportingContext)

);

3.7 Basic test suite

The basic test suite contains 92 tests that exercise different voting variations in small, simple
scenarios to isolate the conditions under which failures occur. The basic test suite is complemented
by the volume test specified in Part 3 of the VVSG [1], which exercises all features together in a
large, complex scenario where a significant volume of ballots is processed.

The variations identified in the test suite as AbsenteeVoting and AbsenteeByCategories both con-
form to the voting variation defined in the VVSG as Absentee voting. Tests tagged as Absen-
teeByCategories require support for a capability that might not be present in all systems, while
AbsenteeVoting tests use a more procedural approach to achieve the same goal. The documented as-
sumption attached to test case 1-basic-AbsenteeByCategory.sql and other tests using the absentee-
ballots-by-categories approach means that it is not applicable to Absentee voting systems that are
limited to the procedural approach. See Section 3.5.6.2 for further discussion on this issue.

Table 2 provides the full list of tests, which breaks down as follows:

• 3 baseline tests that require support for no optional voting variations.

• 19 single-variation tests covering the 12 optional voting variations identified in the basic test
suite.

• 66 two-variation tests covering 63 combinations of two voting variations. The other 3 combi-
nations are not meaningful:
1. AbsenteeByCategories plus AbsenteeVoting: Support for AbsenteeByCategories implies

support for AbsenteeVoting.

2. CrossPartyEndorsement plus StraightPartyVoting: Support for CrossPartyEndorsement
implies support for StraightPartyVoting.

3. CrossPartyEndorsement plus RankedOrderVoting: In ranked order contests, a straight
party vote manifests as a particular ranking of choices that is specified by the party. Since
all choices must be ranked in any event, there is no additional cross-party functionality
to test.

• 1 three-variation test.

• 3 tests that use ballot configurations based on actual sample ballots contributed to the test
effort [6]. These tests do not attempt to replicate the reporting structures of the relevant
jurisdictions, which include several additional levels of districting and many more ballot con-
figurations.

Several voting variations do not have designated tests:

• In-person voting is tested incidentally. Unless a system is exclusively for use with absentee
Ballots, most scenarios will include simulated in-person voting.

*** DRAFT *** 32 *** DRAFT ***

• Review-required ballots would be tested using a variation of 1-basic-Provisional.sql, 1-basic-
WriteIns.sql, or similar. The reasons for which a Ballot might be flagged or separated for
review are jurisdiction-dependent, but provisional Ballots and Ballots with write-ins are likely
candidates.

• Closed primaries and Open primaries are special cases of Primary elections. They are distin-
guished only by the procedure for assigning BallotStyles to voters, which is beyond the scope
of the test suite. They would be tested using the same scenarios as Primary elections, but
additional requirements on the behavior of the system would apply.

*** DRAFT *** 33 *** DRAFT ***

T
ab

le
2:

B
as

ic
te

st
su

it
e

T
es

t
ca

se
ID

/
fi
le

n
am

e
A

p
p
li
es

to
D

es
cr

ip
ti

on

1-
ba

si
c-

1o
fM

.s
ql

V
ot

in
g

sy
st

em
Sm

al
l

1-
of

-M
co

nt
es

t,
no

w
ri

te
-i
ns

,
no

re
-

je
ct

ed
ba

llo
ts

.

1-
ba

si
c-

A
bs

en
te

eB
yC

at
eg

or
y.

sq
l

A
bs

en
te

e
vo

ti
ng

2
Sm

al
l
1-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

ca
te

go
ri

es
.

1-
ba

si
c-

A
bs

en
te

eB
yC

at
eg

or
y-

C
ro

ss
P
ar

ty
E

nd
or

se
m

en
t.

sq
l

A
bs

en
te

e
vo

ti
ng

2
∧

C
ro

ss
-p

ar
ty

en
do

rs
e-

m
en

t

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
cr

os
s-

pa
rt

y
en

do
rs

em
en

t,
th

re
e

ab
se

nt
ee

ba
llo

ts
vi

a
ca

te
go

ri
es

.

1-
ba

si
c-

A
bs

en
te

eB
yC

at
eg

or
y-

C
um

ul
at

iv
e.

sq
l

A
bs

en
te

e
vo

ti
ng

2
∧

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

l
C

um
ul

at
iv

e
co

nt
es

t,
N

=
3,

no
w

ri
te

-
in

s,
no

re
je

ct
ed

ba
llo

ts
,t

hr
ee

ab
se

nt
ee

ba
l-

lo
ts

vi
a

ca
te

go
ri

es
.

1-
ba

si
c-

A
bs

en
te

eB
yC

at
eg

or
y-

N
of

M
.s

ql
A

bs
en

te
e

vo
ti
ng

2
∧

N
of

M
vo

ti
ng

Sm
al

l
2-

of
-M

co
nt

es
t,

no
w

ri
te

-i
ns

,
no

re
-

je
ct

ed
ba

llo
ts

,
th

re
e

ab
se

nt
ee

ba
llo

ts
vi

a
ca

te
go

ri
es

.

1-
ba

si
c-

A
bs

en
te

eB
yC

at
eg

or
y-

P
ro

vi
si

on
al

.s
ql

A
bs

en
te

e
vo

ti
ng

2
∧

P
ro

vi
si

on
al

/
ch

al
le

ng
ed

ba
llo

ts

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

ca
te

go
ri

es
,a

cc
ep

te
d

an
d

re
je

ct
ed

pr
ov

i-
si

on
al

s.
1-

ba
si

c-
A

bs
en

te
eB

yC
at

eg
or

y-
R

an
ke

dO
rd

er
.s

ql
A

bs
en

te
e

vo
ti
ng

2
∧

R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

l
ra

nk
ed

or
de

r
co

nt
es

t
w

it
h

ab
se

nt
ee

ba
llo

ts
vi

a
ca

te
go

ri
es

.
1-

ba
si

c-
A

bs
en

te
eB

yC
at

eg
or

y-
St

ra
ig

ht
P
ar

ty
.s

ql
A

bs
en

te
e

vo
ti
ng

2
∧

St
ra

ig
ht

pa
rt

y
vo

ti
ng

Sm
al

l
st

ra
ig

ht
pa

rt
y

+
1-

of
-M

co
nt

es
t,

ab
-

se
nt

ee
ba

llo
ts

vi
a

ca
te

go
ri

es
.

1-
ba

si
c-

A
bs

en
te

eB
yC

at
eg

or
y-

W
ri

te
In

s.
sq

l
A

bs
en

te
e

vo
ti
ng

2
∧

W
ri

te
-i
ns

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

ca
te

go
ri

es
an

d
w

ri
te

-i
ns

,
no

al
ia

si
ng

.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t.

sq
l

A
bs

en
te

e
vo

ti
ng

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
an

d
ba

llo
t

st
yl

e.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

C
ro

ss
P
ar

ty
E

nd
or

se
m

en
t.

sq
l

A
bs

en
te

e
vo

ti
ng
∧

C
ro

ss
-p

ar
ty

en
do

rs
em

en
t

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
cr

os
s-

pa
rt

y
en

do
rs

em
en

t,
ab

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
an

d
ba

llo
t

st
yl

e.

2
A

ss
u
m

p
ti

o
n
:

S
y
st

em
su

p
p
o
rt

s
ca

te
g
o
ri

za
ti

o
n

o
f

B
a
ll
o
ts

.
T

h
is

te
st

is
n
o
t

a
p
p
li
ca

b
le

to
sy

st
em

s
th

a
t

re
q
u
ir

e
th

e
cr

ea
ti

o
n

o
f

d
is

ti
n
ct

b
a
ll
o
t

co
n
fi
g
u
ra

ti
o
n
s

to
im

p
le

m
en

t
a
b
se

n
te

e
v
o
ti

n
g
.

*** DRAFT *** 34 *** DRAFT ***

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

C
um

ul
at

iv
e.

sq
l

A
bs

en
te

e
vo

ti
ng
∧

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

l
C

um
ul

at
iv

e
co

nt
es

t,
N

=
3,

w
it

h
ab

-
se

nt
ee

ba
llo

ts
vi

a
a

sp
ec

ia
lp

re
ci

nc
t
an

d
ba

l-
lo

t
st

yl
e,

no
w

ri
te

-i
n,

no
re

je
ct

ed
ba

llo
ts

.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

N
of

M
.s

ql
A

bs
en

te
e

vo
ti
ng
∧

N
of

M
vo

ti
ng

Sm
al

l
3-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
an

d
ba

llo
t

st
yl

e,
no

w
ri

te
-i
n,

no
re

je
ct

ed
ba

llo
ts

.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

N
of

M
-

P
ro

vi
si

on
al

.s
ql

A
bs

en
te

e
vo

ti
ng
∧

N
of

M
vo

ti
ng
∧

P
ro

vi
-

si
on

al
/

ch
al

le
ng

ed
ba

llo
ts

Sm
al

l
3-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
,

ac
ce

pt
ed

an
d

re
-

je
ct

ed
pr

ov
is

io
na

ls
,
no

w
ri

te
-i
ns

.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

P
ro

vi
si

on
al

.s
ql

A
bs

en
te

e
vo

ti
ng
∧

P
ro

vi
si

on
al

/
ch

al
le

ng
ed

ba
llo

ts

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
an

d
ba

llo
t

st
yl

e,
ac

-
ce

pt
ed

an
d

re
je

ct
ed

pr
ov

is
io

na
ls

.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

R
an

ke
dO

rd
er

.s
ql

A
bs

en
te

e
vo

ti
ng
∧

R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

l
ra

nk
ed

or
de

r
co

nt
es

t
w

it
h

ab
se

nt
ee

ba
llo

ts
vi

a
a

sp
ec

ia
l

pr
ec

in
ct

an
d

ba
llo

t
st

yl
e.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

Sp
lit

P
re

ci
nc

t.
sq

l
A

bs
en

te
e

vo
ti
ng
∧

Sp
lit

pr
ec

in
ct

s
Sm

al
l
1-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
an

d
a

sp
lit

pr
ec

in
ct

.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

St
ra

ig
ht

P
ar

ty
.s

ql
A

bs
en

te
e

vo
ti
ng
∧

St
ra

ig
ht

pa
rt

y
vo

ti
ng

Sm
al

l
st

ra
ig

ht
pa

rt
y

+
1-

of
-M

co
nt

es
t,

ab
-

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

lp
re

ci
nc

t
an

d
ba

l-
lo

t
st

yl
e.

1-
ba

si
c-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t-

W
ri

te
In

s.
sq

l
A

bs
en

te
e

vo
ti
ng
∧

W
ri

te
-i
ns

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
an

d
w

ri
te

-i
ns

.
1-

ba
si

c-
A

bs
en

te
eB

yS
pe

ci
al

P
re

ci
nc

t-
Y

es
-o

r-
N

o.
sq

l
A

bs
en

te
e

vo
ti
ng

Sm
al

lY
es

-o
r-

N
o

co
nt

es
t

w
it

h
ab

se
nt

ee
ba

l-
lo

ts
vi

a
a

sp
ec

ia
l
pr

ec
in

ct
an

d
ba

llo
t

st
yl

e.
1-

ba
si

c-
B

al
lo

tR
ot

at
io

n.
sq

l
B
al

lo
t
ro

ta
ti
on

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
ba

llo
t

ro
ta

ti
on

.
1-

ba
si

c-
B

al
lo

tR
ot

at
io

n-
A

bs
en

te
eB

yC
at

eg
or

y.
sq

l
B
al

lo
t
ro

ta
ti
on
∧

A
bs

en
te

e
vo

ti
ng

2
Sm

al
l

1-
of

-M
co

nt
es

t
w

it
h

ba
llo

t
ro

ta
ti

on
an

d
ab

se
nt

ee
ba

llo
ts

vi
a

ca
te

go
ri

es
.

1-
ba

si
c-

B
al

lo
tR

ot
at

io
n-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t.

sq
l

B
al

lo
t
ro

ta
ti
on
∧

A
bs

en
te

e
vo

ti
ng

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
ba

llo
t

ro
ta

ti
on

,
ab

se
nt

ee
ba

llo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
.

1-
ba

si
c-

B
al

lo
tR

ot
at

io
n-

C
ro

ss
P
ar

ty
E

nd
or

se
m

en
t.

sq
l

B
al

lo
t
ro

ta
ti
on
∧

C
ro

ss
-p

ar
ty

en
do

rs
em

en
t

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
cr

os
s-

pa
rt

y
en

do
rs

em
en

t
an

d
ba

llo
t

ro
ta

-
ti

on
.

*** DRAFT *** 35 *** DRAFT ***

1-
ba

si
c-

B
al

lo
tR

ot
at

io
n-

C
um

ul
at

iv
e.

sq
l

B
al

lo
t
ro

ta
ti
on
∧

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

l
cu

m
ul

at
iv

e
vo

ti
ng

co
nt

es
t,

N
=

2,
w

it
h

ba
llo

t
ro

ta
ti

on
,

no
w

ri
te

-i
ns

,
no

re
-

je
ct

ed
ba

llo
ts

.
1-

ba
si

c-
B

al
lo

tR
ot

at
io

n-
N

of
M

.s
ql

B
al

lo
t
ro

ta
ti
on
∧

N
of

M
vo

ti
ng

Sm
al

l
2-

of
-M

co
nt

es
t,

w
it

h
ba

llo
t

ro
ta

ti
on

.

1-
ba

si
c-

B
al

lo
tR

ot
at

io
n-

P
ro

vi
si

on
al

.s
ql

B
al

lo
t

ro
ta

ti
on
∧

P
ro

vi
si

on
al

/
ch

al
le

ng
ed

ba
llo

ts
Sm

al
l

1-
of

-M
co

nt
es

t
w

it
h

ba
llo

t
ro

ta
ti

on
,

ac
ce

pt
ed

an
d

re
je

ct
ed

pr
ov

is
io

na
ls

.

1-
ba

si
c-

B
al

lo
tR

ot
at

io
n-

R
an

ke
dO

rd
er

.s
ql

B
al

lo
t
ro

ta
ti
on
∧

R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

l
ra

nk
ed

or
de

r
co

nt
es

t
w

it
h

ba
llo

t
ro

-
ta

ti
on

.

1-
ba

si
c-

B
al

lo
tR

ot
at

io
n-

St
ra

ig
ht

P
ar

ty
.s

ql
B
al

lo
t
ro

ta
ti
on
∧

St
ra

ig
ht

pa
rt

y
vo

ti
ng

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
ba

llo
t

ro
ta

ti
on

.

1-
ba

si
c-

B
al

lo
tR

ot
at

io
n-

W
ri

te
In

sA
lia

se
s.

sq
l

B
al

lo
t
ro

ta
ti
on
∧

W
ri

te
-i
ns

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
w

ri
te

-i
ns

an
d

al
ia

se
s

an
d

ba
llo

t
ro

ta
ti

on
.

1-
ba

si
c-

C
ro

ss
P
ar

ty
E

nd
or

se
m

en
t.

sq
l

C
ro

ss
-p

ar
ty

en
do

rs
em

en
t

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
cr

os
s-

pa
rt

y
en

do
rs

em
en

t.

1-
ba

si
c-

C
ro

ss
P
ar

ty
E

nd
or

se
m

en
t-

C
um

ul
at

iv
e.

sq
l

C
ro

ss
-p

ar
ty

en
do

rs
em

en
t
∧

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

l
st

ra
ig

ht
pa

rt
y

+
cu

m
ul

at
iv

e
co

nt
es

t
w

it
h

cr
os

s-
pa

rt
y

en
do

rs
em

en
t,

no
w

ri
te

-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

C
ro

ss
P
ar

ty
E

nd
or

se
m

en
t-

N
of

M
.s

ql
C

ro
ss

-p
ar

ty
en

do
rs

em
en

t
∧

N
of

M
vo

ti
ng

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
2-

of
-M

co
nt

es
t

w
it

h
cr

os
s-

pa
rt

y
en

do
rs

em
en

t.

1-
ba

si
c-

C
ro

ss
P
ar

ty
E

nd
or

se
m

en
t-

P
ro

vi
si

on
al

.s
ql

C
ro

ss
-p

ar
ty

en
do

rs
em

en
t
∧

P
ro

vi
si

on
al

/
ch

al
le

ng
ed

ba
llo

ts

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
cr

os
s-

pa
rt

y
en

do
rs

em
en

t,
ac

ce
pt

ed
an

d
re

-
je

ct
ed

pr
ov

is
io

na
ls

.
1-

ba
si

c-
C

ro
ss

P
ar

ty
E

nd
or

se
m

en
t-

W
ri

te
In

s.
sq

l
C

ro
ss

-p
ar

ty
en

do
rs

em
en

t
∧

W
ri

te
-i
ns

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
cr

os
s-

pa
rt

y
en

do
rs

em
en

t
an

d
w

ri
te

-i
ns

.

1-
ba

si
c-

C
um

ul
at

iv
e.

sq
l

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

l
cu

m
ul

at
iv

e
vo

ti
ng

co
nt

es
t,

no
w

ri
te

-
in

s,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

C
um

ul
at

iv
e-

N
of

M
.s

ql
C

um
ul

at
iv

e
vo

ti
ng
∧

N
of

M
vo

ti
ng

Sm
al

lc
um

ul
at

iv
e

vo
ti

ng
co

nt
es

t
pl

us
sm

al
l

N
-o

f-
M

co
nt

es
t,

no
w

ri
te

-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

C
um

ul
at

iv
e-

P
ro

vi
si

on
al

.s
ql

C
um

ul
at

iv
e

vo
ti
ng

∧
P
ro

vi
si

on
al

/
ch

al
-

le
ng

ed
ba

llo
ts

Sm
al

l
cu

m
ul

at
iv

e
vo

ti
ng

co
nt

es
t

w
it

h
ac

-
ce

pt
ed

an
d

re
je

ct
ed

pr
ov

is
io

na
ls

.

1-
ba

si
c-

C
um

ul
at

iv
e-

R
an

ke
dO

rd
er

.s
ql

C
um

ul
at

iv
e

vo
ti
ng
∧

R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

l
ra

nk
ed

or
de

r
co

nt
es

t
pl

us
sm

al
l

cu
-

m
ul

at
iv

e
co

nt
es

t,
no

sp
ec

ia
l
ca

se
s.

*** DRAFT *** 36 *** DRAFT ***

1-
ba

si
c-

N
oB

al
lo

ts
-1

of
M

.s
ql

V
ot

in
g

sy
st

em
Sm

al
l
1-

of
-M

co
nt

es
t

w
it

h
no

ba
llo

ts
ca

st
.

1-
ba

si
c-

N
oB

al
lo

ts
-R

an
ke

dO
rd

er
.s

ql
R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

l
ra

nk
ed

or
de

r
co

nt
es

t
w

it
h

no
ba

llo
ts

ca
st

.

1-
ba

si
c-

N
oC

ho
ic

es
-1

of
M

.s
ql

W
ri

te
-i
ns

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
no

ch
oi

ce
s

(w
ri

te
-i
ns

on
ly

).

1-
ba

si
c-

N
oC

ho
ic

es
N

oB
al

lo
ts

-1
of

M
.s

ql
W

ri
te

-i
ns

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
no

ch
oi

ce
s

(w
ri

te
-i
ns

on
ly

)
an

d
no

ba
llo

ts
.

1-
ba

si
c-

N
of

M
.s

ql
N

of
M

vo
ti
ng

Sm
al

l
2-

of
-M

co
nt

es
t,

no
w

ri
te

-i
ns

,
no

re
-

je
ct

ed
ba

llo
ts

.

1-
ba

si
c-

N
of

M
-P

ro
vi

si
on

al
.s

ql
N

of
M

vo
ti
ng
∧

P
ro

vi
si

on
al

/
ch

al
le

ng
ed

ba
llo

ts
Sm

al
l2

-o
f-
M

co
nt

es
t

w
it

h
ac

ce
pt

ed
an

d
re

-
je

ct
ed

pr
ov

is
io

na
ls

.

1-
ba

si
c-

N
of

M
-W

ri
te

In
s.

sq
l

N
of

M
vo

ti
ng
∧

W
ri

te
-i
ns

Sm
al

l
2-

of
-M

co
nt

es
t

w
it

h
w

ri
te

-i
ns

,
no

al
ia

si
ng

.

1-
ba

si
c-

P
ri

m
ar

y.
sq

l
P
ri

m
ar

y
el

ec
ti
on

s
Sm

al
lp

ri
m

ar
y

el
ec

ti
on

,n
o

w
ri

te
-i
ns

,n
o

re
-

je
ct

ed
ba

llo
ts

.

1-
ba

si
c-

P
ri

m
ar

y-
A

bs
en

te
eB

yC
at

eg
or

y.
sq

l
P
ri

m
ar

y
el

ec
ti
on

s
∧

A
bs

en
te

e
vo

ti
ng

2
Sm

al
l

pr
im

ar
y

el
ec

ti
on

w
it

h
ab

se
nt

ee
ba

l-
lo

ts
vi

a
ca

te
go

ri
es

,n
o

w
ri

te
-i
ns

,n
o

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

P
ri

m
ar

y-
A

bs
en

te
eB

yS
pe

ci
al

P
re

ci
nc

t.
sq

l
P
ri

m
ar

y
el

ec
ti
on

s
∧

A
bs

en
te

e
vo

ti
ng

Sm
al

l
pr

im
ar

y
el

ec
ti

on
w

it
h

ab
se

nt
ee

ba
l-

lo
ts

vi
a

a
sp

ec
ia

l
pr

ec
in

ct
an

d
ba

llo
t

st
yl

e,
no

w
ri

te
-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

P
ri

m
ar

y-
B

al
lo

tR
ot

at
io

n.
sq

l
P
ri

m
ar

y
el

ec
ti
on

s
∧

B
al

lo
t
ro

ta
ti
on

Sm
al

l
pr

im
ar

y
el

ec
ti

on
w

it
h

ba
llo

t
ro

ta
-

ti
on

s,
no

w
ri

te
-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

P
ri

m
ar

y-
C

ro
ss

P
ar

ty
E

nd
or

se
m

en
t.

sq
l

P
ri

m
ar

y
el

ec
ti
on

s
∧

C
ro

ss
-p

ar
ty

en
do

rs
e-

m
en

t

Sm
al

l
pr

im
ar

y
el

ec
ti

on
w

it
h

st
ra

ig
ht

pa
rt

y
vo

ti
ng

an
d

cr
os

s-
pa

rt
y

en
do

rs
em

en
t

in
a

no
n-

pa
rt

y-
sp

ec
ifi

c
co

nt
es

t.

1-
ba

si
c-

P
ri

m
ar

y-
C

um
ul

at
iv

e.
sq

l
P
ri

m
ar

y
el

ec
ti
on

s
∧

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

l
pr

im
ar

y
el

ec
ti

on
w

it
h

cu
m

ul
at

iv
e

vo
ti

ng
,
no

w
ri

te
-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

P
ri

m
ar

y-
N

of
M

.s
ql

P
ri

m
ar

y
el

ec
ti
on

s
∧

N
of

M
vo

ti
ng

Sm
al

lp
ri

m
ar

y
el

ec
ti

on
w

it
h

N
-o

f-
M

vo
ti

ng
,

no
w

ri
te

-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

P
ri

m
ar

y-
P

ro
vi

si
on

al
.s

ql
P
ri

m
ar

y
el

ec
ti
on

s
∧

P
ro

vi
si

on
al

/
ch

al
-

le
ng

ed
ba

llo
ts

Sm
al

l
pr

im
ar

y
el

ec
ti

on
,

no
w

ri
te

-i
ns

,
w

it
h

ac
ce

pt
ed

an
d

re
je

ct
ed

pr
ov

is
io

na
ls

.

*** DRAFT *** 37 *** DRAFT ***

1-
ba

si
c-

P
ri

m
ar

y-
R

an
ke

dO
rd

er
.s

ql
P
ri

m
ar

y
el

ec
ti
on

s
∧

R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

l
pr

im
ar

y
el

ec
ti

on
w

it
h

ra
nk

ed
or

de
r

vo
ti

ng
,
no

w
ri

te
-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

P
ri

m
ar

y-
Sp

lit
P

re
ci

nc
t.

sq
l

P
ri

m
ar

y
el

ec
ti
on

s
∧

Sp
lit

pr
ec

in
ct

s
Sm

al
l

pr
im

ar
y

el
ec

ti
on

w
it

h
a

sp
lit

pr
ec

in
ct

,
no

w
ri

te
-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

P
ri

m
ar

y-
St

ra
ig

ht
P
ar

ty
.s

ql
P
ri

m
ar

y
el

ec
ti
on

s
∧

St
ra

ig
ht

pa
rt

y
vo

ti
ng

Sm
al

l
pr

im
ar

y
el

ec
ti

on
w

it
h

st
ra

ig
ht

pa
rt

y
vo

ti
ng

in
a

no
n-

pa
rt

y-
sp

ec
ifi

c
co

nt
es

t.

1-
ba

si
c-

P
ri

m
ar

y-
W

ri
te

In
s.

sq
l

P
ri

m
ar

y
el

ec
ti
on

s
∧

W
ri

te
-i
ns

Sm
al

l
pr

im
ar

y
el

ec
ti

on
w

it
h

w
ri

te
-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

P
ro

vi
si

on
al

.s
ql

P
ro

vi
si

on
al

/
ch

al
le

ng
ed

ba
llo

ts
Sm

al
l1

-o
f-
M

co
nt

es
t

w
it

h
ac

ce
pt

ed
an

d
re

-
je

ct
ed

pr
ov

is
io

na
ls

.

1-
ba

si
c-

R
an

ke
dO

rd
er

-1
.s

ql
R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

lr
an

ke
d

or
de

r
co

nt
es

t,
N

=
1,

M
=

4,
no

sp
ec

ia
l
ca

se
s.

1-
ba

si
c-

R
an

ke
dO

rd
er

-2
.s

ql
R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

lr
an

ke
d

or
de

r
co

nt
es

t,
N

=
2,

M
=

4,
no

sp
ec

ia
l
ca

se
s.

1-
ba

si
c-

R
an

ke
dO

rd
er

-N
of

M
.s

ql
R
an

ke
d

or
de

r
vo

ti
ng
∧

N
of

M
vo

ti
ng

Sm
al

lr
an

ke
d

or
de

r
co

nt
es

t
pl

us
sm

al
lN

-o
f-

M
co

nt
es

t,
no

sp
ec

ia
l
ca

se
s.

1-
ba

si
c-

R
an

ke
dO

rd
er

-P
ro

vi
si

on
al

.s
ql

R
an

ke
d

or
de

r
vo

ti
ng
∧

P
ro

vi
si

on
al

/
ch

al
-

le
ng

ed
ba

llo
ts

Sm
al

l
ra

nk
ed

or
de

r
co

nt
es

t,
N

=
1,

M
=

4,
w

it
h

ac
ce

pt
ed

an
d

re
je

ct
ed

pr
ov

is
io

na
ls

.

1-
ba

si
c-

R
an

ke
dO

rd
er

-W
ri

te
In

s.
sq

l
R
an

ke
d

or
de

r
vo

ti
ng
∧

W
ri

te
-i
ns

Sm
al

l
ra

nk
ed

or
de

r
co

nt
es

t,
N

=
1,

M
=

4,
w

it
h

w
ri

te
-i
n.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
1.

sq
l

Sp
lit

pr
ec

in
ct

s
Sm

al
l
1-

of
-M

co
nt

es
t

w
it

h
a

sp
lit

pr
ec

in
ct

.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
2.

sq
l

Sp
lit

pr
ec

in
ct

s
T

w
o

di
st

ri
ct

s,
th

re
e

pr
ec

in
ct

s
(o

ne
sp

lit
),

th
re

e
co

nt
es

ts
,f

ou
r

ba
llo

t
st

yl
es

,f
or

ty
ba

l-
lo

ts
.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
A

bs
en

te
eB

yC
at

eg
or

y.
sq

l
Sp

lit
pr

ec
in

ct
s
∧

A
bs

en
te

e
vo

ti
ng

2
Sm

al
l

1-
of

-M
co

nt
es

t
w

it
h

a
sp

lit
pr

ec
in

ct
an

d
ab

se
nt

ee
ba

llo
ts

vi
a

ca
te

go
ri

es
.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
B

al
lo

tR
ot

at
io

n.
sq

l
Sp

lit
pr

ec
in

ct
s
∧

B
al

lo
t
ro

ta
ti
on

L
ik

e
Sp

lit
P

re
ci

nc
t-

2
ex

ce
pt

w
it

h
ba

llo
t

ro
-

ta
ti

on
.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
C

ro
ss

P
ar

ty
E

nd
or

se
m

en
t.

sq
l

Sp
lit

pr
ec

in
ct

s
∧

C
ro

ss
-p

ar
ty

en
do

rs
em

en
t

L
ik

e
Sp

lit
P

re
ci

nc
t-

2
ex

ce
pt

w
it

h
st

ra
ig

ht
pa

rt
y

vo
ti

ng
an

d
cr

os
s-

pa
rt

y
en

do
rs

em
en

t.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
C

um
ul

at
iv

e.
sq

l
Sp

lit
pr

ec
in

ct
s
∧

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

l
C

um
ul

at
iv

e
co

nt
es

t,
N

=
2,

w
it

h
a

sp
lit

pr
ec

in
ct

.

*** DRAFT *** 38 *** DRAFT ***

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
N

of
M

.s
ql

Sp
lit

pr
ec

in
ct

s
∧

N
of

M
vo

ti
ng

Sm
al

l
3-

of
-M

co
nt

es
t

w
it

h
a

sp
lit

pr
ec

in
ct

,
no

w
ri

te
-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
P

ro
vi

si
on

al
.s

ql
Sp

lit
pr

ec
in

ct
s
∧

P
ro

vi
si

on
al

/
ch

al
le

ng
ed

ba
llo

ts
Sm

al
l

1-
of

-M
co

nt
es

t
w

it
h

a
sp

lit
pr

ec
in

ct
an

d
ac

ce
pt

ed
an

d
re

je
ct

ed
pr

ov
is

io
na

ls
.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
R

an
ke

dO
rd

er
.s

ql
Sp

lit
pr

ec
in

ct
s
∧

R
an

ke
d

or
de

r
vo

ti
ng

L
ik

e
Sp

lit
P

re
ci

nc
t-

2
ex

ce
pt

w
it

h
ra

nk
ed

or
-

de
r

co
nt

es
ts

at
th

e
di

st
ri

ct
le

ve
l.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
St

ra
ig

ht
P
ar

ty
.s

ql
Sp

lit
pr

ec
in

ct
s
∧

St
ra

ig
ht

pa
rt

y
vo

ti
ng

L
ik

e
Sp

lit
P

re
ci

nc
t-

2
ex

ce
pt

w
it

h
st

ra
ig

ht
pa

rt
y

vo
ti

ng
.

1-
ba

si
c-

Sp
lit

P
re

ci
nc

t-
W

ri
te

In
s.

sq
l

Sp
lit

pr
ec

in
ct

s
∧

W
ri

te
-i
ns

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
sp

lit
pr

ec
in

ct
an

d
w

ri
te

-i
n.

1-
ba

si
c-

St
ra

ig
ht

P
ar

ty
.s

ql
St

ra
ig

ht
pa

rt
y

vo
ti
ng

Sm
al

l
st

ra
ig

ht
pa

rt
y

+
1-

of
-M

co
nt

es
t,

no
w

ri
te

-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

St
ra

ig
ht

P
ar

ty
-C

um
ul

at
iv

e.
sq

l
St

ra
ig

ht
pa

rt
y

vo
ti
ng
∧

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
cu

m
ul

at
iv

e
co

nt
es

t,
no

w
ri

te
-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

St
ra

ig
ht

P
ar

ty
-N

of
M

.s
ql

St
ra

ig
ht

pa
rt

y
vo

ti
ng
∧

N
of

M
vo

ti
ng

Sm
al

l
st

ra
ig

ht
pa

rt
y

+
2-

of
-M

co
nt

es
t,

no
w

ri
te

-i
ns

,
no

re
je

ct
ed

ba
llo

ts
.

1-
ba

si
c-

St
ra

ig
ht

P
ar

ty
-P

ro
vi

si
on

al
.s

ql
St

ra
ig

ht
pa

rt
y

vo
ti
ng
∧

P
ro

vi
si

on
al

/
ch

al
-

le
ng

ed
ba

llo
ts

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
ac

ce
pt

ed
an

d
re

je
ct

ed
pr

ov
is

io
na

ls
.

1-
ba

si
c-

St
ra

ig
ht

P
ar

ty
-R

an
ke

dO
rd

er
.s

ql
St

ra
ig

ht
pa

rt
y

vo
ti
ng
∧

R
an

ke
d

or
de

r
vo

ti
ng

Sm
al

l
ra

nk
ed

or
de

r
co

nt
es

t,
N

=
1,

M
=

4,
w

it
h

st
ra

ig
ht

-p
ar

ty
vo

ti
ng

.

1-
ba

si
c-

St
ra

ig
ht

P
ar

ty
-W

ri
te

In
s.

sq
l

St
ra

ig
ht

pa
rt

y
vo

ti
ng
∧

W
ri

te
-i
ns

Sm
al

ls
tr

ai
gh

t
pa

rt
y

+
1-

of
-M

co
nt

es
t

w
it

h
w

ri
te

-i
ns

.

1-
ba

si
c-

W
ri

te
In

s.
sq

l
W

ri
te

-i
ns

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
w

ri
te

-i
ns

,
no

al
ia

si
ng

.

1-
ba

si
c-

W
ri

te
In

sA
lia

se
s.

sq
l

W
ri

te
-i
ns

Sm
al

l
1-

of
-M

co
nt

es
t

w
it

h
w

ri
te

-i
ns

an
d

al
ia

se
s.

1-
ba

si
c-

W
ri

te
In

sA
lia

se
s-

A
bs

en
te

eB
yC

at
eg

or
y.

sq
l

W
ri

te
-i
ns
∧

A
bs

en
te

e
vo

ti
ng

2
Sm

al
l1

-o
f-
M

co
nt

es
t

w
it

h
w

ri
te

-i
ns

,a
lia

se
s

an
d

ab
se

nt
ee

ba
llo

ts
vi

a
ca

te
go

ri
es

.

1-
ba

si
c-

W
ri

te
In

sA
lia

se
s-

A
bs

en
te

eB
yS

pe
ci

al
P

re
ci

nc
t.

sq
l

W
ri

te
-i
ns
∧

A
bs

en
te

e
vo

ti
ng

Sm
al

l1
-o

f-
M

co
nt

es
t
w

it
h

w
ri

te
-i
ns

,a
lia

se
s,

ab
se

nt
ee

ba
llo

ts
vi

a
a

sp
ec

ia
l
pr

ec
in

ct
an

d
ba

llo
t

st
yl

e.

1-
ba

si
c-

W
ri

te
In

sA
lia

se
s-

C
um

ul
at

iv
e.

sq
l

W
ri

te
-i
ns
∧

C
um

ul
at

iv
e

vo
ti
ng

Sm
al

l
C

um
ul

at
iv

e
co

nt
es

t,
N

=
2,

w
it

h
w

ri
te

-i
ns

an
d

al
ia

se
s,

no
re

je
ct

ed
ba

llo
ts

.

*** DRAFT *** 39 *** DRAFT ***

1-
ba

si
c-

W
ri

te
In

sA
lia

se
s-

N
of

M
.s

ql
W

ri
te

-i
ns
∧

N
of

M
vo

ti
ng

Sm
al

l
2-

of
-M

co
nt

es
t

w
it

h
w

ri
te

-i
ns

an
d

al
ia

se
s,

no
re

je
ct

ed
ba

llo
ts

.

1-
ba

si
c-

W
ri

te
In

sA
lia

se
s-

P
ro

vi
si

on
al

.s
ql

W
ri

te
-i
ns
∧

P
ro

vi
si

on
al

/
ch

al
le

ng
ed

ba
llo

ts
Sm

al
l1

-o
f-
M

co
nt

es
t
w

it
h

w
ri

te
-i
ns

,a
lia

se
s,

ac
ce

pt
ed

an
d

re
je

ct
ed

pr
ov

is
io

na
ls

.

1-
ba

si
c-

Y
es

-o
r-

N
o.

sq
l

V
ot

in
g

sy
st

em
Sm

al
l

Y
es

-o
r-

N
o

co
nt

es
t,

no
re

je
ct

ed
ba

l-
lo

ts
.

1-
ba

si
c-

sa
m

pl
es

-A
lle

ga
ny

G
en

er
al

20
04

.s
ql

W
ri

te
-i
ns
∧

N
of

M
vo

ti
ng

T
es

t
sp

ec
ba

se
d

on
A

lle
ga

ny
C

ou
nt

y,
M

D
sa

m
pl

e
ba

llo
t

fo
r

co
ng

re
ss

io
na

l
di

st
ri

ct
6,

ge
ne

ra
l
el

ec
ti

on
,
20

04
-1

1-
02

.

1-
ba

si
c-

sa
m

pl
es

-C
ec

ilR
P

ri
m

ar
y1

99
8.

sq
l

N
of

M
vo

ti
ng

T
es

t
sp

ec
ba

se
d

on
C

ec
il

C
ou

nt
y,

M
D

sa
m

-
pl

e
ba

llo
t

fo
r

R
ep

ub
lic

an
pr

im
ar

y
el

ec
ti

on
,

1s
t

co
ng

re
ss

io
na

l
di

st
ri

ct
,

le
gi

sl
at

iv
e

di
s-

tr
ic

t
35

,
19

98
-0

9-
15

.
T

he
ge

ne
ra

te
d

te
st

do
es

no
t

in
cl

ud
e

an
yt

hi
ng

sp
ec

ifi
c

to
pr

i-
m

ar
y

el
ec

ti
on

s.

1-
ba

si
c-

sa
m

pl
es

-F
ai

rf
ax

G
en

er
al

20
04

.s
ql

W
ri

te
-i
ns

T
es

t
sp

ec
ba

se
d

on
Fa

ir
fa

x
C

ou
nt

y,
V
A

sa
m

pl
e

ba
llo

t
fo

r
8t

h
di

st
ri

ct
,
ge

ne
ra

l
el

ec
-

ti
on

,
20

04
-1

1-
02

.

*** DRAFT *** 40 *** DRAFT ***

3.8 Required test cases not included in the basic Votetest test suite

Some requirements that might logically be tested during the phase when Votetest is used do not
have associated test cases because the behaviors in question are orthogonal to the Votetest data
model and/or so dependent on the specifics of the implementation that only an abstract test script
could be provided. Those requirements and descriptions of the needed test cases are shown in
Table 3.

Table 3: Additional required test cases

Requirements Test description

Realistic ballot styles [3, Part 1 Req. 7.2-A.1,
A.4 and A.5]

Test a variety of sample ballot styles, such
as those available on the NIST web site [6],
to ensure that the voting system can handle
the text of long ballot questions, complicated
choice labels (such as for primary presidential
delegation nominations), miscellaneous ballot
text, and overall formatting and layout of bal-
lot styles as used in practice.

Optical scan accuracy [3, Part 1 Req. 6.3.2-B
and Section 7.7.5]

When test cases are realized for optical scan de-
vices, the marks used should exercise the range
of reliably detectable marks as defined by the
vendor, from ideal marks to the standard mark
specified in [3, Part 1 Req. 7.7.5-D]. However,
to ensure that the tests are defensible, the rel-
ative frequency with which the different types
of marks appear should be realistic. While
both ideal marks and standard marks should
be tested repeatedly, it would not be realis-
tic for either extreme to dominate the input.
The average mark should be typical of what an
average voter would make. The ability of the
scanner to ignore extraneous marks should also
be tested ([3, Part 1 Req. 7.7.5-E]).

Marginal marks [3, Part 1 Req. 3.2.2.2-E and
7.7.3-C]

Test marks that are clearly within the marginal
zone as defined by the vendor to verify that the
behavior on marginal marks is as specified. Do
not test marks that are near the boundaries,
as the uncertainty of the boundaries is of no
consequence (see [3, Part 1 Section 7.7.5.1]).

Respecting limits [3, Part 1 Req. 2.4-A.e, Req.
6.4.1.8-A.1 and Section 7.5.6]3

Construct test cases as needed to satisfy [3,
Part 3 Req. 5.2.3-B and C]. The test genera-
tor (Section 5.7) may be of use.

3Note on pending erratum. [3, Part 1 Section 7.1] is missing a requirement saying that the central EMS shall
prevent the defining of any election that would cause the voting system to exceed design limits such as maximum
number of choices in a contest, maximum number of contests on a ballot, etc. That requirement should be cited here
if and when it is added.

*** DRAFT *** 41 *** DRAFT ***

Definition reuse [3, Part 1 Req. 7.2-C]

Choose two test cases that use similar ballot
styles. Execute the first as usual, but instead
of clearing out all definitions between tests, at-
tempt to construct the ballot styles for the sec-
ond test based on the definitions retained from
the first.

Ballot style mismatches [3, Part 1 Req. 7.7.1-A]

Attempt to execute a test case with mis-
matched ballot styles loaded on different de-
vices and verify that the system prevents in-
correct reports from being generated. (It may
prevent mismatched ballot styles from being
loaded in the first place.)

Ballot orientation [3, Part 1 Req. 7.7.1-B]

If the vendor specifies that the tabulator is ca-
pable of scanning ballots in more than one ori-
entation, allow the orientation of fed ballots to
vary during the execution of all test cases. If
the vendor specifies one or more orientations as
being incorrect, attempt to feed ballots in the
unsupported orientations and verify that the
ballots are rejected.

Validation of input [3, Part 1 Req. 6.4.1.8-A
and A.1]

Since poor validation of input often creates an
attack vector, this should be covered as part of
security testing and evaluation.

Miscellaneous capabilities [3, Part 1 Req. 7.2-
A.1, 7.2-A.5, 7.3.1-B, 7.7.3-A.3, 7.8.3.3-B.1 and
many others]

The VVSG contains numerous requirements for
miscellaneous voting system capabilities that
are orthogonal to the Votetest data model.
Since the general test template specified in [3,
Part 3 Section 5.2.1.1] treats each test case as
an entire election, many such capabilities will
be tested incidentally during the execution of
the basic test suite. Use the Voting Equipment
User Documentation to determine how to ex-
ercise any capabilities that are not tested inci-
dentally and then verify that they satisfy the
applicable VVSG requirements.

System-specific functions
These must be tested in accordance with [3,
Part 3 Req. 5.2.3-G].

3.9 Requirements trace

This section lists the tests that are traceable to each requirement in Chapter 7 of the VVSG [3].

7.1-A EMS, ballot definition

All Votetest tests are traceable to this requirement.

7.1-A.1 EMS, ballot definition details

*** DRAFT *** 42 *** DRAFT ***

All Votetest tests are traceable to this requirement.

7.1-B EMS, political and administrative subdivisions

All Votetest tests are traceable to this requirement.

7.1-C EMS, election districts

All Votetest tests are traceable to this requirement.

7.1-D EMS, voting variations

All Votetest tests are traceable to this requirement.

7.1-D.1 EMS, 1-of-M

The following tests are traceable to this requirement:

1-basic-1ofM.sql 1-basic-NoBallots-1ofM.sql 1-basic-Yes-or-No.sql 1-basic-
samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql 1-basic-
StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-
BallotRotation-StraightParty.sql 1-basic-AbsenteeByCategory-StraightParty.sql
1-basic-SplitPrecinct-StraightParty.sql 1-basic-BallotRotation.sql 1-basic-
Primary-BallotRotation.sql 1-basic-StraightParty-WriteIns.sql 1-basic-
AbsenteeByCategory.sql 1-basic-SplitPrecinct-1.sql 1-basic-SplitPrecinct-2.sql
1-basic-StraightParty-Provisional.sql 1-basic-CrossPartyEndorsement.sql 1-
basic-Primary-SplitPrecinct.sql 1-basic-SplitPrecinct-BallotRotation.sql 1-
basic-NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-
AbsenteeByCategory-CrossPartyEndorsement.sql 1-basic-WriteIns.sql 1-basic-
Provisional.sql 1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-
BallotRotation-WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-
basic-SplitPrecinct-WriteIns.sql 1-basic-Primary-CrossPartyEndorsement.sql 1-basic-
BallotRotation-CrossPartyEndorsement.sql 1-basic-AbsenteeBySpecialPrecinct-
CrossPartyEndorsement.sql 1-basic-Primary-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-AbsenteeByCategory-Provisional.sql 1-basic-SplitPrecinct-
Provisional.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-
basic-CrossPartyEndorsement-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
Yes-or-No.sql 1-basic-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeBySpecialPrecinct.sql 1-basic-Primary-AbsenteeByCategory.sql 1-
basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql 1-basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-
basic-BallotRotation-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-
WriteInsAliases-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql 1-basic-samples-
CecilRPrimary1998.sql

7.1-D.2 EMS, yes/no question

The following tests are traceable to this requirement:

1-basic-Yes-or-No.sql 1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-
FairfaxGeneral2004.sql 1-basic-AbsenteeBySpecialPrecinct-Yes-or-No.sql

*** DRAFT *** 43 *** DRAFT ***

7.1-D.3 EMS, indicate party affiliations and endorsements

The following tests are traceable to this requirement:

1-basic-StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-
StraightParty-RankedOrder.sql 1-basic-BallotRotation-StraightParty.sql 1-basic-
AbsenteeByCategory-StraightParty.sql 1-basic-SplitPrecinct-StraightParty.sql
1-basic-StraightParty-Cumulative.sql 1-basic-StraightParty-WriteIns.sql 1-
basic-StraightParty-NofM.sql 1-basic-StraightParty-Provisional.sql 1-basic-
CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-CrossPartyEndorsement.sql
1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql 1-
basic-AbsenteeBySpecialPrecinct-CrossPartyEndorsement.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-basic-
CrossPartyEndorsement-Provisional.sql 1-basic-CrossPartyEndorsement-NofM.sql
1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql

7.1-D.4 EMS, primary elections, party-specific and non-party-specific contests

The following tests are traceable to this requirement:

1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-Primary-
RankedOrder.sql 1-basic-Primary-BallotRotation.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-Primary-WriteIns.sql 1-basic-Primary-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-Primary-NofM.sql 1-basic-Primary-
Provisional.sql 1-basic-Primary-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeByCategory.sql 1-basic-samples-CecilRPrimary1998.sql

7.1-D.5 EMS, write-ins

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql
1-basic-StraightParty-WriteIns.sql 1-basic-RankedOrder-WriteIns.sql 1-basic-
NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-WriteIns.sql
1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-BallotRotation-
WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-basic-SplitPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-NofM-WriteIns.sql
1-basic-WriteInsAliases-NofM.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-AbsenteeBySpecialPrecinct-WriteIns.sql
1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-WriteInsAliases-
AbsenteeByCategory.sql

7.1-D.6 EMS, straight party voting

The following tests are traceable to this requirement:

1-basic-StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-
StraightParty-RankedOrder.sql 1-basic-BallotRotation-StraightParty.sql 1-basic-
AbsenteeByCategory-StraightParty.sql 1-basic-SplitPrecinct-StraightParty.sql
1-basic-StraightParty-Cumulative.sql 1-basic-StraightParty-WriteIns.sql 1-
basic-StraightParty-NofM.sql 1-basic-StraightParty-Provisional.sql 1-basic-
CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-CrossPartyEndorsement.sql

*** DRAFT *** 44 *** DRAFT ***

1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql 1-
basic-AbsenteeBySpecialPrecinct-CrossPartyEndorsement.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-basic-
CrossPartyEndorsement-Provisional.sql 1-basic-CrossPartyEndorsement-NofM.sql
1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql

7.1-D.7 EMS, cross-party endorsement

The following tests are traceable to this requirement:

1-basic-CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-Cumulative.sql
1-basic-Primary-CrossPartyEndorsement.sql 1-basic-BallotRotation-
CrossPartyEndorsement.sql 1-basic-AbsenteeBySpecialPrecinct-
CrossPartyEndorsement.sql 1-basic-SplitPrecinct-CrossPartyEndorsement.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-CrossPartyEndorsement-Provisional.sql
1-basic-CrossPartyEndorsement-NofM.sql

7.1-D.8 EMS, split precincts, define precincts and election districts

The following tests are traceable to this requirement:

1-basic-SplitPrecinct-StraightParty.sql 1-basic-SplitPrecinct-1.sql 1-basic-SplitPrecinct-
2.sql 1-basic-SplitPrecinct-RankedOrder.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-SplitPrecinct-BallotRotation.sql 1-basic-SplitPrecinct-WriteIns.sql 1-
basic-SplitPrecinct-Cumulative.sql 1-basic-SplitPrecinct-NofM.sql 1-basic-
SplitPrecinct-Provisional.sql 1-basic-SplitPrecinct-CrossPartyEndorsement.sql
1-basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql

7.1-D.9 EMS, N-of-M voting

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-StraightParty-NofM.sql 1-
basic-RankedOrder-NofM.sql 1-basic-NofM.sql 1-basic-Primary-NofM.sql
1-basic-Cumulative-NofM.sql 1-basic-BallotRotation-NofM.sql 1-basic-
AbsenteeByCategory-NofM.sql 1-basic-SplitPrecinct-NofM.sql 1-basic-NofM-
WriteIns.sql 1-basic-WriteInsAliases-NofM.sql 1-basic-NofM-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-NofM-Provisional.sql 1-basic-CrossPartyEndorsement-
NofM.sql 1-basic-AbsenteeBySpecialPrecinct-NofM.sql 1-basic-samples-
CecilRPrimary1998.sql

7.1-D.10 EMS, cumulative voting

The following tests are traceable to this requirement:

1-basic-Cumulative-RankedOrder.sql 1-basic-StraightParty-Cumulative.sql 1-
basic-Cumulative.sql 1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-
AbsenteeByCategory-Cumulative.sql 1-basic-Primary-Cumulative.sql 1-basic-
BallotRotation-Cumulative.sql 1-basic-AbsenteeBySpecialPrecinct-Cumulative.sql
1-basic-SplitPrecinct-Cumulative.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-
Cumulative-NofM.sql 1-basic-Cumulative-Provisional.sql

*** DRAFT *** 45 *** DRAFT ***

7.1-D.11 EMS, ranked order voting

The following tests are traceable to this requirement:

1-basic-NoBallots-RankedOrder.sql 1-basic-RankedOrder-1.sql 1-basic-RankedOrder-
2.sql 1-basic-StraightParty-RankedOrder.sql 1-basic-Primary-RankedOrder.sql 1-
basic-BallotRotation-RankedOrder.sql 1-basic-AbsenteeByCategory-RankedOrder.sql
1-basic-Cumulative-RankedOrder.sql 1-basic-SplitPrecinct-RankedOrder.sql 1-basic-
RankedOrder-WriteIns.sql 1-basic-RankedOrder-NofM.sql 1-basic-RankedOrder-
Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-RankedOrder.sql

7.1-E Election definition accuracy

All Votetest tests are traceable to this requirement.

7.1-F Voting options accuracy

All Votetest tests are traceable to this requirement.

7.1-G EMS, confirm recording of election definition

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.1-H EMS, election definition distribution

All Votetest tests are traceable to this requirement.

7.2-A EMS, define ballot styles

All Votetest tests are traceable to this requirement.

7.2-A.1 EMS, auto-format

All Votetest tests are traceable to this requirement.

7.2-A.2 EMS, include votable contests

All Votetest tests are traceable to this requirement.

7.2-A.3 EMS, exclude nonvotable contests

All Votetest tests are traceable to this requirement.

7.2-A.4 EMS, nonpartisan formatting

All Votetest tests are traceable to this requirement.

7.2-A.5 EMS, jurisdiction-dependent content

All Votetest tests are traceable to this requirement.

7.2-A.6 EMS, primary elections, associate configurations with parties

*** DRAFT *** 46 *** DRAFT ***

The following tests are traceable to this requirement:

1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-Primary-
RankedOrder.sql 1-basic-Primary-BallotRotation.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-Primary-WriteIns.sql 1-basic-Primary-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-Primary-NofM.sql 1-basic-Primary-
Provisional.sql 1-basic-Primary-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeByCategory.sql 1-basic-samples-CecilRPrimary1998.sql

7.2-A.7 EMS, ballot rotation

The following tests are traceable to this requirement:

1-basic-BallotRotation-StraightParty.sql 1-basic-BallotRotation.sql 1-basic-
Primary-BallotRotation.sql 1-basic-BallotRotation-RankedOrder.sql 1-basic-
SplitPrecinct-BallotRotation.sql 1-basic-BallotRotation-WriteInsAliases.sql 1-basic-
BallotRotation-Cumulative.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql
1-basic-BallotRotation-NofM.sql 1-basic-BallotRotation-Provisional.sql 1-
basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-basic-BallotRotation-
AbsenteeByCategory.sql

7.2-A.8 EMS, split precincts, associate ballot configurations

The following tests are traceable to this requirement:

1-basic-SplitPrecinct-StraightParty.sql 1-basic-SplitPrecinct-1.sql 1-basic-SplitPrecinct-
2.sql 1-basic-SplitPrecinct-RankedOrder.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-SplitPrecinct-BallotRotation.sql 1-basic-SplitPrecinct-WriteIns.sql 1-
basic-SplitPrecinct-Cumulative.sql 1-basic-SplitPrecinct-NofM.sql 1-basic-
SplitPrecinct-Provisional.sql 1-basic-SplitPrecinct-CrossPartyEndorsement.sql
1-basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql

7.2-B EMS, ballot style distribution

All Votetest tests are traceable to this requirement.

7.2-B.1 EMS, ballot style identification

All Votetest tests are traceable to this requirement.

7.2-C EMS, ballot style reuse

This requirement is discussed in Section 3.8.

7.2-D EMS, ballot style protection

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.3.1-A Support L&A testing

All Votetest tests are traceable to this requirement.

7.3.1-B Built-in self-test and diagnostics

*** DRAFT *** 47 *** DRAFT ***

All Votetest tests are traceable to this requirement.

7.3.1-C Verify proper preparation of ballot styles

All Votetest tests are traceable to this requirement.

7.3.1-D Verify proper installation of ballot styles

All Votetest tests are traceable to this requirement.

7.3.1-E Verify compatibility between software and ballot styles

All Votetest tests are traceable to this requirement.

7.3.1-F Test ballots

All Votetest tests are traceable to this requirement.

7.3.1-G Test all ballot positions

All Votetest tests are traceable to this requirement.

7.3.1-H Paper-based tabulators, testing calibration

All Votetest tests are traceable to this requirement.

7.3.1-I Ballot marker readiness

All Votetest tests are traceable to this requirement.

7.3.1-J L&A testing, no side-effects

All Votetest tests are traceable to this requirement.

7.3.1-J.1 Isolate test ballots

All Votetest tests are traceable to this requirement.

7.4-A Programmed device, verify L&A performed

All Votetest tests are traceable to this requirement.

7.4-B Programmed device, disable untested devices

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.4-C Paper-based tabulator activation

All Votetest tests are traceable to this requirement.

7.4-D Paper-based tabulator, verify activation

All Votetest tests are traceable to this requirement.

7.4-E Programmed vote-capture device, open poll function

All Votetest tests are traceable to this requirement.

*** DRAFT *** 48 *** DRAFT ***

7.4-E.1 Programmed vote-capture device, protect open poll function

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.4-E.2 Programmed vote-capture device, enforce correct poll opening process

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.4-E.3 Programmed vote-capture device, verify activation

All Votetest tests are traceable to this requirement.

7.5.1.1-A Activation device, DRE, EBP, ballot activation

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.1-A.1 Activation device, DRE, EBP, credential issuance

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.1-A.2 Activation device, DRE, EBP, at most one cast ballot per session

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.1-B Activation device, contemporaneous record

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.1-C Activation device, DRE, EBP, control ballot configuration

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.1-C.1 Activation device, DRE, EBP, enable only applicable contests

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.1-C.2 Activation device, DRE, EBP, select ballot configuration for party in primary elections

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.2-A Activation device, ballot secrecy

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.2-A.1 DRE and EBP, open primaries, party selection should be private

*** DRAFT *** 49 *** DRAFT ***

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.2-A.2 Activation device, records preserve secrecy of the ballot

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.2-A.3 Activation device, ballot activation provisional voting

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.3-A Activation device, credentials and tokens

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.3-A.1 Activation device, token limited in capacity

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.3-A.2 Activation device, DRE, EPB, token de-activated after casting

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.3-A.3 Activation device, token should be non-reusable

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.3-A.4 Activation device, integrity and authenticity of ballot activation information

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.4-A Activation device, may access remote registration database

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.4-A.1 Activation device, cannot connect to multiple networks

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.4-A.2 Activation device, access to remote registration database configurable

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.4-A.3 Activation device, notification of access to remote registration database

*** DRAFT *** 50 *** DRAFT ***

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.4-A.4 Activation device, remote access failure backup capability

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.4-A.5 Activation device, connects to router/firewall

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.1.4-B Activation device, source code reviews

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.2-A No advertising

All Votetest tests are traceable to this requirement.

7.5.2-B Capture votes

All Votetest tests are traceable to this requirement.

7.5.3-A Vote-capture device, voting variations

All Votetest tests are traceable to this requirement.

7.5.3-A.1 Vote-capture device, 1-of-M

The following tests are traceable to this requirement:

1-basic-1ofM.sql 1-basic-NoBallots-1ofM.sql 1-basic-Yes-or-No.sql 1-basic-
samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql 1-basic-
StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-
BallotRotation-StraightParty.sql 1-basic-AbsenteeByCategory-StraightParty.sql
1-basic-SplitPrecinct-StraightParty.sql 1-basic-BallotRotation.sql 1-basic-
Primary-BallotRotation.sql 1-basic-StraightParty-WriteIns.sql 1-basic-
AbsenteeByCategory.sql 1-basic-SplitPrecinct-1.sql 1-basic-SplitPrecinct-2.sql
1-basic-StraightParty-Provisional.sql 1-basic-CrossPartyEndorsement.sql 1-
basic-Primary-SplitPrecinct.sql 1-basic-SplitPrecinct-BallotRotation.sql 1-
basic-NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-
AbsenteeByCategory-CrossPartyEndorsement.sql 1-basic-WriteIns.sql 1-basic-
Provisional.sql 1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-
BallotRotation-WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-
basic-SplitPrecinct-WriteIns.sql 1-basic-Primary-CrossPartyEndorsement.sql 1-basic-
BallotRotation-CrossPartyEndorsement.sql 1-basic-AbsenteeBySpecialPrecinct-
CrossPartyEndorsement.sql 1-basic-Primary-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-AbsenteeByCategory-Provisional.sql 1-basic-SplitPrecinct-
Provisional.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-
basic-CrossPartyEndorsement-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-

*** DRAFT *** 51 *** DRAFT ***

Yes-or-No.sql 1-basic-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeBySpecialPrecinct.sql 1-basic-Primary-AbsenteeByCategory.sql 1-
basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql 1-basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-
basic-BallotRotation-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-
WriteInsAliases-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql 1-basic-samples-
CecilRPrimary1998.sql

7.5.3-A.2 Vote-capture device, yes/no question

The following tests are traceable to this requirement:

1-basic-Yes-or-No.sql 1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-
FairfaxGeneral2004.sql 1-basic-AbsenteeBySpecialPrecinct-Yes-or-No.sql

7.5.3-A.3 Vote-capture device, indicate party affiliations and endorsements

The following tests are traceable to this requirement:

1-basic-StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-
StraightParty-RankedOrder.sql 1-basic-BallotRotation-StraightParty.sql 1-basic-
AbsenteeByCategory-StraightParty.sql 1-basic-SplitPrecinct-StraightParty.sql
1-basic-StraightParty-Cumulative.sql 1-basic-StraightParty-WriteIns.sql 1-
basic-StraightParty-NofM.sql 1-basic-StraightParty-Provisional.sql 1-basic-
CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-CrossPartyEndorsement.sql
1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql 1-
basic-AbsenteeBySpecialPrecinct-CrossPartyEndorsement.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-basic-
CrossPartyEndorsement-Provisional.sql 1-basic-CrossPartyEndorsement-NofM.sql
1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql

7.5.3-A.4 Vote-capture device, closed primaries

The following tests are traceable to this requirement:

1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-Primary-
RankedOrder.sql 1-basic-Primary-BallotRotation.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-Primary-WriteIns.sql 1-basic-Primary-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-Primary-NofM.sql 1-basic-Primary-
Provisional.sql 1-basic-Primary-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeByCategory.sql 1-basic-samples-CecilRPrimary1998.sql

7.5.3-A.5 Vote-capture device, open primaries

The following tests are traceable to this requirement:

1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-Primary-
RankedOrder.sql 1-basic-Primary-BallotRotation.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-Primary-WriteIns.sql 1-basic-Primary-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-Primary-NofM.sql 1-basic-Primary-
Provisional.sql 1-basic-Primary-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeByCategory.sql 1-basic-samples-CecilRPrimary1998.sql

*** DRAFT *** 52 *** DRAFT ***

7.5.3-A.6 Vote-capture device, write-ins

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql
1-basic-StraightParty-WriteIns.sql 1-basic-RankedOrder-WriteIns.sql 1-basic-
NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-WriteIns.sql
1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-BallotRotation-
WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-basic-SplitPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-NofM-WriteIns.sql
1-basic-WriteInsAliases-NofM.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-AbsenteeBySpecialPrecinct-WriteIns.sql
1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-WriteInsAliases-
AbsenteeByCategory.sql

7.5.3-A.7 Vote-capture device, support write-in reconciliation

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql
1-basic-StraightParty-WriteIns.sql 1-basic-RankedOrder-WriteIns.sql 1-basic-
NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-WriteIns.sql
1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-BallotRotation-
WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-basic-SplitPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-NofM-WriteIns.sql
1-basic-WriteInsAliases-NofM.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-AbsenteeBySpecialPrecinct-WriteIns.sql
1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-WriteInsAliases-
AbsenteeByCategory.sql

7.5.3-A.8 Vote-capture device, ballot rotation

The following tests are traceable to this requirement:

1-basic-BallotRotation-StraightParty.sql 1-basic-BallotRotation.sql 1-basic-
Primary-BallotRotation.sql 1-basic-BallotRotation-RankedOrder.sql 1-basic-
SplitPrecinct-BallotRotation.sql 1-basic-BallotRotation-WriteInsAliases.sql 1-basic-
BallotRotation-Cumulative.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql
1-basic-BallotRotation-NofM.sql 1-basic-BallotRotation-Provisional.sql 1-
basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-basic-BallotRotation-
AbsenteeByCategory.sql

7.5.3-A.9 Ballot rotation, equal time for each contest choice

The following tests are traceable to this requirement:

1-basic-BallotRotation-StraightParty.sql 1-basic-BallotRotation.sql 1-basic-
Primary-BallotRotation.sql 1-basic-BallotRotation-RankedOrder.sql 1-basic-
SplitPrecinct-BallotRotation.sql 1-basic-BallotRotation-WriteInsAliases.sql 1-basic-
BallotRotation-Cumulative.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql
1-basic-BallotRotation-NofM.sql 1-basic-BallotRotation-Provisional.sql 1-
basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-basic-BallotRotation-
AbsenteeByCategory.sql

*** DRAFT *** 53 *** DRAFT ***

7.5.3-A.10 Vote-capture device, straight party voting

The following tests are traceable to this requirement:

1-basic-StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-
StraightParty-RankedOrder.sql 1-basic-BallotRotation-StraightParty.sql 1-basic-
AbsenteeByCategory-StraightParty.sql 1-basic-SplitPrecinct-StraightParty.sql
1-basic-StraightParty-Cumulative.sql 1-basic-StraightParty-WriteIns.sql 1-
basic-StraightParty-NofM.sql 1-basic-StraightParty-Provisional.sql 1-basic-
CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-CrossPartyEndorsement.sql
1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql 1-
basic-AbsenteeBySpecialPrecinct-CrossPartyEndorsement.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-basic-
CrossPartyEndorsement-Provisional.sql 1-basic-CrossPartyEndorsement-NofM.sql
1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql

7.5.3-A.11 Vote-capture device, cross-party endorsement

The following tests are traceable to this requirement:

1-basic-CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-Cumulative.sql
1-basic-Primary-CrossPartyEndorsement.sql 1-basic-BallotRotation-
CrossPartyEndorsement.sql 1-basic-AbsenteeBySpecialPrecinct-
CrossPartyEndorsement.sql 1-basic-SplitPrecinct-CrossPartyEndorsement.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-CrossPartyEndorsement-Provisional.sql
1-basic-CrossPartyEndorsement-NofM.sql

7.5.3-A.12 Vote-capture device, split precincts

The following tests are traceable to this requirement:

1-basic-SplitPrecinct-StraightParty.sql 1-basic-SplitPrecinct-1.sql 1-basic-SplitPrecinct-
2.sql 1-basic-SplitPrecinct-RankedOrder.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-SplitPrecinct-BallotRotation.sql 1-basic-SplitPrecinct-WriteIns.sql 1-
basic-SplitPrecinct-Cumulative.sql 1-basic-SplitPrecinct-NofM.sql 1-basic-
SplitPrecinct-Provisional.sql 1-basic-SplitPrecinct-CrossPartyEndorsement.sql
1-basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql

7.5.3-A.13 Vote-capture device, N-of-M voting

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-StraightParty-NofM.sql 1-
basic-RankedOrder-NofM.sql 1-basic-NofM.sql 1-basic-Primary-NofM.sql
1-basic-Cumulative-NofM.sql 1-basic-BallotRotation-NofM.sql 1-basic-
AbsenteeByCategory-NofM.sql 1-basic-SplitPrecinct-NofM.sql 1-basic-NofM-
WriteIns.sql 1-basic-WriteInsAliases-NofM.sql 1-basic-NofM-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-NofM-Provisional.sql 1-basic-CrossPartyEndorsement-
NofM.sql 1-basic-AbsenteeBySpecialPrecinct-NofM.sql 1-basic-samples-
CecilRPrimary1998.sql

*** DRAFT *** 54 *** DRAFT ***

7.5.3-A.14 Vote-capture device, cumulative voting

The following tests are traceable to this requirement:

1-basic-Cumulative-RankedOrder.sql 1-basic-StraightParty-Cumulative.sql 1-
basic-Cumulative.sql 1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-
AbsenteeByCategory-Cumulative.sql 1-basic-Primary-Cumulative.sql 1-basic-
BallotRotation-Cumulative.sql 1-basic-AbsenteeBySpecialPrecinct-Cumulative.sql
1-basic-SplitPrecinct-Cumulative.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-
Cumulative-NofM.sql 1-basic-Cumulative-Provisional.sql

7.5.3-A.15 Vote-capture device, ranked order voting

The following tests are traceable to this requirement:

1-basic-NoBallots-RankedOrder.sql 1-basic-RankedOrder-1.sql 1-basic-RankedOrder-
2.sql 1-basic-StraightParty-RankedOrder.sql 1-basic-Primary-RankedOrder.sql 1-
basic-BallotRotation-RankedOrder.sql 1-basic-AbsenteeByCategory-RankedOrder.sql
1-basic-Cumulative-RankedOrder.sql 1-basic-SplitPrecinct-RankedOrder.sql 1-basic-
RankedOrder-WriteIns.sql 1-basic-RankedOrder-NofM.sql 1-basic-RankedOrder-
Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-RankedOrder.sql

7.5.3-A.16 Vote-capture device, provisional-challenged ballots

The following tests are traceable to this requirement:

1-basic-StraightParty-Provisional.sql 1-basic-Provisional.sql 1-basic-Primary-
Provisional.sql 1-basic-RankedOrder-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-Cumulative-Provisional.sql 1-basic-AbsenteeByCategory-
Provisional.sql 1-basic-SplitPrecinct-Provisional.sql 1-basic-WriteInsAliases-
Provisional.sql 1-basic-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM-Provisional.sql 1-basic-CrossPartyEndorsement-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql

7.5.3-A.17 DRE, categorize provisional ballots

The following tests are traceable to this requirement:

1-basic-StraightParty-Provisional.sql 1-basic-Provisional.sql 1-basic-Primary-
Provisional.sql 1-basic-RankedOrder-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-Cumulative-Provisional.sql 1-basic-AbsenteeByCategory-
Provisional.sql 1-basic-SplitPrecinct-Provisional.sql 1-basic-WriteInsAliases-
Provisional.sql 1-basic-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM-Provisional.sql 1-basic-CrossPartyEndorsement-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql

7.5.3-A.18 Vote-capture device, review-required ballots

Since the reasons for which a ballot might be flagged or separated for review are
jurisdiction-dependent, the list of relevant tests will vary.

7.5.4-A Record votes as voted

All Votetest tests are traceable to this requirement.

*** DRAFT *** 55 *** DRAFT ***

7.5.4-A.1 Records consistent with feedback to voter

All Votetest tests are traceable to this requirement.

7.5.4-B DRE, confirm votes recorded

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.5.4-C Casting

All Votetest tests are traceable to this requirement.

7.5.4-C.1 Equipment allows each eligible voter to vote

All Votetest tests are traceable to this requirement.

7.5.4-C.2 Paper-based, must have secure ballot boxes

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.5.4-D DRE, cast is committed

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.5.5-A DRE, at least two separate copies of CVR

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.5.5-A.1 DRE, redundant CVRs on physically separate media

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.5.6-A Tabulator, prevent counter overflow

This requirement is discussed in Section 3.8.

7.5.6-A.1 DRE, stop when full

This requirement is discussed in Section 3.8.

7.6-A DRE, no CVRs before close of polls

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.6-B Programmed vote-capture devices, poll-closing function

All Votetest tests are traceable to this requirement.

7.6-B.1 Programmed vote-capture devices, no voting when polls are closed

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

*** DRAFT *** 56 *** DRAFT ***

7.6-B.2 DRE, no ballot casting when polls are closed

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.6-B.3 Programmed vote-capture devices, poll closing integrity check

All Votetest tests are traceable to this requirement.

7.6-B.4 Programmed vote-capture devices, report on poll closing process

All Votetest tests are traceable to this requirement.

7.6-B.5 Programmed vote-capture devices, prevent reopening polls

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.6-C Precinct EMS, post-election reports

All Votetest tests are traceable to this requirement.

7.7.1-A Detect and prevent ballot style mismatches

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.7.1-B Detect and reject ballots that are oriented incorrectly

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.7.2-A Tabulator, voting variations

All Votetest tests are traceable to this requirement.

7.7.2-A.1 Tabulator, 1-of-M

The following tests are traceable to this requirement:

1-basic-1ofM.sql 1-basic-NoBallots-1ofM.sql 1-basic-Yes-or-No.sql 1-basic-
samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql 1-basic-
StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-
BallotRotation-StraightParty.sql 1-basic-AbsenteeByCategory-StraightParty.sql
1-basic-SplitPrecinct-StraightParty.sql 1-basic-BallotRotation.sql 1-basic-
Primary-BallotRotation.sql 1-basic-StraightParty-WriteIns.sql 1-basic-
AbsenteeByCategory.sql 1-basic-SplitPrecinct-1.sql 1-basic-SplitPrecinct-2.sql

*** DRAFT *** 57 *** DRAFT ***

1-basic-StraightParty-Provisional.sql 1-basic-CrossPartyEndorsement.sql 1-
basic-Primary-SplitPrecinct.sql 1-basic-SplitPrecinct-BallotRotation.sql 1-
basic-NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-
AbsenteeByCategory-CrossPartyEndorsement.sql 1-basic-WriteIns.sql 1-basic-
Provisional.sql 1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-
BallotRotation-WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-
basic-SplitPrecinct-WriteIns.sql 1-basic-Primary-CrossPartyEndorsement.sql 1-basic-
BallotRotation-CrossPartyEndorsement.sql 1-basic-AbsenteeBySpecialPrecinct-
CrossPartyEndorsement.sql 1-basic-Primary-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-AbsenteeByCategory-Provisional.sql 1-basic-SplitPrecinct-
Provisional.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-
basic-CrossPartyEndorsement-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
Yes-or-No.sql 1-basic-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeBySpecialPrecinct.sql 1-basic-Primary-AbsenteeByCategory.sql 1-
basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql 1-basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-
basic-BallotRotation-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-
WriteInsAliases-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql 1-basic-samples-
CecilRPrimary1998.sql

7.7.2-A.2 Tabulator, yes/no question

The following tests are traceable to this requirement:

1-basic-Yes-or-No.sql 1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-
FairfaxGeneral2004.sql 1-basic-AbsenteeBySpecialPrecinct-Yes-or-No.sql

7.7.2-A.3 Tabulator, absentee voting

The following tests are traceable to this requirement:

1-basic-AbsenteeByCategory-StraightParty.sql 1-basic-AbsenteeByCategory-
RankedOrder.sql 1-basic-AbsenteeByCategory.sql 1-basic-AbsenteeByCategory-
CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-
basic-AbsenteeByCategory-Cumulative.sql 1-basic-AbsenteeBySpecialPrecinct-
Cumulative.sql 1-basic-AbsenteeBySpecialPrecinct-CrossPartyEndorsement.sql 1-basic-
AbsenteeByCategory-NofM.sql 1-basic-AbsenteeByCategory-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
Yes-or-No.sql 1-basic-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeBySpecialPrecinct.sql 1-basic-Primary-AbsenteeByCategory.sql 1-
basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql 1-basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-
basic-BallotRotation-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-
WriteInsAliases-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM.sql 1-basic-AbsenteeBySpecialPrecinct-RankedOrder.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
StraightParty.sql

*** DRAFT *** 58 *** DRAFT ***

7.7.2-A.4 Tabulator, provisional-challenged ballots

The following tests are traceable to this requirement:

1-basic-StraightParty-Provisional.sql 1-basic-Provisional.sql 1-basic-Primary-
Provisional.sql 1-basic-RankedOrder-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-Cumulative-Provisional.sql 1-basic-AbsenteeByCategory-
Provisional.sql 1-basic-SplitPrecinct-Provisional.sql 1-basic-WriteInsAliases-
Provisional.sql 1-basic-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM-Provisional.sql 1-basic-CrossPartyEndorsement-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql

7.7.2-A.5 Tabulator, accept or reject provisional-challenged ballots individually

The following tests are traceable to this requirement:

1-basic-StraightParty-Provisional.sql 1-basic-Provisional.sql 1-basic-Primary-
Provisional.sql 1-basic-RankedOrder-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-Cumulative-Provisional.sql 1-basic-AbsenteeByCategory-
Provisional.sql 1-basic-SplitPrecinct-Provisional.sql 1-basic-WriteInsAliases-
Provisional.sql 1-basic-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM-Provisional.sql 1-basic-CrossPartyEndorsement-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql

7.7.2-A.6 Tabulator, accept or reject provisional-challenged ballots by category

The following tests are traceable to this requirement:

1-basic-StraightParty-Provisional.sql 1-basic-Provisional.sql 1-basic-Primary-
Provisional.sql 1-basic-RankedOrder-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-Cumulative-Provisional.sql 1-basic-AbsenteeByCategory-
Provisional.sql 1-basic-SplitPrecinct-Provisional.sql 1-basic-WriteInsAliases-
Provisional.sql 1-basic-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM-Provisional.sql 1-basic-CrossPartyEndorsement-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql

7.7.2-A.7 Tabulator, primary elections

The following tests are traceable to this requirement:

1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-Primary-
RankedOrder.sql 1-basic-Primary-BallotRotation.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-Primary-WriteIns.sql 1-basic-Primary-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-Primary-NofM.sql 1-basic-Primary-
Provisional.sql 1-basic-Primary-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeByCategory.sql 1-basic-samples-CecilRPrimary1998.sql

7.7.2-A.8 Tabulator, write-ins

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql
1-basic-StraightParty-WriteIns.sql 1-basic-RankedOrder-WriteIns.sql 1-basic-
NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-WriteIns.sql

*** DRAFT *** 59 *** DRAFT ***

1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-BallotRotation-
WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-basic-SplitPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-NofM-WriteIns.sql
1-basic-WriteInsAliases-NofM.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-AbsenteeBySpecialPrecinct-WriteIns.sql
1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-WriteInsAliases-
AbsenteeByCategory.sql

7.7.2-A.9 Tabulator, support write-in reconciliation

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql
1-basic-StraightParty-WriteIns.sql 1-basic-RankedOrder-WriteIns.sql 1-basic-
NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-WriteIns.sql
1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-BallotRotation-
WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-basic-SplitPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-NofM-WriteIns.sql
1-basic-WriteInsAliases-NofM.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-AbsenteeBySpecialPrecinct-WriteIns.sql
1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-WriteInsAliases-
AbsenteeByCategory.sql

7.7.2-A.10 Tabulator, ballot rotation

The following tests are traceable to this requirement:

1-basic-BallotRotation-StraightParty.sql 1-basic-BallotRotation.sql 1-basic-
Primary-BallotRotation.sql 1-basic-BallotRotation-RankedOrder.sql 1-basic-
SplitPrecinct-BallotRotation.sql 1-basic-BallotRotation-WriteInsAliases.sql 1-basic-
BallotRotation-Cumulative.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql
1-basic-BallotRotation-NofM.sql 1-basic-BallotRotation-Provisional.sql 1-
basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-basic-BallotRotation-
AbsenteeByCategory.sql

7.7.2-A.11 Tabulator, straight party voting

The following tests are traceable to this requirement:

1-basic-StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-
StraightParty-RankedOrder.sql 1-basic-BallotRotation-StraightParty.sql 1-basic-
AbsenteeByCategory-StraightParty.sql 1-basic-SplitPrecinct-StraightParty.sql
1-basic-StraightParty-Cumulative.sql 1-basic-StraightParty-WriteIns.sql 1-
basic-StraightParty-NofM.sql 1-basic-StraightParty-Provisional.sql 1-basic-
CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-CrossPartyEndorsement.sql
1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql 1-
basic-AbsenteeBySpecialPrecinct-CrossPartyEndorsement.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-basic-
CrossPartyEndorsement-Provisional.sql 1-basic-CrossPartyEndorsement-NofM.sql
1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql

7.7.2-A.12 Tabulating straight party votes

*** DRAFT *** 60 *** DRAFT ***

The following tests are traceable to this requirement:

1-basic-StraightParty.sql 1-basic-Primary-StraightParty.sql 1-basic-
StraightParty-RankedOrder.sql 1-basic-BallotRotation-StraightParty.sql 1-basic-
AbsenteeByCategory-StraightParty.sql 1-basic-SplitPrecinct-StraightParty.sql
1-basic-StraightParty-Cumulative.sql 1-basic-StraightParty-WriteIns.sql 1-
basic-StraightParty-NofM.sql 1-basic-StraightParty-Provisional.sql 1-basic-
CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-CrossPartyEndorsement.sql
1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-BallotRotation-CrossPartyEndorsement.sql 1-
basic-AbsenteeBySpecialPrecinct-CrossPartyEndorsement.sql 1-basic-SplitPrecinct-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-WriteIns.sql 1-basic-
CrossPartyEndorsement-Provisional.sql 1-basic-CrossPartyEndorsement-NofM.sql
1-basic-AbsenteeBySpecialPrecinct-StraightParty.sql

7.7.2-A.13 Tabulator, cross-party endorsement

The following tests are traceable to this requirement:

1-basic-CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-
CrossPartyEndorsement.sql 1-basic-CrossPartyEndorsement-Cumulative.sql
1-basic-Primary-CrossPartyEndorsement.sql 1-basic-BallotRotation-
CrossPartyEndorsement.sql 1-basic-AbsenteeBySpecialPrecinct-
CrossPartyEndorsement.sql 1-basic-SplitPrecinct-CrossPartyEndorsement.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-CrossPartyEndorsement-Provisional.sql
1-basic-CrossPartyEndorsement-NofM.sql

7.7.2-A.14 Tabulator, split precincts

The following tests are traceable to this requirement:

1-basic-SplitPrecinct-StraightParty.sql 1-basic-SplitPrecinct-1.sql 1-basic-SplitPrecinct-
2.sql 1-basic-SplitPrecinct-RankedOrder.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-SplitPrecinct-BallotRotation.sql 1-basic-SplitPrecinct-WriteIns.sql 1-
basic-SplitPrecinct-Cumulative.sql 1-basic-SplitPrecinct-NofM.sql 1-basic-
SplitPrecinct-Provisional.sql 1-basic-SplitPrecinct-CrossPartyEndorsement.sql
1-basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql

7.7.2-A.15 Tabulator, N-of-M voting

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-StraightParty-NofM.sql 1-
basic-RankedOrder-NofM.sql 1-basic-NofM.sql 1-basic-Primary-NofM.sql
1-basic-Cumulative-NofM.sql 1-basic-BallotRotation-NofM.sql 1-basic-
AbsenteeByCategory-NofM.sql 1-basic-SplitPrecinct-NofM.sql 1-basic-NofM-
WriteIns.sql 1-basic-WriteInsAliases-NofM.sql 1-basic-NofM-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-NofM-Provisional.sql 1-basic-CrossPartyEndorsement-
NofM.sql 1-basic-AbsenteeBySpecialPrecinct-NofM.sql 1-basic-samples-
CecilRPrimary1998.sql

7.7.2-A.16 Tabulator, cumulative voting

*** DRAFT *** 61 *** DRAFT ***

The following tests are traceable to this requirement:

1-basic-Cumulative-RankedOrder.sql 1-basic-StraightParty-Cumulative.sql 1-
basic-Cumulative.sql 1-basic-CrossPartyEndorsement-Cumulative.sql 1-basic-
AbsenteeByCategory-Cumulative.sql 1-basic-Primary-Cumulative.sql 1-basic-
BallotRotation-Cumulative.sql 1-basic-AbsenteeBySpecialPrecinct-Cumulative.sql
1-basic-SplitPrecinct-Cumulative.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-
Cumulative-NofM.sql 1-basic-Cumulative-Provisional.sql

7.7.2-A.17 Tabulator, ranked order voting

The following tests are traceable to this requirement:

1-basic-NoBallots-RankedOrder.sql 1-basic-RankedOrder-1.sql 1-basic-RankedOrder-
2.sql 1-basic-StraightParty-RankedOrder.sql 1-basic-Primary-RankedOrder.sql 1-
basic-BallotRotation-RankedOrder.sql 1-basic-AbsenteeByCategory-RankedOrder.sql
1-basic-Cumulative-RankedOrder.sql 1-basic-SplitPrecinct-RankedOrder.sql 1-basic-
RankedOrder-WriteIns.sql 1-basic-RankedOrder-NofM.sql 1-basic-RankedOrder-
Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-RankedOrder.sql

7.7.3-A Central paper tabulator, ballot separation

This requirement is discussed in Section 3.8.

7.7.3-A.1 Central paper tabulator, unreadable ballots

This requirement specifies a “fail safe” behavior for a condition that, ideally, would not
be reproducible by a test lab. The method to reproduce it, if there were one, would be
specific to a particular voting system. Thus there is no test in Votetest that attempts to
create the conditions under which the requirement would apply. For more information,
see the discussion of Part 3 Req. 5.2.3-A in the VVSG.

7.7.3-A.2 Central paper tabulator, write-ins

Since the reasons for which a ballot might be flagged or separated for review are
jurisdiction-dependent, the list of relevant tests will vary.

7.7.3-A.3 Central paper tabulator, overvotes, undervotes, blank ballots

This requirement is discussed in Section 3.8.

7.7.3-B Precinct paper tabulator, write-ins

Since the reasons for which a ballot might be flagged or separated for review are
jurisdiction-dependent, the list of relevant tests will vary.

7.7.3-C ECOS, react to marginal marks and overvotes

This requirement is discussed in Section 3.8.

7.7.4-A Paper-based tabulator, ability to clear misfeed

*** DRAFT *** 62 *** DRAFT ***

This requirement specifies a “fail safe” behavior for a condition that, ideally, would not
be reproducible by a test lab. The method to reproduce it, if there were one, would be
specific to a particular voting system. Thus there is no test in Votetest that attempts to
create the conditions under which the requirement would apply. For more information,
see the discussion of Part 3 Req. 5.2.3-A in the VVSG.

7.7.4-B Paper-based tabulator, indicate status of misfed ballot

This requirement specifies a “fail safe” behavior for a condition that, ideally, would not
be reproducible by a test lab. The method to reproduce it, if there were one, would be
specific to a particular voting system. Thus there is no test in Votetest that attempts to
create the conditions under which the requirement would apply. For more information,
see the discussion of Part 3 Req. 5.2.3-A in the VVSG.

7.7.5-A Optical scanner, ignore unmarked voting targets

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.7.5-B ECOS, accurately detect marks

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.7.5-C MCOS, accurately detect perfect marks

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.7.5-D MCOS, accurately detect imperfect marks

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.7.5-E Paper-based tabulators, ignore extraneous outside voting targets

This requirement is discussed in Section 3.8.

7.7.5-F Optical scanner, ignore extraneous inside voting targets

This requirement is discussed in Section 3.8.

7.7.5-G MCOS, ignore hesitation marks

This requirement is discussed in Section 3.8.

7.7.5-H MCOS, marginal marks, no bias

This requirement is discussed in Section 3.8.

7.7.5-I MCOS, marginal marks, repeatability

This requirement is discussed in Section 3.8.

7.7.6-A Precinct EMS consolidation

*** DRAFT *** 63 *** DRAFT ***

All Votetest tests are traceable to this requirement.

7.7.6-A.1 DRE, consolidate in 5 minutes

All Votetest tests are traceable to this requirement.

7.8.1-A Reports are time stamped

All Votetest tests are traceable to this requirement.

7.8.1-B Timestamps should be ISO 8601 compliant

All Votetest tests are traceable to this requirement.

7.8.1-C Reporting is non-destructive

This requirement does not specify functional testing as an applicable test method, so it
is out of scope for Votetest.

7.8.2-A Audit reports

All Votetest tests are traceable to this requirement.

7.8.2-B Pre-election reports

All Votetest tests are traceable to this requirement.

7.8.2-C Status reports

All Votetest tests are traceable to this requirement.

7.8.2-D Readiness reports, per polling place

All Votetest tests are traceable to this requirement.

7.8.2-E Readiness reports, precinct tabulator

All Votetest tests are traceable to this requirement.

7.8.2-F Readiness reports, central tabulator

All Votetest tests are traceable to this requirement.

7.8.2-G Readiness reports, public network test ballots

All Votetest tests are traceable to this requirement.

7.8.3.1-A Reporting, ability to produce text

All Votetest tests are traceable to this requirement.

7.8.3.1-B Report all votes cast

All Votetest tests are traceable to this requirement.

7.8.3.1-C Account for all cast ballots and all valid votes

All Votetest tests are traceable to this requirement.

*** DRAFT *** 64 *** DRAFT ***

7.8.3.1-D Vote data reports, discrepancies can’t happen

All Votetest tests are traceable to this requirement.

7.8.3.1-D.1 Discrepancies that happen anyway must be flagged

This requirement specifies a “fail safe” behavior for a condition that, ideally, would not
be reproducible by a test lab. The method to reproduce it, if there were one, would be
specific to a particular voting system. Thus there is no test in Votetest that attempts to
create the conditions under which the requirement would apply. For more information,
see the discussion of Part 3 Req. 5.2.3-A in the VVSG.

7.8.3.1-D.2 Discrepancies that happen anyway must be explainable

This requirement specifies a “fail safe” behavior for a condition that, ideally, would not
be reproducible by a test lab. The method to reproduce it, if there were one, would be
specific to a particular voting system. Thus there is no test in Votetest that attempts to
create the conditions under which the requirement would apply. For more information,
see the discussion of Part 3 Req. 5.2.3-A in the VVSG.

7.8.3.1-E Reporting, combined precincts

This requirement is discussed in Section 3.8.

7.8.3.1-F Precinct tabulators, no tallies before close of polls

This requirement falls within the scope of security assessment, so it is out of scope for
Votetest.

7.8.3.2-A Report cast ballots

All Votetest tests are traceable to this requirement.

7.8.3.2-B Report read ballots

All Votetest tests are traceable to this requirement.

7.8.3.2-B.1 Report read ballots, multi-page

All Votetest tests are traceable to this requirement.

7.8.3.2-B.2 Report read ballots by party

The following tests are traceable to this requirement:

1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-Primary-
RankedOrder.sql 1-basic-Primary-BallotRotation.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-Primary-WriteIns.sql 1-basic-Primary-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-Primary-NofM.sql 1-basic-Primary-
Provisional.sql 1-basic-Primary-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeByCategory.sql 1-basic-samples-CecilRPrimary1998.sql

7.8.3.2-B.3 Report read provisional ballots

*** DRAFT *** 65 *** DRAFT ***

The following tests are traceable to this requirement:

1-basic-StraightParty-Provisional.sql 1-basic-Provisional.sql 1-basic-Primary-
Provisional.sql 1-basic-RankedOrder-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-Cumulative-Provisional.sql 1-basic-AbsenteeByCategory-
Provisional.sql 1-basic-SplitPrecinct-Provisional.sql 1-basic-WriteInsAliases-
Provisional.sql 1-basic-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM-Provisional.sql 1-basic-CrossPartyEndorsement-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql

7.8.3.2-C Report counted ballots

All Votetest tests are traceable to this requirement.

7.8.3.2-C.1 Report counted ballots by party

The following tests are traceable to this requirement:

1-basic-Primary-StraightParty.sql 1-basic-Primary.sql 1-basic-Primary-
RankedOrder.sql 1-basic-Primary-BallotRotation.sql 1-basic-Primary-SplitPrecinct.sql
1-basic-Primary-WriteIns.sql 1-basic-Primary-Cumulative.sql 1-basic-Primary-
CrossPartyEndorsement.sql 1-basic-Primary-NofM.sql 1-basic-Primary-
Provisional.sql 1-basic-Primary-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeByCategory.sql 1-basic-samples-CecilRPrimary1998.sql

7.8.3.2-C.2 Report counted provisional ballots

The following tests are traceable to this requirement:

1-basic-StraightParty-Provisional.sql 1-basic-Provisional.sql 1-basic-Primary-
Provisional.sql 1-basic-RankedOrder-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-Cumulative-Provisional.sql 1-basic-AbsenteeByCategory-
Provisional.sql 1-basic-SplitPrecinct-Provisional.sql 1-basic-WriteInsAliases-
Provisional.sql 1-basic-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM-Provisional.sql 1-basic-CrossPartyEndorsement-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql

7.8.3.2-C.3 Report blank ballots

All Votetest tests are traceable to this requirement.

7.8.3.2-D Report counted ballots by contest

All Votetest tests are traceable to this requirement.

7.8.3.3-A Report votes for each contest choice

All Votetest tests are traceable to this requirement.

7.8.3.3-B Report overvotes for each contest

All Votetest tests are traceable to this requirement.

7.8.3.3-B.1 Reporting overvotes, ad hoc queries

This requirement is discussed in Section 3.8.

*** DRAFT *** 66 *** DRAFT ***

7.8.3.3-C Report undervotes for each contest

All Votetest tests are traceable to this requirement.

7.8.3.3-D Ranked order voting, report results

The following tests are traceable to this requirement:

1-basic-NoBallots-RankedOrder.sql 1-basic-RankedOrder-1.sql 1-basic-RankedOrder-
2.sql 1-basic-StraightParty-RankedOrder.sql 1-basic-Primary-RankedOrder.sql 1-
basic-BallotRotation-RankedOrder.sql 1-basic-AbsenteeByCategory-RankedOrder.sql
1-basic-Cumulative-RankedOrder.sql 1-basic-SplitPrecinct-RankedOrder.sql 1-basic-
RankedOrder-WriteIns.sql 1-basic-RankedOrder-NofM.sql 1-basic-RankedOrder-
Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-RankedOrder.sql

7.8.3.3-E Include in-person votes

All Votetest tests are traceable to this requirement.

7.8.3.3-F Include absentee votes

The following tests are traceable to this requirement:

1-basic-AbsenteeByCategory-StraightParty.sql 1-basic-AbsenteeByCategory-
RankedOrder.sql 1-basic-AbsenteeByCategory.sql 1-basic-AbsenteeByCategory-
CrossPartyEndorsement.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-
basic-AbsenteeByCategory-Cumulative.sql 1-basic-AbsenteeBySpecialPrecinct-
Cumulative.sql 1-basic-AbsenteeBySpecialPrecinct-CrossPartyEndorsement.sql 1-basic-
AbsenteeByCategory-NofM.sql 1-basic-AbsenteeByCategory-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
Yes-or-No.sql 1-basic-AbsenteeBySpecialPrecinct.sql 1-basic-Primary-
AbsenteeBySpecialPrecinct.sql 1-basic-Primary-AbsenteeByCategory.sql 1-
basic-AbsenteeBySpecialPrecinct-SplitPrecinct.sql 1-basic-SplitPrecinct-
AbsenteeByCategory.sql 1-basic-BallotRotation-AbsenteeBySpecialPrecinct.sql 1-
basic-BallotRotation-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-
WriteInsAliases-AbsenteeByCategory.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM.sql 1-basic-AbsenteeBySpecialPrecinct-RankedOrder.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
StraightParty.sql

7.8.3.3-G Include write-in votes

The following tests are traceable to this requirement:

1-basic-samples-AlleganyGeneral2004.sql 1-basic-samples-FairfaxGeneral2004.sql
1-basic-StraightParty-WriteIns.sql 1-basic-RankedOrder-WriteIns.sql 1-basic-
NoChoices-1ofM.sql 1-basic-NoChoicesNoBallots-1ofM.sql 1-basic-WriteIns.sql
1-basic-WriteInsAliases.sql 1-basic-Primary-WriteIns.sql 1-basic-BallotRotation-
WriteInsAliases.sql 1-basic-AbsenteeByCategory-WriteIns.sql 1-basic-SplitPrecinct-
WriteIns.sql 1-basic-WriteInsAliases-Cumulative.sql 1-basic-NofM-WriteIns.sql
1-basic-WriteInsAliases-NofM.sql 1-basic-WriteInsAliases-Provisional.sql 1-basic-
CrossPartyEndorsement-WriteIns.sql 1-basic-AbsenteeBySpecialPrecinct-WriteIns.sql
1-basic-WriteInsAliases-AbsenteeBySpecialPrecinct.sql 1-basic-WriteInsAliases-
AbsenteeByCategory.sql

*** DRAFT *** 67 *** DRAFT ***

7.8.3.3-H Include accepted provisional-challenged votes

The following tests are traceable to this requirement:

1-basic-StraightParty-Provisional.sql 1-basic-Provisional.sql 1-basic-Primary-
Provisional.sql 1-basic-RankedOrder-Provisional.sql 1-basic-BallotRotation-
Provisional.sql 1-basic-Cumulative-Provisional.sql 1-basic-AbsenteeByCategory-
Provisional.sql 1-basic-SplitPrecinct-Provisional.sql 1-basic-WriteInsAliases-
Provisional.sql 1-basic-NofM-Provisional.sql 1-basic-AbsenteeBySpecialPrecinct-
NofM-Provisional.sql 1-basic-CrossPartyEndorsement-Provisional.sql 1-basic-
AbsenteeBySpecialPrecinct-Provisional.sql

7.8.3.3-I Include accepted reviewed votes

Since the reasons for which a ballot might be flagged or separated for review are
jurisdiction-dependent, the list of relevant tests will vary.

4 Advanced schema

The schema for core requirements is designed only for testing. It does not respond to the security,
privacy, accessibility, or usability requirements of the VVSG.

The schema is built in five layers:

1. Translation of the data model. This layer contains all of the tables and data. The other layers
are comprised entirely of views.

2. Conveniences defined over the data model.

3. Adaptation layer. This layer translates the raw voter inputs per the data model into the effective
voter inputs required by the logic model.

4. Data integrity checks.

5. Translation of the logic model.

The schema was developed with PostgreSQL [7] running on a GNU/Linux operating system. It
uses extensions to the SQL standard [2] that might not function as intended with other databases.

Layer 1, the translation of the data model, was covered in Section 3.6. The following subsections
cover the other four layers.

4.1 Conveniences

All assertions have as a precondition the assumption that all of the constraints are satisfied (see
Section 3.5.5).

*** DRAFT *** 68 *** DRAFT ***

4.1.1 FilteredBallotContestAssociation

The view FilteredBallotContestAssociation identifies all Contests that appear on a given Ballot,
excluding ranked order Contests.

create view FilteredBallotContestAssociation (BallotId, ContestId) as
select BallotId, ContestId
from Ballot
natural join BallotStyleContestAssociation
natural join Contest

where CountingLogic <> ’Ranked order’;

Assertion 1 For each Ballot, FilteredBallotContestAssociation contains exactly one row for each
non-ranked-order Contest appearing in the BallotStyle identified by Ballot.StyleId, and zero rows
for any ranked order Contests.

1. For each Ballot in table Ballot, the result of Ballot natural join BallotStyleContestAssociation
contains one row for each Contest appearing in the BallotStyle identified by Ballot.StyleId. The
primary key constraints on Ballot and BallotStyleContestAssociation ensure that there cannot
be more than one such row.

2. The primary key constraint on table Contest and the foreign key constraint on table BallotStyle-
ContestAssociation ensure that the natural join of the previous result with table Contest will
not drop rows. Consequently, for each Ballot, there is still one row for each Contest appearing
in the BallotStyle identified by Ballot.StyleId.

3. The where clause removes rows pertaining to ranked order Contests.

Assertion 2 If the BallotStyle contains zero Contests, BallotStyleContestAssociation contains no
rows with that BallotId.

If BallotStyleContestAssociation contains no rows with a StyleId matching Ballot.StyleId, meaning
that the BallotStyle contains no Contests, then the natural join of Ballot and BallotStyleContes-
tAssociation produces no rows for that Ballot. The subsequent natural join with Contest cannot
add back a BallotId that was dropped, so FilteredBallotContestAssociation correctly contains no
rows for that Ballot.

4.1.2 ReportingContextAssociationMerge

The view ReportingContextAssociationMerge merges ReportingContexts inherited from the Bal-
lotStyle with ReportingContexts specified on Ballot instances. Duplicates are suppressed.

create view ReportingContextAssociationMerge (BallotId, ReportingContext) as
select BallotId, ReportingContext
from BallotReportingContextAssociation

union
select BallotId, ReportingContext
from Ballot natural join BallotStyleReportingContextAssociation;

Assertion 3 For each Ballot, ReportingContextAssociationMerge contains exactly one row for each
relevant ReportingContext.

*** DRAFT *** 69 *** DRAFT ***

1. The only two ways by which a ReportingContext may be relevant to a Ballot are by association
with a Ballot’s BallotStyle or by association with the Ballot itself.

2. If a ReportingContext is associated with the BallotStyle, a corresponding (BallotId, Report-
ingContext) tuple will be projected from the result of Ballot natural join BallotStyleReporting-
ContextAssociation.

3. If a ReportingContext is associated with the Ballot itself, a corresponding (BallotId, Report-
ingContext) tuple will be selected from BallotReportingContextAssociation.

4. Duplicate (BallotId, ReportingContext) tuples are suppressed by the union operator.

Assertion 4 For each Ballot, ReportingContextAssociationMerge contains at least one row.

The case where no ReportingContext is relevant to a given Ballot is prohibited by Constraint V
and is detected by the integrity view UnreportedBallots (see Section 4.3).

4.1.3 VotableChoices

The view VotableChoices identifies all canonical Choices for which a valid VoterInput could exist
(those contained in the applicable BallotStyles), excluding Aliases.

create view VotableChoices (BallotId, ChoiceId) as
select BallotId, ChoiceId
from Ballot
natural join BallotStyleContestAssociation
natural join Choice

where ChoiceId not in
(select AliasId from Alias);

Assertion 5 For each Ballot, VotableChoices contains exactly one row for each canonical Choice
for which the Ballot could contain a vote.

1. For each Ballot in table Ballot, the result of Ballot natural join BallotStyleContestAssociation
contains one row for each Contest appearing in the BallotStyle identified by Ballot.StyleId. The
primary key constraints on Ballot and BallotStyleContestAssociation ensure that there cannot
be more than one such row.

2. For each Ballot, joining Choice with the previous result produces exactly one row for each
Choice pertaining to any Contest appearing on the Ballot. The primary key constraint on
Choice ensures that there cannot be more than one such row.

3. By definition, a canonical Choice does not appear in the AliasId column of table Alias, so the
where clause does not eliminate any canonical Choices.

Assertion 6 VotableChoices contains no rows pertaining to any non-canonical Choices (Aliases).

The where clause eliminates rows pertaining to non-canonical Choices (those appearing in the
AliasId column of table Alias).

Assertion 7 If the BallotStyle of a given Ballot contains zero Contests, VotableChoices contains
no rows with that BallotId.

*** DRAFT *** 70 *** DRAFT ***

If BallotStyleContestAssociation contains no rows with a StyleId matching Ballot.StyleId, meaning
that the BallotStyle contains no Contests, then the natural join of Ballot and BallotStyleContes-
tAssociation produces no rows for that Ballot. The subsequent natural join with Choice cannot add
back a BallotId that was dropped, so VotableChoices correctly contains no rows for that Ballot.

Assertion 8 If the BallotStyle of a given Ballot contains only Contests having zero Choices,
VotableChoices contains no rows with that BallotId.

If the BallotStyle of a given Ballot contains only Contests having zero Choices, then the natural
join with Choice will eliminate all rows containing that BallotId.

4.1.4 ReportingContextContestAssociation

The view ReportingContextContestAssociation identifies all Contests that are relevant in a given
ReportingContext. This includes those appearing in a BallotStyle associated with the Reporting-
Context and those appearing in a Ballot associated with the ReportingContext. A BallotStyle
association can make a Contest relevant even if there are no applicable Ballots.

create view ReportingContextContestAssociation (ReportingContext, ContestId) as
select ReportingContext, ContestId
from BallotStyleReportingContextAssociation
natural join BallotStyleContestAssociation

union
select ReportingContext, ContestId
from BallotReportingContextAssociation
natural join Ballot
natural join BallotStyleContestAssociation;

Assertion 9 For each ReportingContext, ReportingContextContestAssociation contains exactly one
row for each Contest that is relevant in that ReportingContext.

1. The relevance of a Contest within a ReportingContext happens through an intermediary Bal-
lotStyle. The association of Contests with BallotStyles is specified by the table BallotStyleCon-
testAssociation.

2. A BallotStyle can become relevant to a ReportingContext in two ways: directly, via Ballot-
StyleReportingContextAssociation, or indirectly, via BallotReportingContextAssociation and
Ballot.StyleId.

3. If a BallotStyle is directly relevant to a ReportingContext, a corresponding (ReportingContext,
ContestId) tuple will be projected from the natural join of BallotStyleReportingContextAsso-
ciation and BallotStyleContestAssociation.

4. If a BallotStyle is indirectly relevant to a ReportingContext, there must exist a Ballot having
that BallotStyle that is associated with that ReportingContext via BallotReportingContextAs-
sociation. BallotReportingContextAssociation natural join Ballot will therefore contain one
row identifying that Ballot and that ReportingContext. The subsequent natural join with Bal-
lotStyleContestAssociation is on the column StyleId; constraints ensure that this join will not
drop rows. Consequently, a (ReportingContext, ContestId) tuple corresponding to the indirect
association between the ReportingContext and the Contest will be projected from the three-way
join.

*** DRAFT *** 71 *** DRAFT ***

5. Duplicate (ReportingContext, ContestId) tuples are suppressed by the union operator.

4.1.5 FilteredContextContestAssociation

The view FilteredContextContestAssociation is the same as ReportingContextContestAssociation
except it excludes ranked order Contests.

create view FilteredContextContestAssociation (ReportingContext, ContestId) as
select ReportingContext, ContestId
from ReportingContextContestAssociation
natural join Contest

where CountingLogic <> ’Ranked order’;

Assertion 10 For each ReportingContext, FilteredContextContestAssociation contains exactly one
row for each non-ranked-order Contest that is relevant in that ReportingContext, and zero rows for
each ranked-order Contest.

Per Assertion 9, for each ReportingContext, ReportingContextContestAssociation contains exactly
one row for each Contest that is relevant in that ReportingContext. Constraints ensure that the
natural join with Contest will not drop rows. The only difference from ReportingContextContes-
tAssociation therefore is the elimination of ranked order Contests by the where clause.

4.1.6 FilteredContextChoiceAssociation

The view FilteredContextChoiceAssociation identifies all Choices that are relevant in a given Re-
portingContext, excluding Aliases and Choices from ranked order Contests.

create view FilteredContextChoiceAssociation (ReportingContext, ChoiceId) as
select ReportingContext, ChoiceId
from FilteredContextContestAssociation
natural join Choice

where ChoiceId not in
(select AliasId from Alias);

Assertion 11 For each ReportingContext, FilteredContextChoiceAssociation contains exactly one
row for each canonical Choice in each non-ranked-order Contest that is relevant in that Reporting-
Context, and zero rows for any other Choice.

Per Assertion 10, for each ReportingContext, FilteredContextContestAssociation contains exactly
one row for each non-ranked-order Contest that is relevant in that ReportingContext. For each
ReportingContext, the result of FilteredContextContestAssociation natural join Choice contains
exactly one row for each Choice in each non-ranked-order Contest that is relevant in that Report-
ingContext. The where clause eliminates rows pertaining to non-canonical Choices (Aliases).

*** DRAFT *** 72 *** DRAFT ***

4.1.7 BallotCounts

The view BallotCounts produces the count of the number of read and counted Ballots for each
ReportingContext.

create view BallotCounts (ReportingContext, Read, Counted) as
select Name, count(BallotId), count (nullif (Accepted, false))
from Ballot
natural join ReportingContextAssociationMerge
right outer join ReportingContext on (Name = ReportingContext)

group by Name;

Assertion 12 For each ReportingContext, BallotCounts contains exactly one row giving the num-
ber of relevant Ballots (in the Read column) and the number of accepted Ballots (in the Counted
column).

1. Using Assertion 3, for each ReportingContext, the natural join of Ballot and ReportingContex-
tAssociationMerge contains one row for each relevant Ballot.

2. For each ReportingContext having zero relevant Ballots, the right outer join with Reporting-
Context generates a single row having a nulls in the BallotId and Accepted columns. In all
other cases, the right outer join has the effect of duplicating the ReportingContext column in
the Name column and leaving the other columns unchanged.

3. In the three-way join, there is at least one row for each ReportingContext. Grouping by Name
therefore yields one row for each ReportingContext.

4. The count operation does not include nulls. Therefore, for each ReportingContext having one
or more relevant Ballots, count(BallotId) yields the number of such Ballots, and count (nullif
(Accepted, false)) yields the number of those that were accepted.

5. For each ReportingContext having zero relevant Ballots, the three-way join contains a single
row with nulls in both the BallotId and Accepted columns, so both counts yield 0.

4.1.8 BallotCountsByConfiguration

The view BallotCountsByConfiguration produces the count of the number of read and counted Bal-
lots broken down by BallotStyle within each ReportingContext. Rows pertaining to combinations
of ReportingContext and BallotStyle that have no applicable Ballots are suppressed.

create view BallotCountsByConfiguration (ReportingContext, StyleId,
Read, Counted) as

select ReportingContext, StyleId, count(*), count (nullif (Accepted, false))
from Ballot natural join ReportingContextAssociationMerge
group by ReportingContext, StyleId;

Assertion 13 For each combination of ReportingContext and BallotStyle having relevant Ballots,
BallotCountsByConfiguration contains exactly one row giving the number of relevant Ballots (in
the Read column) and the number of accepted Ballots (in the Counted column).

*** DRAFT *** 73 *** DRAFT ***

1. Using Assertion 3, for each ReportingContext, the natural join of Ballot and ReportingContex-
tAssociationMerge contains one row for each relevant Ballot.

2. Grouping by ReportingContext and StyleId yields exactly one row for each combination of
ReportingContext and BallotStyle having relevant Ballots.

3. count(*) and count (nullif (Accepted, false)) yield the number of Ballots and the number of
accepted Ballots within each group.

Assertion 14 BallotCountsByConfiguration contains no rows for combinations of ReportingCon-
text and BallotStyle that have no relevant Ballots.

The natural join of Ballot with ReportingContextAssociationMerge cannot generate a row with a
particular combination of ReportingContext and BallotStyle unless there exists a Ballot of that
BallotStyle that is relevant in that ReportingContext.

4.1.9 BallotCountsByCategory

create view BallotCountsByCategory (ReportingContext, Category,
Read, Counted) as

select ReportingContext, Category, count(*), count (nullif (Accepted, false))
from Ballot
natural join ReportingContextAssociationMerge
natural join BallotCategoryAssociation

group by ReportingContext, Category;

Assertion 15 For each combination of ReportingContext and BallotCategory having relevant Bal-
lots, BallotCountsByCategory contains exactly one row giving the number of relevant Ballots (in
the Read column) and the number of accepted Ballots (in the Counted column).

1. Using Assertion 3, for each ReportingContext, the natural join of Ballot and ReportingContex-
tAssociationMerge contains one row for each relevant Ballot.

2. For each ReportingContext, for each relevant Ballot, the natural join of the previous result with
BallotCategoryAssociation yields a row for each associated BallotCategory.

3. Grouping by ReportingContext and Category yields exactly one row for each combination of
ReportingContext and BallotCategory having relevant Ballots.

4. count(*) and count (nullif (Accepted, false)) yield the number of Ballots and the number of
accepted Ballots within each group.

Assertion 16 BallotCountsByCategory contains no rows for combinations of ReportingContext
and BallotCategory that have no relevant Ballots.

The natural join of (Ballot natural join ReportingContextAssociationMerge) with BallotCatego-
ryAssociation cannot generate a row with a particular combination of ReportingContext and Bal-
lotCategory unless there exists a Ballot of that BallotCategory that is relevant in that Reporting-
Context.

*** DRAFT *** 74 *** DRAFT ***

4.1.10 BallotCountsByCategoryAndConfiguration

create view BallotCountsByCategoryAndConfiguration (ReportingContext, StyleId,
Category, Read, Counted) as

select ReportingContext, StyleId, Category, count(*),
count (nullif (Accepted, false))

from Ballot
natural join ReportingContextAssociationMerge
natural join BallotCategoryAssociation

group by ReportingContext, StyleId, Category;

The assertions and discussion for BallotCountsByCategoryAndConfiguration are analogous to those
of BallotCountsByConfiguration and BallotCountsByCategory.

4.1.11 BlankBallot

create view BlankBallot (BallotId, StyleId, Accepted) as
select BallotId, StyleId, Accepted
from Ballot natural left outer join VoterInput
where Value is null;

Assertion 17 BlankBallot contains exactly one row for each Ballot having no associated votes.

Ballot natural left outer join VoterInput produces one row with a non-null Value column for each
vote (possibly many such rows with the same BallotId), and exactly one row with a null Value
column for each Ballot having no associated votes. The where clause selects only the latter rows.

4.1.12 BlankBallotCounts

create view BlankBallotCounts (ReportingContext, Read, Counted) as
select Name, count(BallotId), count (nullif (Accepted, false))
from BlankBallot
natural join ReportingContextAssociationMerge
right outer join ReportingContext on (Name = ReportingContext)

group by Name;

The assertion and discussion for BlankBallotCounts are parallel to those of BallotCounts, substi-
tuting BlankBallot for Ballot.

4.1.13 BlankBallotCountsByConfiguration

create view BlankBallotCountsByConfiguration (ReportingContext, StyleId,
Read, Counted) as

select ReportingContext, StyleId, count(*), count (nullif (Accepted, false))
from BlankBallot natural join ReportingContextAssociationMerge
group by ReportingContext, StyleId;

The assertions and discussion for BlankBallotCountsByConfiguration are parallel to those of Bal-
lotCountsByConfiguration, substituting BlankBallot for Ballot.

*** DRAFT *** 75 *** DRAFT ***

4.2 Adaptation

Converting the raw voter inputs into the effective voter inputs required by the logic model involves
Alias reconciliation, implementation of straight party voting, and generation of default (0) values
for ballot positions that were not voted.

The VoterInput table has a primary key on (BallotId, ChoiceId), so there is at most one row for any
given ballot position on any given Ballot. Deliberately, the adaptation views do not preserve this
constraint in the event that double votes result from Alias reconciliation or straight party voting.
Both of these cases are treated as errors for testing purposes, and the errors are most easily located
by looking for duplicate keys. This is done by the integrity view DoubleVotes (see Section 4.3).

All assertions have as a precondition the assumption that all of the constraints are satisfied (see
Section 3.5.5).

4.2.1 AntiAliasedVoterInput

AntiAliasedVoterInput provides a view of VoterInput in which all Choices have been “canonical-
ized.”

create view AntiAliasedVoterInput (BallotId, ChoiceId, Value) as
select BallotId, coalesce (Alias.ChoiceId, VoterInput.ChoiceId), Value
from VoterInput left outer join Alias
on VoterInput.ChoiceId = Alias.AliasId;

Assertion 18 AntiAliasedVoterInput contains exactly one row for each row in VoterInput, with
any non-canonical Choices replaced by the associated canonical Choices.

1. Alias.AliasId is a primary key, so there can be at most one row in Alias matching any given
row of VoterInput on VoterInput.ChoiceId = Alias.AliasId.

2. If there is a row in Alias matching a row of VoterInput, the left outer join generates exactly
one row with the canonical equivalent of VoterInput.ChoiceId in the column Alias.ChoiceId.

3. If there is no row in Alias matching a row of VoterInput, the left outer join generates exactly
one row with a null in the column Alias.ChoiceId.

4. coalesce (Alias.ChoiceId, VoterInput.ChoiceId) substitutes the canonical Choice in the case
where a matching row in Alias exists, and retains the original Choice in the case where no such
row exists and Alias.ChoiceId is null.

4.2.2 VoterInputMerge

VoterInputMerge provides a view over AntiAliasedVoterInput in which the side-effects implied by
straight party votes have been incorporated. If a straight party selection Contest is overvoted, it
has no side-effects.

VoterInputMerge depends on two intervening views, ValidStraightPartyVotes and ImpliedStraight-
PartyVotes.

*** DRAFT *** 76 *** DRAFT ***

create view ValidStraightPartyVotes (BallotId, Party) as
select BallotId, max(Name) -- There can be only one. See below.
from AntiAliasedVoterInput
natural join Choice
natural join Contest

where CountingLogic = ’Straight party selection’
group by BallotId
having sum(Value) = 1; -- There can be only one.

Assertion 19 ValidStraightPartyVotes contains exactly one row for each Ballot containing a vote
in a straight party selection Contest, excluding those that overvoted the straight party selection
Contest.

1. The primary key on VoterInput and Assertion 18 ensure that AntiAliasedVoterInput natural
join Choice will have the same number of rows as VoterInput.

2. The natural join of the previous result with Contest again adds columns but yields the same
number of rows as VoterInput.

3. The where clause eliminates all rows pertaining to Contests that are not straight party selection
Contests.

4. Constraint VII states that a given BallotStyle may contain at most one Contest with Countin-
gLogic = Straight party selection.

5. Straight party Contests are implicitly 1-of-M Contests.

6. Constraint I states that any remaining rows must have a VoterInput.Value of 1.

7. The having clause therefore eliminates rows pertaining to straight party Contests that were
overvoted (having two or more associated votes).

8. There can be at most one row remaining for a given BallotId. If such a row exists for a given
Ballot, max(Name) retrieves the name of the Party that was selected in the straight party
selection Contest. (The name cannot be selected directly due to the intervening group by
operation.)

Note that ValidStraightPartyVotes does not filter out Ballots that are not accepted.

create view ImpliedStraightPartyVotes (BallotId, ChoiceId, Value) as
select BallotId, ChoiceId, Value
from VotableChoices
natural join Endorsement
natural join ValidStraightPartyVotes;

Assertion 20 ImpliedStraightPartyVotes contains exactly one row for each vote that is implied by
a straight party vote.

1. Per Assertion 5, for each Ballot, VotableChoices contains exactly one row for each canonical
Choice for which the Ballot could contain a vote.

2. The primary key on Endorsement ensures that there is at most one row for a given combination
of Party and ChoiceId.

*** DRAFT *** 77 *** DRAFT ***

3. Constraint XV states that the Choice referenced by an Endorsement must be canonical.

4. For each Ballot, VotableChoices natural join Endorsement contains one row for each vote im-
plied by any possible straight party vote.

5. The natural join of the previous result with ValidStraightPartyVotes eliminates all rows except
those pertaining to actual, non-overvoted straight party votes.

Note that ImpliedStraightPartyVotes does not do anything about the possibility that endorsements
may be ill-formed (e.g., containing overvotes).

VoterInputMerge simply concatenates the contents of the previous two views. VoterInputMerge
does not inherently prevent there from being more than one row with the same (BallotId, ChoiceId).
This case violates Constraint XII and is detected by the integrity view StraightPartyOverrides (see
Section 4.3).

create view VoterInputMerge (BallotId, ChoiceId, Value) as
select BallotId, ChoiceId, Value from AntiAliasedVoterInput

union all
select BallotId, ChoiceId, Value from ImpliedStraightPartyVotes;

Assertion 21 VoterInputMerge contains exactly one row for each row in VoterInput, with any
non-canonical Choices replaced by the associated canonical Choices, plus exactly one row for each
vote that is implied by a straight party vote.

The assertion follows from Assertion 18, Assertion 20 and the definition of the union all operator.

Assertion 22 VoterInputMerge contains at most one row for a given combination of (BallotId,
ChoiceId). The Value column contains either (1) the Value derived from a vote for that Choice,
(2) the Value derived from a vote for an Alias of that Choice, or (3) the Value derived from a vote
for that Choice implied by a straight party vote.

1. By Assertion 18, Assertion 20, Constraint XII and Constraint XIV, it is not possible for An-
tiAliasedVoterInput and ImpliedStraightPartyVotes to both contain votes in a given Contest
for a given Ballot.

2. Table Choice is defined such that a Choice is uniquely associated with exactly one Contest.

3. Consequently, AntiAliasedVoterInput and ImpliedStraightPartyVotes cannot both contain votes
with a given combination of (BallotId, ChoiceId).

4. If a given combination of (BallotId, ChoiceId) appears in AntiAliasedVoterInput, the Value
column of VoterInputMerge will contain the Value derived from a vote for the Choice or an
Alias of that Choice, satisfying (1) or (2).

5. If a given combination of (BallotId, ChoiceId) appears in ImpliedStraightPartyVotes, the Value
column of VoterInputMerge will contain the Value derived from a vote for that Choice implied
by a straight party vote, satisfying (3).

*** DRAFT *** 78 *** DRAFT ***

4.2.3 EffectiveInput

Finally, the view EffectiveInput generates zeroes for ballot positions that were not voted. This
is appropriate for all Contest types except ranked order. Ranked order tabulators should instead
access VoterInputMerge directly.

create view EffectiveInput (BallotId, ChoiceId, Value) as
select BallotId, ChoiceId, coalesce (Value, 0)
from VotableChoices natural left outer join VoterInputMerge;

Assertion 23 For each Ballot, EffectiveInput contains exactly one row for each canonical Choice
for which the Ballot could contain a vote. The Value column contains either (1) the Value derived
from a vote for that Choice, (2) the Value derived from a vote for an Alias of that Choice, (3) the
Value derived from a vote for that Choice implied by a straight party vote, or (4) the default value
of zero.

1. Per Assertion 5, for each Ballot, VotableChoices contains exactly one row for each canonical
Choice for which the Ballot could contain a vote.

2. Per Assertion 22, VoterInputMerge contains at most one row for a given combination of (Bal-
lotId, ChoiceId).

3. Consequently, VotableChoices natural left outer join VoterInputMerge contains the same num-
ber of rows as VotableChoices.

4. Since VotableChoices does not have a Value column, the Value column of the join will come
from VoterInputMerge when a matching row exists and be null when no matching row exists.

5. If Value is not null, then it came from VoterInputMerge. Per Assertion 22, this Value will
satisfy one of (1), (2), or (3).

6. coalesce (Value, 0) has the effect of replacing nulls with zeroes, satisfying (4).

4.3 Integrity checks

For those integrity constraints that are too complex to code directly as SQL constraints within the
tables, a series of views exists to look for problems. All of the integrity checking views should always
be empty. If data appear in any of the views, the input was invalid and the results of the model will
be invalid. The integrity views are listed in Table 4 but their definitions have been elided. Interested
readers can find them in the Votetest distribution, in the file Infrastructure-VoteSchema.sql.

4.4 Translation of logic model

The following transforms are used to render the logic model as SQL.

1. Each function is replaced by a view in which the parameters form the primary key and the last
column is the value of the function.

2. Time parameters (t) are factored out. All views implicitly project results for the time t corre-
sponding to the current state of the database.

*** DRAFT *** 79 *** DRAFT ***

Table 4: Integrity checks

Constraint Integrity view(s)
Constraint I OutOfRangeVoterInputs, OutOfRangeEndorsements
Constraint II N/A, enforced by SQL check constraint
Constraint III N/A, enforced by SQL check constraint
Constraint IV N/A, enforced by SQL check constraint
Constraint V UnreportedBallots
Constraint VI ExtraneousInputs
Constraint VII MoreThanOneStraightPartyContest
Constraint VIII CircularStraightPartyEndorsements
Constraint IX NonExistentParties
Constraint X N/A, enforced by SQL primary key constraint
Constraint XI DoubleVotes
Constraint XII StraightPartyOverrides
Constraint XIII DoubleIndirectAliases
Constraint XIV CrossContestAliases
Constraint XV EndorsedAliases
Constraint XVI TooManyWriteIns

3. When a function takes both a Contest and a Choice as parameters, the Contest parameter is
omitted. With the data model used here, the Contest can be inferred from the Choice.

4. Logic is translated into those SQL constructs that are most transparently equivalent.

5. Ranked order Contests, which are not handled by the logic model, are suppressed.

6. Irrelevant values, such as zero tallies for Choices that do not appear in the applicable BallotStyle
or Contests that are not relevant in the applicable ReportingContext, are suppressed.

The following subsections first quote relevant portions of the logic model, then describe their analogs
in the schema. Some terms from the logic model are elided from this discussion. For complete
information on the logic model, please refer to the VVSG [1].

All assertions have as a precondition the assumption that all of the constraints are satisfied (see
Section 3.5.5).

4.4.1 S(c, r, t, v)

Ballot v’s vote with respect to contest choice c in contest r as of time t. For checkboxes
and the like, the value is 1 (selected) or 0 (not selected). For cumulative voting, the
value is the number of votes that v gives to contest choice c in contest r. If the applicable
ballot style does not include contest r, S(c, r, t, v) = 0.

Assertion 24 The relevant case of the quaternary function S is implemented by the view Effec-
tiveInput. For each Ballot, for each canonical Choice appearing on that Ballot, column Value
contains the value specified by the definition of S(c, r, t, v) for c = ChoiceId, r = Choice.ContestId,
t as of the state of the database, and v = BallotId.

*** DRAFT *** 80 *** DRAFT ***

Follows from Assertion 23. Rows are not generated for the irrelevant case where S(c, r, t, v) is
defined to be zero. Note that EffectiveInput does not eliminate inputs for ranked order Contests.

4.4.2 S(r, t, v)

The total number of votes that ballot v has in contest r as of time t.

S(r, t, v) =
∑

c∈C(r,t)

S(c, r, t, v)

The ternary function S is implemented by the view S. The current value of S(r, t, v) is obtained by
selecting S val where ContestId = r and BallotId = v. The view S contains rows only for Contests
that actually appear on the Ballot according to its BallotStyle. All others are defined to be 0.

create view S (ContestId, BallotId, S_val) as
select ContestId, BallotId, coalesce (sum (Value), 0)
from FilteredBallotContestAssociation
natural left outer join Choice
natural left outer join EffectiveInput

group by ContestId, BallotId;

Assertion 25 For each Ballot, for each non-ranked-order Contest appearing on that Ballot, column
S val of S contains the value specified by the definition of S(r, t, v) for r = ContestId, t as of the
state of the database, and v = BallotId.

1. Per Assertion 1, for each Ballot, FilteredBallotContestAssociation contains exactly one row for
each non-ranked-order Contest appearing in the BallotStyle identified by Ballot.StyleId, and
zero rows for any ranked order Contests.

2. Per Assertion 23, for each Ballot, EffectiveInput contains exactly one row for each canonical
Choice for which the Ballot could contain a vote.

3. For each Ballot, FilteredBallotContestAssociation natural left outer join Choice contains exactly
one row for each Choice in each non-ranked-order Contest on the Ballot, plus exactly one row
for each non-ranked-order Contest on the Ballot that has zero associated Choices.

4. For each Ballot, the natural left outer join of the previous result with EffectiveInput contains
(1) exactly one row for each canonical Choice in each non-ranked-order Contest on the Ballot,
with Value from EffectiveInput, plus (2) exactly one row for each non-canonical Choice in each
non-ranked-order Contest on the Ballot, with null Value, plus (3) exactly one row for each
non-ranked-order Contest on the Ballot that has zero associated Choices, with null Value.

5. For Contests having Choices, the value specified by the definition of S(r, t, v) follows directly by
summing the Value column while grouping by ContestId and BallotId. The null values for non-
canonical Choices are ignored by the summation operator. Constraint XIII and Constraint XIV
prevent any Contest from having only Aliases as Choices.

6. For Contests with zero associated Choices, the summation of a single null value returns null
and coalesce (sum (Value), 0) substitutes the value zero.

*** DRAFT *** 81 *** DRAFT ***

VotesByContestAndContext is a convenience to retrieve all of the S val vote counts for each relevant
combination of ReportingContext and Contest. For each relevant combination of ReportingContext
and Contest that contains no Ballots, there is a single row with nulls in the last three columns.

create view VotesByContestAndContext (ContestId, N, ReportingContext,
BallotId, Accepted, S_val) as

select ContestId, N, ReportingContext, BallotId, Accepted, S_val
from FilteredContextContestAssociation
natural join Contest
natural left outer join (S natural join ReportingContextAssociationMerge)
natural left outer join Ballot;

The discussion for the following two assertions is combined.

Assertion 26 For each relevant combination of ReportingContext and Contest (excluding ranked
order), VotesByContestAndContext contains a row for each Ballot that contains that Contest and
that is reported in that ReportingContext. Column Accepted is as specified in the table Ballot.
Column S val contains the value specified by the definition of S(r, t, v) for r = ContestId, t as of
the state of the database, and v = BallotId.

Assertion 27 For each relevant combination of ReportingContext and Contest (excluding ranked
order) where there does not exist a Ballot that contains that Contest and that is reported in that
ReportingContext, VotesByContestAndContext contains a single row with nulls in the BallotId,
Accepted, and S val columns.

1. Per Assertion 10, for each ReportingContext, FilteredContextContestAssociation contains ex-
actly one row for each non-ranked-order Contest that is relevant in that ReportingContext, and
zero rows for each ranked-order Contest.

2. The natural join with Contest adds the column N but does not change the number of rows.

3. Per Assertion 3, for each Ballot, ReportingContextAssociationMerge contains exactly one row
for each relevant ReportingContext. Equivalently, for each ReportingContext, ReportingCon-
textAssociationMerge lists every Ballot that is reported in that ReportingContext.

4. Per Assertion 25, for each Ballot, the view S contains exactly one row for each non-ranked-order
Contest appearing on that Ballot, with S val as described above.

5. For each Ballot, S natural join ReportingContextAssociationMerge yields the Cartesian prod-
uct of the S rows (one for each non-ranked-order Contest appearing on that Ballot) with the
ReportingContextAssociationMerge rows (one for each ReportingContext relevant to that Bal-
lot).

6. For each relevant combination of ReportingContext and Contest (excluding ranked order),
the natural left outer join of (FilteredContextContestAssociation natural join Contest) and (S
natural join ReportingContextAssociationMerge) contains a row for each Ballot that contains
that Contest and that is reported in that ReportingContext. For each relevant combination of
ReportingContext and Contest (excluding ranked order) where there does not exist a Ballot
that contains that Contest and that is reported in that ReportingContext, the result contains
a single row with nulls in the BallotId and S val columns.

7. The natural left outer join with Ballot adds the Accepted column but does not change the
number of rows. Where BallotId is null, Accepted is also null.

*** DRAFT *** 82 *** DRAFT ***

4.4.3 S′(c, r, t, v)

Ballot v’s vote with respect to contest choice c in contest r as accepted for counting
purposes (i.e., valid votes only), as of time t.

t ≥ tE → S′(c, r, t, v) =

{
S(c, r,D(v), v) if S(r, D(v), v) ≤ N(r) ∧A(t, v)
0 otherwise

The quaternary function S′ is implemented by the view SPrime. The current value of S′(c, r, t, v)
is obtained by selecting SPrime val where ChoiceId = c and BallotId = v.

create view SPrime (ChoiceId, BallotId, SPrime_val) as
select ChoiceId, BallotId,
case
when S_val <= N and Accepted then Value
else 0

end
from EffectiveInput
natural join Choice
natural join Contest
natural join Ballot
natural join S;

Assertion 28 For each Ballot, for each canonical Choice for which that Ballot could contain a
vote, excluding ranked order Contests, column SPrime val of SPrime contains the value specified
by the definition of S′(c, r, t, v) for c = ChoiceId, r = Choice.ContestId, t as of the state of the
database, and v = BallotId.

1. Per Assertion 24, the quaternary function S is implemented by the view EffectiveInput. Per
Assertion 23, EffectiveInput contains exactly one row for each canonical Choice for which the
Ballot could contain a vote.

2. The natural joins with Choice, then Contest, then Ballot add columns but do not change the
number of rows.

3. The natural join with S eliminates rows pertaining to Choices in ranked order Contests and
adds the S val column (providing S(r, t, v)) to the others.

4. For each Ballot, for each canonical Choice for which the Ballot could contain a vote, the case
statement generates the value of S′(c, r, t, v) as specified above.

4.4.4 T (c, j, r, t)

The vote total for contest choice c in contest r and reporting context j as of time t.
This does not include votes that are invalid due to overvoting or votes from ballots for
which A(t, v) is false.

t ≥ tE → T (c, j, r, t) =
∑

v∈V (j,tE)

S′(c, r, tE , v)

*** DRAFT *** 83 *** DRAFT ***

The quaternary function T is implemented by the view T. The current value of T (c, j, r, t) is
obtained by selecting T val where ChoiceId = c and ReportingContext = j.

create view T (ChoiceId, ReportingContext, T_val) as
select ChoiceId, ReportingContext, coalesce (sum (SPrime_val), 0)
from FilteredContextChoiceAssociation
natural left outer join
(SPrime natural join ReportingContextAssociationMerge)

group by ChoiceId, ReportingContext;

Assertion 29 For each ReportingContext, for each canonical Choice in each non-ranked-order
Contest that is relevant in that ReportingContext, column T val of T contains the value specified
by the definition of T (c, j, r, t) for c = ChoiceId, j = ReportingContext, r = Choice.ContestId, and
t as of the state of the database.

1. Per Assertion 11, for each ReportingContext, FilteredContextChoiceAssociation contains ex-
actly one row for each canonical Choice in each non-ranked-order Contest that is relevant in
that ReportingContext.

2. Per Assertion 28, for each Ballot, for each canonical Choice for which that Ballot could contain a
vote, excluding ranked order Contests, column SPrime val of SPrime contains the value specified
by the definition of S′(c, r, t, v).

3. Per Assertion 3, for each Ballot, ReportingContextAssociationMerge contains exactly one row
for each relevant ReportingContext.

4. For each Ballot, SPrime natural join ReportingContextAssociationMerge yields the Cartesian
product of the SPrime rows with the ReportingContextAssociationMerge rows.

5. For each ReportingContext, the natural left outer join of FilteredContextChoiceAssociation
with the previous result adds a single row with a null in the SPrime val column for each
canonical Choice in each non-ranked-order Contest for which there were no relevant Ballots.
The rows already existing from the previous result are not changed.

6. For each ReportingContext, for each canonical Choice in each non-ranked-order Contest that
is relevant in that ReportingContext and for which at least one relevant Ballot exists, the value
specified by the definition of T (c, j, r, t) follows directly by summing the SPrime val column
while grouping by ChoiceId and ReportingContext.

7. For the case in which no relevant Ballot exists, the null that is returned by the summation
operation on the single null value is changed to zero by coalesce (sum (SPrime val), 0).

TSum is a convenience that sums T val by Contest. Note that TSum does not eliminate ranked
order contests but rather provides a value of zero for them in the TSum val column.

create view TSum (ContestId, ReportingContext, TSum_val) as
select ContestId, ReportingContext, coalesce (sum (T_val), 0)
from ReportingContextContestAssociation
natural left outer join Choice
natural left outer join T

group by ContestId, ReportingContext;

*** DRAFT *** 84 *** DRAFT ***

Assertion 30 For each ReportingContext, for each non-ranked-order Contest that is relevant in
that ReportingContext, column TSum val of TSum contains the value

∑
c∈C(r,t) T (c, j, r, t) for j =

ReportingContext, r = ContestId and t as of the state of the database.

1. Per Assertion 9, for each ReportingContext, ReportingContextContestAssociation contains ex-
actly one row for each Contest that is relevant in that ReportingContext.

2. For each ReportingContext, ReportingContextContestAssociation natural left outer join Choice
contains one row for each Choice in each Contest that is relevant in that ReportingContext,
plus one row with null in the ChoiceId column for each Contest that is relevant in that Report-
ingContext that has no associated Choices.

3. The natural left outer join of the previous result with T, using both the ChoiceId and Report-
ingContext columns, has the same number of rows as the previous result. Each row pertaining
to a Choice in some non-ranked-order Contest acquires T val supplying the value of T (c, j, r, t).
Each row pertaining to a ranked order Contest or a Contest with no associated Choices acquires
T val containing a null value.

4. For each ReportingContext, for each non-ranked-order Contest that is relevant in that
ReportingContext and that has at least one associated Choice, the value specified by∑

c∈C(r,t) T (c, j, r, t) follows directly by summing the T val column while grouping by ContestId
and ReportingContext.

5. For ranked order Contests and Contests having no associated Choices, the null that is returned
by the summation operation on the single null value is changed to zero by coalesce (sum (T val),
0).

4.4.5 O(j, r, t)

For a given contest and reporting context, the number of overvotes in read ballots for
which A(t, v) is true as of time t. Each ballot in which contest r is overvoted contributes
N(r) to O(j, r, t).

t ≥ tE → O(j, r, t) =
∑

v∈V (j,tE)

{
N(r) if S(r, D(v), v) > N(r) ∧A(t, v)
0 otherwise

The ternary function O is implemented by the view O. The current value of O(j, r, t) is obtained
by selecting O val where ContestId = r and ReportingContext = j.

create view O (ContestId, ReportingContext, O_val) as
select ContestId, ReportingContext, sum (

case
when S_val > N and Accepted then N
else 0

end)
from VotesByContestAndContext
group by ContestId, ReportingContext;

Assertion 31 For each ReportingContext, for each non-ranked-order Contest that is relevant in
that ReportingContext, column O val of O contains the value specified by the definition of O(j, r, t)
for j = ReportingContext, r = ContestId, and t as of the state of the database.

*** DRAFT *** 85 *** DRAFT ***

1. Per Assertion 26, for each relevant combination of ReportingContext and Contest (excluding
ranked order), VotesByContestAndContext contains a row for each Ballot that contains that
Contest and that is reported in that ReportingContext. Column Accepted is as specified in the
table Ballot. Column S val contains the value specified by the definition of S(r, t, v) for r =
ContestId, t as of the state of the database, and v = BallotId.

2. Per Assertion 27, for each relevant combination of ReportingContext and Contest (excluding
ranked order) where there does not exist a Ballot that contains that Contest and that is reported
in that ReportingContext, VotesByContestAndContext contains a single row with nulls in the
BallotId, Accepted, and S val columns.

3. For each ReportingContext, for each non-ranked-order Contest that is relevant in that Report-
ingContext, the value specified by the definition of O(j, r, t) follows directly by summing the
result of the case statement for each row while grouping by ContestId and ReportingContext.
In the case where Accepted and S val are null, i.e., where there does not exist a Ballot that con-
tains that Contest and that is reported in that ReportingContext, the case statement returns
0.

4.4.6 U(j, r, t)

For a given contest and reporting context, the number of undervotes in read ballots for
which A(t, v) is true as of time t. A given ballot contributes at most N(r) to U(j, r, t).
Ballot styles that do not include contest r do not contribute to this total.

t ≥ tE → U(j, r, t) =
∑

v∈V (j,tE)

{
N(r)− S(r, D(v), v) if S(r, D(v), v) ≤ N(r) ∧A(t, v)
0 otherwise

The ternary function U is implemented by the view U. The current value of U(j, r, t) is obtained
by selecting U val where ContestId = r and ReportingContext = j.

create view U (ContestId, ReportingContext, U_val) as
select ContestId, ReportingContext, sum (

case
when S_val <= N and Accepted then N - S_val
else 0

end)
from VotesByContestAndContext
group by ContestId, ReportingContext;

Assertion 32 For each ReportingContext, for each non-ranked-order Contest that is relevant in
that ReportingContext, column U val of U contains the value specified by the definition of U(j, r, t)
for j = ReportingContext, r = ContestId, and t as of the state of the database.

The argument is parallel to that of Assertion 31, substituting U for O.

*** DRAFT *** 86 *** DRAFT ***

4.4.7 K(j, r, t)

For a given contest and reporting context, the number of read ballots for which A(t, v)
is true as of time t (i.e., the number of ballots that should be counted). Ballot styles
that do not include contest r do not contribute to this total.

The ternary function K is implemented by the view K. The current value of K(j, r, t) is obtained
by selecting K val where ContestId = r and ReportingContext = j.

create view K (ContestId, ReportingContext, K_val) as
select ContestId, ReportingContext,
(select count(*)

from Ballot
natural join ReportingContextAssociationMerge
natural join BallotStyleContestAssociation

where ReportingContextAssociationMerge.ReportingContext
= FilteredContextContestAssociation.ReportingContext

and BallotStyleContestAssociation.ContestId
= FilteredContextContestAssociation.ContestId

and Accepted)
from FilteredContextContestAssociation;

Assertion 33 For each ReportingContext, for each non-ranked-order Contest that is relevant in
that ReportingContext, column K val of K contains the value specified by the definition of K(j, r, t)
for j = ReportingContext, r = ContestId, and t as of the state of the database.

1. Per Assertion 10, for each ReportingContext, FilteredContextContestAssociation contains ex-
actly one row for each non-ranked-order Contest that is relevant in that ReportingContext, and
zero rows for each ranked-order Contest.

2. Per Assertion 3, for each Ballot, ReportingContextAssociationMerge contains exactly one row
for each relevant ReportingContext.

3. For each Ballot, Ballot natural join ReportingContextAssociationMerge contains exactly one
row for each relevant ReportingContext.

4. For each Ballot, for each relevant ReportingContext, the natural join of the previous result
with BallotStyleContestAssociation contains exactly one row for each Contest appearing on the
Ballot. If the BallotStyle has no associated Contests, there are zero such rows.

5. For each ReportingContext, for each non-ranked-order Contest that is relevant in that Report-
ingContext, the value specified by the definition of K(j, r, t) follows directly from counting the
number of rows in the previous three-way join that have a matching ReportingContext and
ContestId, and where Accepted is true.

4.4.8 Balance

Every vote must be accounted for.

t ≥ tE →
∑

c∈C(r,t)

T (c, j, r, t) + O(j, r, t) + U(j, r, t) = K(j, r, t)×N(r)

*** DRAFT *** 87 *** DRAFT ***

A check for this assertion is implemented by the view Balance. The current difference between∑
c∈C(r,t) T (c, j, r, t)+O(j, r, t)+U(j, r, t) and K(j, r, t)×N(r) is obtained by selecting Discrepancy

where ContestId = r and ReportingContext = j. Discrepancy should always be zero.

create view Balance (ContestId, ReportingContext, Discrepancy) as
select ContestId, ReportingContext, K_val * N - (TSum_val + O_val + U_val)
from K
natural join TSum
natural join O
natural join U
natural join Contest;

Assertion 34 For each ReportingContext, for each non-ranked-order Contest that is relevant in
that ReportingContext, column Discrepancy of Balance contains the value K(j, r, t) × N(r) −(∑

c∈C(r,t) T (c, j, r, t) + O(j, r, t) + U(j, r, t)
)

for j = ReportingContext, r = ContestId, and t as
of the state of the database.

1. Per Assertion 30, Assertion 31, Assertion 32 and Assertion 33, the views K, TSum, O and U
each provide one of the needed values for each ReportingContext, for each non-ranked-order
Contest that is relevant in that ReportingContext. (TSum additionally provides rows for ranked
order Contests that will be eliminated.)

2. The successive natural joins of K, TSum, O and U all occur on the columns ContestId and
ReportingContext. Each join adds a column but does not change the number of rows. The
rows in TSum pertaining to ranked order contests are eliminated by the first join.

3. The natural join with Contest (on the column ContestId) adds the column N but does not
change the number of rows.

4. For each ReportingContext, for each non-ranked-order Contest that is relevant in that Re-
portingContext, the value specified above follows directly from the expression K val * N −
(TSum val + O val + U val).

5 Advanced test development environment

5.1 Software prerequisites

All software, tools and materials were developed on a GNU/Linux operating system.

The following packages are required in order to build and run the programs in Votetest:

Name Short name Version tested Source
PostgreSQL postgres 8.3.74 [7]
Class Library for Numbers CLN 1.2.2 [8]
GNU Compiler Collection g++ 4.3.3 [9]
Flex: Fast Lexical Analyzer flex 2.5.35 [10]
Bison: GNU parser generator bison 2.3 [11]

4Some planner problems with outer joins that interfered with the operation of the schema were fixed in version
8.2.5 (see Bug #3426).

*** DRAFT *** 88 *** DRAFT ***

Votetest uses extensions to the SQL standard [2] and the C++ standard [12] that might not function
as intended with other databases and compilers.

Some help in configuring PostgreSQL is provided in Section 5.9.

5.2 Hardware prerequisites

Votetest was developed on a PC having a 3.6 GHz Pentium 4 processor, 1 GiB of RAM, and an 80
GB SATA hard drive. The resources of this PC were more than adequate for all tests in the basic
test suite, and if necessary a lesser configuration should be usable. Performance limitations became
obvious only with the large and complex scenarios generated for the scalability testing described
in Section 5.8.

5.3 File listing

Files pertaining to the advanced test development environment are described in Table 5.

Table 5: Advanced files in the Votetest distribution

Files Description Details
runTest Shell script to execute a test case. Section 5.5.1

runAllTests
Shell script to execute all test cases and
save output.

Section 5.5.2

output/
Empty subdirectory used to store the out-
put of runAllTests.

Section 5.5.2

output kill-overvotes/
Empty subdirectory used to store the
output of runAllTests when the –kill-
overvotes option is used.

Section 5.5.2

0-integrity-description.sql SQL, test suite integrity checks (15 files). Section 5.6

Infrastructure-Features.sql
SQL, create table mapping test cases to
system capabilities.

Section 5.5.4

Infrastructure-IntegrityChecks.sql
SQL, show contents of all integrity views.
This is invoked automatically by test
cases and need not be used directly.

N/A

Infrastructure-KillOvervotes.sql

SQL, transform a test case into one that
is executable on a system that prevents
overvoting. This is invoked automatically
by test cases and need not be used di-
rectly.

N/A

Infrastructure-PairsCoverage.pgcc Source code of coverage checking utility. Section 5.5.5

Infrastructure-PairsCoverage.sql
SQL, data needed by coverage checking
utility.

Section 5.5.5

Infrastructure-TestFooter.sql

SQL, print “END TEST CASE OUT-
PUT” footer. This is invoked automat-
ically by test cases and need not be used
directly.

N/A

*** DRAFT *** 89 *** DRAFT ***

Infrastructure-TestHeader.sql

SQL, print “BEGIN TEST CASE OUT-
PUT” and timestamp and configure ver-
bosity of output for all test cases. This is
invoked automatically by test cases and
need not be used directly.

N/A

Infrastructure-TestHook.sql

SQL, support the optional invocation
of a test transformation script (e.g.,
Infrastructure-KillOvervotes.sql). This is
invoked automatically by test cases and
need not be used directly.

N/A

Infrastructure-VoteSchema.sql
SQL, create the schema. This is invoked
automatically by test cases and need not
be used directly.

Section 3.6
Section 4

ReportGenerator/

Subdirectory containing the source code
of the advanced test development environ-
ment’s report generator. This is invoked
automatically by test cases and need not
be used directly.

Section 5.5.3

TestGenerator/
Subdirectory containing the source code
of the advanced test development environ-
ment’s test generator.

Section 5.7

test specs/
Subdirectory containing example input
files for the test generator.

Section 5.7.3

Makefile.am
Makefile.in
aclocal.m4
configure
configure.ac
depcomp
install-sh
missing

Files having to do with the automake
build process.

Section 5.4

INSTALL
Text file containing generic instructions
on the use of the configure script.

Section 5.4

AUTHORS
NEWS
README

Unused files required by GNU standard. N/A

5.4 Installation

Votetest is packaged with GNU automake [13], so all usual GNU tricks should work. Help on con-
figuration options can be found in the INSTALL file or obtained by entering ./configure --help.

Normally, one should only need to do the following to compile ReportGenerator and TestGenerator.

bash-3.1$./configure
bash-3.1$ make

*** DRAFT *** 90 *** DRAFT ***

However, in the event that PostgreSQL and/or CLN are installed in nonstandard locations, an
invocation such as the following might be required.

bash-3.1$./configure \
> CPPFLAGS="-I/usr/local/pgsql/include -I/usr/local/cln-1.1.13/include" \
> LDFLAGS="-L/usr/local/pgsql/lib -L/usr/local/cln-1.1.13/lib"
bash-3.1$ make

5.5 Infrastructure

5.5.1 runTest

The script runTest is used to run an SQL test case against the database and report the results
from the Votetest environment.

A test case is executed by changing the current working directory to the directory containing the
test suite and invoking the runTest script with the file name of the test case. The runTest script
resets the database to an initial state and then feeds the test case to the SQL interpreter. No
database named votetest other than the one created by the test suite should exist or it will be
destroyed without warning.

Usage: ./runTest [--kill-overvotes] test-file-name.sql

Some test cases involve overvoting, which means they cannot be executed as-is on a system that
prevents overvoting. If the –kill-overvotes switch is used, the test case is transformed into one that
can be executed on a system that prevents overvoting. Otherwise, overvotes are processed and
reported as they would be in a system that supports overvoting.

If a ballot overvotes a contest, –kill-overvotes removes all of that ballot’s votes in that contest,
effectively converting overvotes into undervotes. This of course changes the expected results of the
test case. The expected results in the normal configuration and with –kill-overvotes enabled are
saved in the subdirectories sample output and sample output kill-overvotes respectively.

5.5.2 runAllTests

The script runAllTests invokes runTest for each test case and directs the output into a file in the
subdirectory named “output.” It then invokes runTest –kill-overvotes for each test case and directs
the output into a file in the subdirectory named “output kill-overvotes.” These results may then be
compared with the contents of the sample output and sample output kill-overvotes subdirectories
to ensure that the test suite is operating as expected.

5.5.3 ReportGenerator

Usage: ReportGenerator [-v] context-name [context-name...]. A no-frills, plain-ASCII post-
voting report for each specified ReportingContext is sent to standard output. As a convenience
to test labs, the report total volume needed for the accuracy test protocol of the VVSG is also
calculated and reported. A sample report is shown in Figure 9.

*** DRAFT *** 91 *** DRAFT ***

Figure 9: Sample report

Report for context Precinct 1 generated 2007-03-21 09:19-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 13 13

Blank 1 1
Precinct 1 Style 13 13

Blank 1 1

VOTE TOTALS

Straight party, vote for at most 1
Bipartisan Party 1
Moderate Party 1
Overvotes 1
Undervotes 10
Counted ballots 13
Balance 0

President, vote for at most 1
Car Tay Fower 4
Tayra Tree 3
Beeso Tu (Moderate Party) 2
Oona Won (Bipartisan Party) 1
Nada Zayro 0
Overvotes 1
Undervotes 2
Counted ballots 13
Balance 0

Report total volume: 108
- Includes optional reporting of blank ballots.
- Excludes separate reporting of ballots cast vs. read.

*** DRAFT *** 92 *** DRAFT ***

Table 6: ReportGenerator return codes

Bit Meaning
00001 Incorrect usage
00010 No such reporting context
00100 Exception on attempt to connect to database
01000 Exception while connected
10000 Exception on attempt to disconnect from database

The verbose flag (-v) is only useful in ranked order contests. It causes the state of the ranked order
logic (with many ballot images) to be output for each round of voting.

ReportGenerator is normally invoked by individual test cases and need not be used directly. If it
is invoked from a shell script, the codes that it returns to the shell are listed in Table 6. A return
of 0 indicates success; other values indicate one or more problems as encoded by individual bits.
Consult the standard error output of the program for additional details on the failure or failures
that occurred.

If an error similar to the following occurs when ReportGenerator is invoked:

ReportGenerator/ReportGenerator: error while loading shared libraries:
libecpg.so.5: cannot open shared object file: No such file or directory

The solution is to add a command like the following to ∼/.bash profile or another script that is
always executed, specifying the location of the library that was not found.

export LD_LIBRARY_PATH=/usr/local/pgsql/lib

The algorithm used for ranked order contests is only one example of conforming behavior. This
algorithm is not recommended or endorsed by the National Institute of Standards and Technology
for use in elections and it is probably not the best algorithm available for the purpose. It is used in
Votetest only to provide output for comparison in simple cases where the implementation-dependent
details have no impact.

• The quota is Hagenbach-Bischoff plus epsilon.

• Surpluses are transferred via the Gregory method using unlimited precision rational numbers.

• No special cases are handled. This means: every Choice must be ranked on every Ballot;
every Choice must be assigned a different rank; only one Choice is elected or eliminated at a
time; and if a tie occurs, the algorithm halts.

5.5.4 Features

Infrastructure-Features.sql creates the following table, which maps test cases to system capabilities
(VVSG classes):

*** DRAFT *** 93 *** DRAFT ***

create table Features (
Test Text primary key,

PrimaryElections Boolean not null default false,
AbsenteeVoting Boolean not null default false,
AbsenteeByCategories Boolean not null default false,
SplitPrecincts Boolean not null default false,
BallotRotation Boolean not null default false,
WriteIns Boolean not null default false,
CumulativeVoting Boolean not null default false,
NofMVoting Boolean not null default false,
RankedOrderVoting Boolean not null default false,
ProvisionalChallengedBallots Boolean not null default false,
StraightPartyVoting Boolean not null default false,
CrossPartyEndorsement Boolean not null default false,

check (StraightPartyVoting or not CrossPartyEndorsement),
check (AbsenteeVoting or not AbsenteeByCategories)

);

One could find the set of test cases applicable to a system that lacks support for certain features
(e.g., ranked order voting and straight party voting) as follows:

bash-3.1$ psql votetest
[... PostgreSQL interactive terminal starts ...]

votetest=# \i Infrastructure-Features.sql
[... Features table is created ...]

votetest=# select Test from Features where not RankedOrderVoting
votetest-# and not StraightPartyVoting;
[... Test cases are listed ...]

5.5.5 PairsCoverage

While the purpose of Features is to recall all test cases that apply for a given set of supported
features, the purpose of PairsCoverage is to establish that test cases exist for every pair of features.
In PairsCoverage, subclassed voting variations are treated separately to establish that a test case
exists for both cases. Since all meaningful pairings are now covered, the PairsCoverage tool is no
longer being maintained or updated as new test cases are added.

PairsCoverage is prepared and run as follows:

bash-3.1$ psql votetest < Infrastructure-PairsCoverage.sql
bash-3.1$./Infrastructure-PairsCoverage > matrix.html

Infrastructure-PairsCoverage outputs the content of Table 7 in HTML form. A key to the row and
column headings is provided in Table 8.

*** DRAFT *** 94 *** DRAFT ***

Table 7: Output of Infrastructure-PairsCoverage

PE AV ABC SP BR WI CV NMV ROV PCB SPV CPE
PE 12 1 1 1 1 1 1 1 1 1 1 1
AV 1 13 N/A 1 1 2 1 1 1 1 1 1

ABC 1 N/A 12 1 1 2 1 1 1 1 1 1
SP 1 1 1 13 1 1 1 1 1 1 1 1
BR 1 1 1 1 12 1 1 1 1 1 1 1
WI 1 2 2 1 1 16 1 2 1 1 1 1
CV 1 1 1 1 1 1 12 1 1 1 1 1

NMV 1 1 1 1 1 2 1 13 1 1 1 1
ROV 1 1 1 1 1 1 1 1 12 1 1 N/A
PCB 1 1 1 1 1 1 1 1 1 12 1 1
SPV 1 1 1 1 1 1 1 1 1 1 11 N/A
CPE 1 1 1 1 1 1 1 1 N/A 1 N/A 10

Table 8: Key to headings appearing in Table 7

Heading Test suite ID VVSG name
PE PrimaryElections Primary elections
AV AbsenteeVoting Absentee voting
ABC AbsenteeByCategories Absentee voting
SP SplitPrecincts Split precincts
BR BallotRotation Ballot rotation
WI WriteIns Write-ins
CV CumulativeVoting Cumulative voting
NMV NofMVoting N of M voting
ROV RankedOrderVoting Ranked order voting
PCB ProvisionalChallengedBallots Provisional / challenged ballots
SPV StraightPartyVoting Straight party voting
CPE CrossPartyEndorsement Cross-party endorsement

*** DRAFT *** 95 *** DRAFT ***

Table 9: Constraint violation tests

Constraint Test case(s)
Constraint I 0-integrity-OutOfRangeInput.sql, 0-integrity-OutOfRangeEndorsement.sql
Constraint II N/A, enforced by SQL check constraint
Constraint III N/A, enforced by SQL check constraint
Constraint IV N/A, enforced by SQL check constraint
Constraint V 0-integrity-UnreportedBallots.sql
Constraint VI 0-integrity-ExtraneousInput.sql
Constraint VII 0-integrity-MoreThanOneStraightPartyContest.sql
Constraint VIII 0-integrity-CircularEndorsement.sql
Constraint IX 0-integrity-NonExistentParties.sql
Constraint X N/A, enforced by SQL primary key constraint
Constraint XI 0-integrity-AliasDoubleVotes.sql
Constraint XII 0-integrity-StraightPartyOverrides.sql
Constraint XIII 0-integrity-DoubleIndirectAlias.sql
Constraint XIV 0-integrity-CrossContestAliases.sql
Constraint XV 0-integrity-EndorsedAlias.sql
Constraint XVI 0-integrity-TooManyWriteIns.sql

5.6 Test suite self-tests

Self-tests are for the purpose of validating the test suite itself, not for testing voting systems. The
integrity and self-testing features of a voting system may or may not bear any resemblance to the
integrity and self-testing features of the test suite.

5.6.1 Baseline

The test case 0-integrity-Baseline.sql verifies that the integrity views show no false positives on the
base state for integrity tests.

5.6.2 Constraint violations

The operation of schema constructs designed to detect violations of the constraints specified in
Section 3.5.5 is verified by test cases that deliberately violate them. The test cases are listed in
Table 9.

5.7 TestGenerator

The test generator is an extra testing tool that may be useful in the creation of additional tests
beyond those of the basic test suite, for example, for volume testing. However, it is not part of the
basic test suite. A different approach to generating test data is detailed in Section 6.5.6.

Usage: TestGenerator input-filename > output.sql

*** DRAFT *** 96 *** DRAFT ***

The input to the test generator is a plain text file having the following format:

Input: ElectionSpec ContestSpec*
ElectionSpec: NameValuePair+
ContestSpec: (NameValuePair+)
NameValuePair: Name = Value

Whitespace, /* C */ and // C++ style comments are ignored.

The permissible names and values are detailed below.

5.7.1 Election specification

The following values must be specified using name-value pairs:

• ballots = number of ballots

• districts = number of districts

• precincts = number of precincts

The following fields have default values and may be omitted:

• ballotDistribution = UniformRandom (default) or Even.

• precinctDistribution = UniformRandom (default) or Even.

The ballot distribution controls the assignment of ballots to precincts. The precinct distribution
controls the assignment of precincts to districts.

UniformRandom. X are assigned randomly to Y such that on average all Y would
get the name number of X; however, no specific number is aimed for and it is unlikely
that all Y will in fact receive exactly the same number of X. The X pertaining to each
Y are not grouped (i.e., they do not appear with consecutive numbers in the generated
test).

Even. X are deterministically divided as evenly as possible across Y and are grouped
by Y .

5.7.2 Contest specification

The following values must be specified using name-value pairs:

• N = per definition of N in Section 3.5.3.4 (> 0).

• M = number of choices to generate (≥ N).

The following fields have default values and may be omitted:

• level = S (system extent, default), D (district), or P (precinct).

• logic = N (N-of-M, default), C (cumulative), or R (ranked order).

• distribution = UniformRandom (default) or Triangle.

*** DRAFT *** 97 *** DRAFT ***

• W = number of write-in choices to generate (0 ≤ W ≤ M , default 0).

If a Contest is declared as system extent level, one Contest that appears on every Ballot is generated.
If a Contest is declared as district level, a separate Contest is generated for each district and appears
only on Ballots for that district. If a Contest is declared as precinct level, a separate Contest is
generated for each precinct and appears only on Ballots for that precinct. The assignment of
precincts to districts is random.

Distribution controls how votes from individual ballots are distributed to choices.

UniformRandom. For N-of-M and Cumulative contests, votes are distributed ran-
domly to contest choices such that on average they would get the same number of
votes; however, no specific tally is aimed for and it is unlikely that all choices will in
fact receive exactly the same number of votes. For ranked order contests, every ballot
ranks all of the ballot choices in random order.

Triangle. For N-of-M and Cumulative contests, votes are deterministically assigned to
contest choices such that, for some integer X ≥ 0, the first contest choice will receive X
votes, the second contest choice will receive 2X votes, and so on. X is made as large as
possible for the available number of votes and ballots (in an N-of-M contest, the tally
for any contest choice cannot exceed the number of ballots). Any surplus votes are left
as undervotes. For ranked order contests, every ballot ranks all of the ballot choices in
reverse order so that the highest numbered contest choice is elected in the first round
of voting, the second highest numbered contest choice is elected in the second round of
voting, etc.

If W is nonzero, the first W choices by number become write-ins. Thus, in a Triangle distribution,
write-ins get fewer votes than other choices.

5.7.3 Example

ballots=200 districts=2 precincts=4
(level=S logic=N N=1 M= 7 distribution=Triangle)
(level=S logic=N N=1 M= 6 distribution=Triangle)
(level=D logic=N N=1 M= 4 distribution=Triangle)
(level=D logic=N N=1 M= 4 distribution=Triangle)
(level=D logic=N N=4 M=10 distribution=Triangle)
(level=P logic=N N=4 M=16 distribution=Triangle)

In this example, the distribution of votes is deterministic, but the assignment of ballots to precincts
and precincts to districts is random. This randomness affects the number of votes and ballots
available in each contest, so the results in each contest will vary as the Triangle distributions scale
up or down accordingly.

Additional examples can be found in the test specs subdirectory of the Votetest distribution.

*** DRAFT *** 98 *** DRAFT ***

5.8 On performance and scalability

Votetest was designed with a preference for transparency of logic over performance and scalability.
With the exception of ranked order, tabulation logic is implemented in SQL and mirrors the logic
model defined in the VVSG. This limits opportunities to introduce faults but incurs a considerable
performance penalty.

To improve performance in large and complex test cases, ReportGenerator builds temporary tables
corresponding to views that are in or near the top level of the schema. This avoids repeated
computation of views that are accessed many times during report generation. Nevertheless, for
sufficiently large and complex test cases, the construction of these temporary tables becomes I/O
bound and the time to generate reports therefore becomes quite long.

Table 10 shows the run time for several test cases of significant size and complexity as observed
on the computer described in Section 5.2. The parameters used in these examples are believed to
exceed the limits likely to be used in conformity assessment. Performance will vary by PostgreSQL
version and configuration, by hardware configuration, and by workload.

Table 10: Scalability figures

Ballots Districts Precincts Contests Ballot positions Votes Run time
2000000 1 1 1 10000000 6000000 27 min
2000000 5 25 1 10000000 6000000 32 min
2000000 1 1 3 30000000 6000000 1 hr 6 min
120000 4 60 15 + 4× 4 + 60 = 91 9600000 2400000 26 min

Within reasonable limits, slow execution should not be a barrier to testing. Test cases are typically
executed by Votetest only once to obtain results for comparison with those from actual voting
system products. The output from every test case provided as part of the distribution is saved in the
sample output and sample output kill-overvotes subdirectories. Any new tests that are developed
by test labs can similarly be executed in advance and the results saved for future reference.

N.B., The –kill-overvotes test transformation option was not used during the scalability tests.
Additional optimization may be required if it is necessary to transform large test cases.

5.9 PostgreSQL configuration help

The following is intended to help someone unfamiliar with PostgreSQL reach a usable configuration
with minimal effort. More complete information is available in the PostgreSQL documentation.

The steps to reaching a usable configuration are:

1. Create the Unix account ‘postgres.’

2. Install the PostgreSQL software.

3. Initialize the database.

4. Customize the database configuration.

5. Start the database dæmon.

6. Grant database access to the testing account.

*** DRAFT *** 99 *** DRAFT ***

5.9.1 Create the Unix account ‘postgres’

This step is performed according to the procedures of the Unix operating system being used.
Commonly there is a shell script in /usr/sbin for this purpose, that must be run as root.

The postgres account should be locked to prevent interactive log-ins:

bash-3.1# passwd -l postgres
Password changed.

5.9.2 Install the PostgreSQL software

If a pre-built PostgreSQL package is not available, PostgreSQL may be built from source code.

bash-3.1$./configure --prefix=/usr/local
bash-3.1$ make
bash-3.1$ su
bash-3.1# make install

5.9.3 Initialize the database

Assuming that the database should go in /usr/share/data:

bash-3.1# mkdir /usr/share/data
bash-3.1# chown postgres. /usr/share/data
bash-3.1# su postgres
bash-3.1$ initdb -D /usr/share/data

5.9.4 Customize the database configuration

The database configuration is customized by modifying the file ‘postgresql.conf’ in the data direc-
tory (/usr/share/data in this example).

The following changes to the default configuration are recommended for a database being used
exclusively for Votetest. They would not necessarily be appropriate for a database that is also used
for other purposes.

• fsync = off

• full page writes = off

• checkpoint segments = 50

PostgreSQL supports several different approaches to access control. If the database is to be used in
a multi-user or networked environment, please consult the PostgreSQL documentation to determine
which access control approach is optimal for your configuration.

*** DRAFT *** 100 *** DRAFT ***

5.9.5 Start the database dæmon

bash-3.1# touch /var/log/postgres
bash-3.1# chown postgres. /var/log/postgres
bash-3.1# su postgres -c "nohup /usr/local/bin/postgres -D /usr/share/data >&
/var/log/postgres < /dev/null &"

The final command should be added to an /etc/rc.d script to automate restarting the database
after each system reboot.

5.9.6 Grant database access to the testing account

As user postgres, use the PostgreSQL command-line script ‘createuser’ to grant database access to
the Unix account that will be running Votetest (in this example, johndoe).

bash-3.1$ createuser johndoe
Shall the new role be a superuser? (y/n) y
CREATE ROLE

5.10 Votetest under Cygwin

It is possible to compile and run the programs of the Votetest distribution under Microsoft Windows
using Cygwin [14]. However, this configuration has known problems and has not been thoroughly
tested.

Procedures for installing and troubleshooting PostgreSQL under Cygwin, along with some known
problems, are documented in the Installing PostgreSQL on Windows Using Cygwin FAQ [15].

Note also the following:

• The version of PostgreSQL that is available as a binary package for Cygwin is usually too
old, so the latest version must be built from source.

• If the results of the configure script are used without modification, the PostgreSQL server
reports the error FATAL: setsid() failed: Operation not permitted at nondetermin-
istic intervals, and the test cases that are in progress at the time fail. To avoid this problem,
the file pg config.h that is produced by the configure script must be patched as follows before
PostgreSQL is compiled.

sed --in-place --expression="s/#define HAVE_SETSID 1/#undef HAVE_SETSID/" \
src/include/pg_config.h

• The PostgreSQL lib directory must be added to PATH. Adding it to LD LIBRARY PATH
does not work.

• In addition to running cygserver as described in the Installing PostgreSQL on Windows Using
Cygwin FAQ, it is necessary to set the environment variable CYGWIN to the value server
(export CYGWIN=server).

*** DRAFT *** 101 *** DRAFT ***

• Some versions of the PostgreSQL server encountered many errors of the form could not
remove file or directory "base/55958": Directory not empty and leaked directories
under (data directory)/base at a significant rate. As a workaround, it is advisable to re-
initialize the entire database at regular intervals to recover the leaked resources.

• According to the Installing PostgreSQL on Windows Using Cygwin FAQ, Cygwin emulates
local Unix sockets using Internet sockets that are visible on the network, creating a security
hazard.

6 New test case walk-through

6.1 Introduction

To help in understanding the Votetest model, this section presents an example election scenario,
maps that example to both the Votetest data model and the database schema that realizes it, and
describes how one could proceed to use that example as a testing scenario.

Section 3.5 defines an abstract UML model to represent a potential election and the vote counting
capabilities of a voting system. Portions of the abstract model will be used at appropriate times to
help in understanding its relationship to the example presented herein. The concrete realization of
that model as a relational database schema provided in Section 3.6 will also be used later in this
section.

This section begins with a use case that may be analogous to the basic requirements of a local
election district and shows how Votetest might be used to help create specific test cases relevant to
that election district.

Section 6.2 presents an example election in layman’s terms. Section 6.3 explains how the features
of that example get represented in the Votetest abstract model. Section 6.4 shows how the details
of the example might be represented in the Votetest physical model as tables in an SQL relational
database. Section 6.5 gives some assistance in how to use the Votetest model to generate specific
test cases, Section 6.6 presents several of the reports generated by Votetest for the sample elections,
and Section 6.7 draws some general conclusions.

6.2 Example election

Consider a mid-sized county that serves as the election district for a general election that includes
federal, state and local contests. Suppose the county is small enough that the federal contests are
the same throughout the county but large enough that the state and local contests vary. Some
state contests may be larger than just the county, some may be included entirely within the county,
and some may be split across county lines. The local contests are all within the county, but there
may be political units within the county that cross voting precincts and have different ballot styles.

The county needs to prepare for several different kinds of contests, including political offices where
only a single candidate is the winner, political offices where there are multiple candidates and
multiple winners (e.g., County Council seats), and ballot initiatives that are voted either up or down.
A small municipality within the county allows cumulative voting for its City Council members, so
the voting system for the county will also have to support cumulative voting for that contest.

*** DRAFT *** 102 *** DRAFT ***

The Votetest model also supports straight-party voting and ranked order voting, but this county
currently does not allow either of those voting styles in any contests. The county will have to
support primary elections in the future with several different ballot styles within each precinct, but
for simplicity this example is a general election with exactly one ballot style in each precinct.

Individual candidates may be affiliated with a political party and local law requires that for specific
offices the party of the candidate be listed alongside their name on the ballot. It’s also possible
that local political parties may endorse candidates for offices that are considered non-political. In
the Votetest model, party affiliations and party endorsements are modelled independently, the first
to support labeling of party affiliation on the ballot and the second to support the straight-party
voting style popular in some election districts. The independence of these two features allows
conflicting affiliations versus endorsements, but that is a feature rather than a bug in the model
since cross-party endorsements occur in some elections. This example election does not have any
straight-party voting contests, and endorsements will not be printed on the ballot, but the county
desires to track such endorsements for possible reporting purposes.

The county has a number of voting precincts and is required to report results by precinct as well
as by state delegate districts that fall within the county. In some cases it may desire to report the
results of ballot initiatives by geographic or political sub-divisions of the county. Each precinct has
a number of voting machines, but all results are totalled within the precinct by a single precinct
tabulator. For simplicity, we assume that precincts are the smallest unit requiring result reporting;
however, the data model (Section 3.5) is capable of handling precincts split across political units.

By a fluke of election law, write-ins are not supported for federal contests or for some state-wide
contests, but they are usually allowed for local offices, including multiple write-ins for offices that
have multiple winners. (This fluke is contrived to increase the variety of contest types in the
example.) Additionally, the interpretation of write-ins and the crediting of valid write-in votes
to persons eligible to hold that office is deferred until after the close of polls, in accordance with
jurisdiction policies and procedures.

6.2.1 Federal and statewide contests

• U.S. President—Three candidates, each registered by a recognized political party, no write-ins
allowed.

• U.S. Senate—Two candidates, each registered by one of the parties appearing in the presi-
dential contest, no write-ins allowed.

• U.S. House—Three candidates, two registered by the same parties as for U.S. Senate, but the
third registered with a 4th party different from any of those above, no write-ins allowed.

• State Senate—Three candidates, registered with the same three parties as for U.S. House, no
write-ins allowed.

• State House—Multiple house districts within the county identified below.

6.2.2 Local single winner contests

• State House District #1—Three candidates, registered with the same parties as for U.S.
House, ballot must accommodate single potential write-in. District completely within the
county.

*** DRAFT *** 103 *** DRAFT ***

• State House District #2—Three candidates, two registered with the same parties as U.S.
Senate, but the third registered as an Independent, ballot must accommodate single poten-
tial write-in. District overlaps with another county so reporting by district (with county
tabulators) only gives totals for this county.

• State House District #3—One candidate running unopposed, registered as an Independent.
Ballot must accommodate single potential write-in. District completely within the county.

In each of the above contests, if the voter requests a write-in candidate for a specific contest, the
voting system will assist the voter to create the write-in choice. The voting system makes no
attempt to validate write-in candidates for eligibility, but may appropriately restrict the number
of write-ins allowed for a given contest. Validation of write-ins will be accomplished by a separate
mechanism.

6.2.3 Local County Council contest

There are 10 candidates who have satisfied the requirements to be listed on the County Council
ballot. Seven of the candidates are registered with one of the 4 political parties active in the county,
one is a registered independent and two are not registered with any political party. The two not
registered candidates are NOT registered Independents, so the ballot position allocated for political
party affiliation for those two candidates must be left blank.

Each voter is allowed to vote for 4 candidates and may, if they wish, add up to 4 write-in candidates.
The 4 candidates with the 4 highest vote totals are the winners. As with the single winner contests,
there is no provision in local election law for handling ties!

6.2.4 Local ballot initiatives

There are four ballot initiatives with Yes or No votes possible, but not all initiatives are county
wide! The first two initiatives are county-wide and apply to every precinct. The third initiative
applies only to precincts in State House District #2 (the one that overlaps with another county).
The fourth initiative applies only to two precincts that are their own municipality. The municipality
crosses between State House districts 1 and 2.

6.2.5 Municipal council contest

There is a single municipality in the county that is holding a City Council contest with 5 candidates
who have satisfied the requirements to be listed on the ballot. The selection process to appear
on the ballot was done in a way that precludes write-ins, so these five candidates are the only
possible candidates for two new City Council positions. In addition, this is a non-political contest,
so candidate affiliations are not modelled or shown on the ballot; however, candidates may be
endorsed, or not, by the political parties. Each voter is allowed two votes, but the cumulative
voting variation is used, meaning that both votes could be cast for the same candidate. The two
candidates with the two highest vote totals are the winners. As with the other elections above,
there is no provision in local election law for handling ties.

*** DRAFT *** 104 *** DRAFT ***

6.2.6 Political parties

The county requires that the voting system keep track of all political parties for which a legal
candidate for office has a declared affiliation and for which there is a provision in election law to
carry that affiliation on the ballot. From the above it can be determined that there are five political
parties that must be represented in any voting system used by the county. We assume that the five
political parties have unique identifiers and unique names as shown in Table 11.

Table 11: Party information

PartyID Name FormalName
PP NAP Action National Action Party
PP SCP Conservation State Conservation Party
PP SRI Independent State Registered Independent
PP NMP Moderate National Moderate Party
PP NPP Progressive National Progressive Party

Local law provides that the Name of the recognized political party is the name that will be placed on
the ballot when required by election law. The state Registered Independent Party is treated slightly
differently by state law in that any person may register as a State Independent, any candidate may
have that affiliation appear for them on a ballot, but state law prohibits Registered Independents
from forming any organization that endorses candidates or takes positions on issues.

The National Moderate Party and National Progressive Party are the two political parties that
have an affiliated candidate for each national and statewide contest. The National Action Party is
the affiliation of the third party candidate in the Presidential contest and the State Conservation
Party is the affiliation of the third party candidate in the U.S. House and State Senate seats. Two
State House candidates are registered Independents.

Three County Council candidates have Progressive affiliation, two have Moderate affiliation, two
have Conservation affiliation, one is a registered Independent, and two have no affiliation. Although
it is theoretically possible for a candidate to be affiliated with more than one political party, that
phenomenon is so rare as to not be captured in the Votetest abstract model. If a candidate is a
member of more than one party, then the candidate will have to choose which single affiliation gets
printed on the ballot.

The Moderate, Progressive and Conservation parties have each endorsed a relatively full slate of
candidates, including four County Council candidates. Since not every party has 4 County Council
candidates, they may sometimes endorse a candidate from a rival party. The National Action party
has only endorsed a partial set of candidates, but for County Council has endorsed the Independent
candidate, the two Conservation candidates, and one non-affiliated candidate. These endorsements
will not be visible on the ballot, which does not include straight-party voting, but the county would
like to record them in the election definition anyway. The Moderate and Progressive parties have
endorsed positions on the countywide ballot initiatives but not on local ballot initiatives. The
Conservation party has endorsed candidates and positions on all of the local contests and local
ballot initiatives.

*** DRAFT *** 105 *** DRAFT ***

6.2.7 Precincts

There are ten election precincts in the county distributed across the State House districts, with four
in H1, three in H2 and three in H3. Two of the precincts make up the municipality that crosses
districts 1 and 2. Table 12 gives the relationships among the precincts, the single State Senate
district, the three State House districts, the single municipality, and the four ballot initiatives.

Table 12: Precinct relationships

PrecinctID SS District SH District Municipality BallotInitiatives
P01 S1 H1 B1, B2
P02 S1 H1 B1, B2
P03 S1 H1 B1, B2
P04 S1 H1 M1 B1, B2, B4
P05 S1 H2 M1 B1, B2, B3, B4
P06 S1 H2 B1, B2, B3
P07 S1 H2 B1, B2, B3
P08 S1 H3 B1, B2
P09 S1 H3 B1, B2
P10 S1 H3 B1, B2

6.2.8 Reporting requirements

State law requires that election results be reported by State Senate districts, State House districts,
counties, and precincts. Local law requires that results for all municipalities be reported separately,
so the single municipality that crosses State House districts 1 and 2 must be reported separately.
Election law also requires election districts to maintain statistics by ballot category, e.g., Absentee,
Provisional, Challenged, etc.

6.3 Modelling the election in Votetest

The first step in using Votetest to create test cases for this county election is to model the candidates
and county requirements for this election as presented in Section 6.2. Beginning with the Votetest
abstract model presented in Section 3.5, this section looks at subsets of that model to capture the
above example information.

6.3.1 Ballot styles

Table 12 indicates that there will need to be at least five different ballot styles in order to capture
the different ballot requirements for the different contests in each of the precincts; one style for
precincts P1 through P3, a second and third styles for the unique requirements of precincts P4 and
P5, a fourth style for precincts P6 and P7, and a fifth style for precincts P8 through P10. Some
election districts may choose to have as many ballot styles as they have precincts, reasoning that the
precinct number may be printed on the ballot, thereby giving each precinct a unique ballot style.

*** DRAFT *** 106 *** DRAFT ***

However, the election board of this county chooses to model only the five ballot styles minimally
necessary to represent all the contests of this election.

The model subset shown in Figure 10 captures the required information for a ballot style. The
BallotStyle class represents the structure of an unvoted ballot. In this example, the BallotStyle
class will have five instances, each with a unique name. The county election board decides to
identify the ballot styles and give them unique names as shown in Table 13.

Figure 10: Model subset for ballot styles

Name : Text
Party

Name : Text
IsWriteIn : Boolean

Choice

0..* 0..1

Affiliation

Description : Text
CountingLogic : ContestCountingLogic
N : NaturalNumber
MaxWriteIns : WholeNumber
Rotate : Boolean

Contest

Name : Text
BallotStyle

1..* 0..*

0..*

Table 13: Ballot styles
Local

Id Name Description
S1 H1B1B2 House District #1 countywide initiatives only
S2 H1B1B2M1B4 House District #1 countywide and municipality contests
S3 H2B1B2B3 House District #2 countywide and district initiatives
S4 H2B1B2B3M1B4 House District #2 countywide, district and municipality contests
S5 H3B1B2 House District #3 countywide initiatives only

Unique identifiers for BallotStyles are implicit in the abstract Votetest model, via object identity;
the concrete database schema uses explicit integer identifiers to achieve the same effect.

The many-to-many association between BallotStyle and Contest indicates that a contest may exist
without being assigned to a ballot style, a ballot style consists of one or more contests, and a contest
may appear on multiple different ballot styles.

The Contest class represents each of the contests described in Section 6.2. In total there will be 13
contest instances: one for President, one for U.S. Senate, one for U.S. House, one for State Senate,
three for State House, one for County Council, one for municipal City Council, and four for ballot
initiatives. Ballot style S1 will be associated with 8 contests: one for President, one for U.S. Senate,
one for U.S. House, one for State Senate, one for State House, one for County Council, and two for
ballot initiatives. Similarly, ballot style S2 will be associated with 10 contests, S3 with 9 contests,
S4 with 11 contests, and S5 with 8 contests.

*** DRAFT *** 107 *** DRAFT ***

The Choice class represents the voting alternatives for each contest. The single winner candidate
contests (e.g., President, Senate, House) will each have from 1 to 3 choices: one choice for the
unopposed candidate in State House District #3 and two or three choices for each of the other
single winner candidate contests. Note that the model allows a contest to have 0 choices; this is
possible in the situation where a contest exists, no candidates have satisfied the requirements to be
placed on the ballot, but write-in votes are allowed. Each write-in vote may result in the creation
of a new choice instance, with the IsWriteIn attribute set to true, but that possibility is not part
of the original ballot definition.

The County Council contest will have 10 choices, one for each candidate whose name appears on the
ballot. Similarly, the municipal City Council contest will have 5 choices. The four ballot initiative
contests will each have two choices, one for a Yes vote and one for a No vote.

The association between Contest and Choice is one-to-many; the solid diamond represents that
each choice instance is tightly bound to its parent contest. It is not possible for a choice to exist
apart from its parent class or in more than one Contest. If the same person is a candidate in more
than one contest, then two separate Choices exist, i.e., one for each Contest.

The many-to-one Affiliation association between Choice and Party maintains an optional affiliation
for each candidate choice. A candidate may or may not have a party affiliation; if the affiliation
exists and local law allows the affiliation to be printed on the ballot, it will be printed next to the
candidate’s name. Note that a Party instance may exist even if no candidate is affiliated with that
party. Also note that in real life a candidate may have multiple party affiliations, but the model
restricts the affiliation to at most one because there is no known election board that allows multiple
affiliations to be listed on a ballot. Non-candidate choices (e.g., ballot initiatives) would normally
not have any affiliation associations; this could be enforced, if desired, by a separate constraint.
However, ballot initiatives could have endorsements by political parties (c.f. Section 6.3.4).

6.3.2 Contest attributes

The Contest class has five significant attributes. In addition, each instance of the class will have
an instance identifier separate from the five attributes. The Description attribute identifies the
contest, e.g., U.S. President, State Senate District #5, State House District #3, County Council,
Municipal City Council, or Ballot Initiative #2. For ballot initiatives the Description may also
include a summary of the question being voted.

The CountingLogic attribute consists of one of the four enumeration values indicated in Figure 8
for ContestCountingLogic. All of the contests except municipal City Council in this example are
N-of-M; they may be specifically 1-of-1, 1-of-2, 1-of-3, or 4-of-10, but all are identified as N-of-M
by this attribute. The municipal City Council contest will have CountingLogic set to Cumulative,
since the candidates may receive multiple votes on each ballot. The other two counting logics are
not part of this example, but are defined in the VVSG [1].

For N-of-M and Cumulative contests, N identifies the number of votes that the voter may allocate
without overvoting. Typically this is also the number of winners in that contest, but not necessarily.
(For N-of-M and Cumulative contests, the voting system only needs to gather votes and report the
totals; the picking of winners may be an external process impacted by election law, late-breaking
judicial rulings, etc.)

*** DRAFT *** 108 *** DRAFT ***

In this example, N will be set to 1 for all of the single-winner contests and all of the ballot initiatives,
to 4 for the County Council contest, and to 2 for the municipal City Council contest.

The MaxWriteIns attribute determines the provision that must be provided for write-ins by a voting
system. In this example, all candidate contests will have this attribute set to 0, 1, 2, or 4, depending
on whether or not write-ins are allowed for that contest. The candidate contests where write-ins
are not allowed and all four of the ballot initiatives will have this attribute set to 0. The County
Council contest will have it set to 4, the municipal City Council contest will have it set to 2, and
all of the remaining candidate contests will have it set to 1.

The Rotate attribute determines whether or not the choices for a contest will have their positions
on the ballot rotated during printing or display of the actual ballot instances. Note that ballot
instances are represented in the model by the Ballot class (not yet discussed). This attribute is not
relevant in the logic model of the VVSG, so for this example it could be set to true or false with
no effect on the reporting requirements of the model.

6.3.3 Voted ballots

The Votetest abstract model makes a distinction between ballot structure and a voted ballot. Ballot
structure is represented by the BallotStyle class whereas a voted ballot is represented by the Ballot
class. Each Ballot instance is tied to exactly one ballot style and to one or more reporting contexts.
The model subset in Figure 11 shows the attributes of a voted ballot and its potential relationships
with other items.

Figure 11: Model subset for ballots

Categories[0..*] : BallotCategory
Accepted[1] : Boolean

Ballot

Value : NaturalNumber
VoterInput

Name : Text
IsWriteIn : Boolean

Choice
1

0..*

Alias
Name : Text
ReportingContext

Name : Text
BallotStyle

0..*

10..*

0..* 0..*

1..*

A Ballot instance is associated with exactly one ballot style. The ballot style determines the contests
and the choices that will be presented to the voter. For each contest on the ballot, the voter may
select one or more of the canonical choices, create a new write-in choice if that is permitted, or not
vote in that contest. A voter is not required to make any choices and could turn in an unmarked
ballot. The VoterInput class is included in the abstract model to be able to handle cumulative
and ranked order voting. In this example, for all contests except municipal City Council, for each
choice selected on a ballot, the Value attribute on VoterInput for a given association between Ballot
and Choice carries Value = 1. In the municipal City Council contest, since a voter may cast up

*** DRAFT *** 109 *** DRAFT ***

to two votes for the same candidate, for each choice selected on the ballot, the Value attribute on
VoterInput for a given association between Ballot and Choice could be set to either 1 or 2.

A Ballot instance is required to be associated with at least one reporting context. This is to
guarantee that every ballot is accounted for and reported in at least one context. In our example,
Ballot instances are created by the voting systems in each precinct, and precinct is the smallest
reporting unit, so there will be 10 precinct instances for the ReportingContext class and each
ballot will be associated with the relevant precinct. A ballot may also be indirectly associated with
different reporting contexts through its parent ballot style. Other reporting contexts, both direct
and indirect, are presented in Section 6.3.5.

A Ballot instance may be tagged with zero or more ballot categories chosen from the tags appearing
in the BallotCategory enumeration given in Figure 8. The ballot category tags are not necessarily
mutually exclusive or collectively exhaustive; new tags may be added to the list to support future
acceptance or reporting rules. The purpose of the ballot category tags is to clearly distinguish
those ballots that may be handled or reported according to a different set of rules. In our example,
a regular ballot will have an empty BallotCategory attribute, an absentee ballot will carry an
Absentee tag, and a provisional ballot will carry a Provisional tag. The conditions under which
categories can legally be added or deleted from a ballot are specified by election law; controls on
adding or deleting categories may be implemented by the voting system or they may be implemented
procedurally. Either way, the voting system must be able to produce reports that properly reflect
the categories that a ballot carries at the time the report is produced. In this section, only Absentee
and Provisional categories will be used.

The Accepted attribute on a ballot instance indicates whether or not a ballot is to be counted.
If Accepted is true, as it normally is for ballots having no unusual issues, then the ballot will be
counted. If Accepted is false, then the ballot may be read and accounted for by the system but no
choices for any contest will be counted. The Accepted attribute may be set by the voting system
according to rules embedded in the voting system itself, or this attribute may be changed later by
election officials after an analysis of provisional or challenged ballots. A voting system is generally
not responsible for the current state of the Accepted attribute for provisional and challenged ballots;
it must simply be able to produce reports that count, or not, all read ballots, and produce accurate
reports depending on how this attribute is set at the time of reporting.

The Alias association on the Choice class is mostly used for write-in reconciliation. In this example,
the voting system makes no attempt to interpret write-ins on the fly: Whenever a voter writes in a
choice, the system invariably creates a new Choice instance with IsWriteIn = true. Later, through
a separate process with humans in the loop, write-ins are “reconciled” to determine how their votes
are to be credited. Each time a write-in is found to refer to a previously defined Choice, an instance
of the Alias relationship is created to credit that write-in vote to the previously defined Choice.
If a write-in is found to be completely new, no alias is created for it, and it will be reported as a
separate choice.

In this example, without Alias relationships, every single write-in would be counted and reported as
a distinct choice. However, this is only one valid approach. In a different jurisdiction with different
equipment, policies and procedures, it would be perfectly valid, e.g., for an electronic voting system
to create only one Choice instance for each distinct string of characters that some voter has “written
in” and to refer to that same Choice instance the second and subsequent times that that string
of characters appears. This reduces the amount of reconciliation that must be done later: Every
occurrence of the same string of characters will be treated identically by the voting system. If two

*** DRAFT *** 110 *** DRAFT ***

different spellings of a candidate’s name were found to be equivalent, only one instance of the Alias
relationship would be needed to credit all of the affected votes appropriately.

Rarely, aliases may be used to merge the counts for non-write-in choices. For example, if election
law forces there to be separate choices on the ballot for each political party that endorsed a given
candidate, these may be aliased in order to report a single, consolidated total for that candidate.

6.3.4 Provisions for endorsements

The Endorsement class in the Votetest model exists for the purpose of modelling elections that allow
straight-party voting. This example election does not include straight-party selections; however,
for completeness, the election board has decided to record the endorsements noted in Section 6.2.6.

The model subset shown in Figure 12 represents the independent concepts of party affiliation and
party endorsement.

Figure 12: Model subset for affiliations and endorsements

Name : Text
Party

Name : Text
IsWriteIn : Boolean

Choice

0..*

0..1

Affiliation

1

0..*

Alias

Value : NaturalNumber
Endorsement

0..*

0..*

Party and Choice classes and the Affiliation association were presented and discussed in Sec-
tion 6.3.1. The Value attribute in the Endorsement class is similar to the Value attribute in the
VoterInput class discussed in the previous section, but instead of specifying the vote of a particular
voter for a particular choice, it specifies the vote that a particular party recommends that voters
make.

For this example, there is a contest that uses Cumulative counting logic, but only the Conservation
party has decided to weight its endorsement for that contest. All of the other party endorsements
are simple endorsements of choices without weighting. Thus the Value attribute will be set to
1 for all associations between Party and Choice, except for the single association between the
Conservation party and its weighted choice for municipal City Council. That association will have
Value = 2.

Each of the four local parties have endorsed a full slate of candidates for County Council, have
endorsed candidates with their own affiliation when that affiliation is known, and have endorsed a
Yes or No vote on the two county-wide ballot initiatives. None of the mainstream parties has taken a

*** DRAFT *** 111 *** DRAFT ***

position on the non-county-wide ballot initiatives or has endorsed any of the municipal City Council
candidates; however, the Conservation party did recommend a vote on all 4 ballot initiatives and
endorsed a single candidate with double weight for the municipal City Council contest.

Conceptually, focusing only on the two council contests and the ballot initiatives, these endorse-
ments might look like Table 14.

Table 14: Endorsements

Party Contest Choice (Affiliation) Value
Action County Council Candidate #8 (Independent) 1
Action County Council Candidate #4 (Conservation) 1
Action County Council Candidate #9 (Conservation) 1
Action County Council Candidate #6 (empty) 1
Conservation County Council Candidate #4 (Conservation) 1
Conservation County Council Candidate #9 (Conservation) 1
Conservation County Council Candidate #7 (Moderate) 1
Conservation County Council Candidate #5 (Progressive) 1
Conservation Initiative #1 Yes 1
Conservation Initiative #2 No 1
Conservation Initiative #3 Yes 1
Conservation Initiative #4 No 1
Conservation Municipal Council Candidate #3 (Independent) 2
Moderate County Council Candidate #1 (Moderate) 1
Moderate County Council Candidate #9 (Conservation) 1
Moderate County Council Candidate #2 (Progressive) 1
Moderate County Council Candidate #7 (Moderate) 1
Moderate Initiative #1 Yes 1
Moderate Initiative #2 No 1
Progressive County Council Candidate #10 (Progressive) 1
Progressive County Council Candidate #5 (Progressive) 1
Progressive County Council Candidate #2 (Progressive) 1
Progressive County Council Candidate #7 (Moderate) 1
Progressive Initiative #1 No 1
Progressive Initiative #2 Yes 1

The physical representation of these endorsements as a normalized relational database table is given
in Table 23. Note that the Contest column and the Affiliation in parentheses appearing in Table 14
are both superfluous since each Choice is linked to a unique Contest and to at most one Party;
these convenience details go away in the physical representation.

6.3.5 Reporting of election results

As stated in Section 6.2.8, the county election board in this example is required to report results by
U.S. congressional district, by State Senate and State House districts, by county, by municipality,
by precinct, and report ballot counts for at least three ballot categories, i.e., Regular, Absentee and
Provisional. Some additional reporting may be required later to account for other potential ballot

*** DRAFT *** 112 *** DRAFT ***

categories, but initially only these three are considered. Reporting by county will produce the same
results as reporting by U.S. congressional district and reporting by State Senate district, so only
county reporting is considered in this example. The model subset shown in Figure 13 represents
the basic reporting requirements for this election.

Figure 13: Model subset for reporting

Name : Text
ReportingContext

0..* 0..*

1..*

0..* 0..*

0..*

Precinct

Name : Text
BallotStyle

Categories[0..*] : BallotCategory
Accepted[1] : Boolean

Ballot

0..* 1

It’s already established that for this example there are ten precincts, one election district, i.e., the
county, and one tabulator for each precinct. All reporting requirements by election district, or by
tabulators, are satisfied by including ReportingContext instances for one county (C1), 10 precincts
(P01 through P10), three State House districts (H1, H2, H3), and one municipality (M1). The
report generator automatically breaks down ballot counts by category in each reporting context,
so there is no need to list the ballot categories as separate reporting contexts. The election board
decides to consider the Regular ballot category as implicit, so the Categories attribute is left empty
for every Regular ballot. The ReportingContext class will have 15 explicit instances, each with a
unique Name.

The voting system will record explicit associations between Ballot and ReportingContext for each
Precinct. As stated earlier, this ensures that every accepted ballot will be counted in its home
precinct.

The remaining reporting contexts, i.e., County, one municipality and 3 State House districts, are as-
sociated with ballots only indirectly through BallotStyle. Table 15 records the explicit associations
between ReportingContext and BallotStyle using the names of ballot styles from Section 6.3.1. In
addition, the County reporting context (C1) will be linked to all five ballot styles.

Table 15: Ballot style—reporting context associations

ReportingContext BallotStyle
StateHouseD1 H1B1B2
StateHouseD1 H1B1B2M1B4
StateHouseD2 H2B1B2B3
StateHouseD2 H2B1B2B3M1B4
StateHouseD3 H3B1B2
Municipality1 H1B1B2M1B4
Municipality1 H2B1B2B3M1B4

*** DRAFT *** 113 *** DRAFT ***

6.4 Representing the election in the database

Section 3.6 translates the classes and associations of the abstract model into tables in the concrete
relational database representation. In general, classes map to relational tables with the same
attributes, many-to-one associations are represented as a reference attribute in the table, and many-
to-many associations map to tables with two columns, representing the source and target instances
of the association. Some associations have a third attribute to capture the Value attribute from
the VoterInput or Endorsement classes in the abstract model. If a class has an obvious unique
attribute, e.g., unique Name, it may be used as the primary key of the table; otherwise, a table
primary key is added with an integer data type.

The Ballot table is initially empty, and so are any association tables where a ballot is either the
source or the target of the association. These tables are filled dynamically during the election
as ballots are cast. The initial, non-empty tables, before voting, are shown in Table 16 through
Table 23. Most tables contain a MyDescription attribute not present in the Votetest model and not
used during test generation; it simply explains the attributes of the model in terms of the example.

Table 16: BallotStyle

Style
Id Name MyDescription

1 H1B1B2 S1—House District #1 countywide initiatives only
2 H1B1B2M1B4 S2—House District #1 countywide and municipality initiatives
3 H2B1B2B3 S3—House District #2 countywide and district initiatives
4 H2B1B2B3M1B4 S4—House District #2 countywide, district and municipality initiatives
5 H3B1B2 S5—House District #3 countywide initiatives only

Table 17: Contest

ContestId Description CountingLogic N MaxWriteIns Rotate
1 President N-of-M 1 0 Yes
2 U.S. Senate N-of-M 1 0 Yes
3 U.S. House N-of-M 1 0 Yes
4 State Senate N-of-M 1 0 Yes
5 State House #1 N-of-M 1 1 Yes
6 State House #2 N-of-M 1 1 Yes
7 State House #3 N-of-M 1 1 Yes
8 County Council N-of-M 4 4 Yes
9 Ballot Initiative 1 N-of-M 1 0 No
10 Ballot Initiative 2 N-of-M 1 0 No
11 Ballot Initiative 3 N-of-M 1 0 No
12 Ballot Initiative 4 N-of-M 1 0 No
13 Muni City Council Cumulative 2 0 No

*** DRAFT *** 114 *** DRAFT ***

Table 18: BallotStyleContestAssociation

StyleId ContestId MyDescription
1 1 H1B1B2—Pres
1 2 H1B1B2—US Senate
1 3 H1B1B2—US House
1 4 H1B1B2—State Senate
1 5 H1B1B2—State House
1 8 H1B1B2—Council
1 9 H1B1B2—initiative B1
1 10 H1B1B2—initiative B2
2 1 H1B1B2M1B4—Pres
2 2 H1B1B2M1B4—US Senate
2 3 H1B1B2M1B4—US House
2 4 H1B1B2M1B4—State Senate
2 5 H1B1B2M1B4—State House H1
2 8 H1B1B2M1B4—Council
2 9 H1B1B2M1B4—initiative B1
2 10 H1B1B2M1B4—initiative B2
2 12 H1B1B2M1B4—initiative B4
2 13 H1B1B2M1B4—City Council
3 1 H2B1B2B3—Pres
3 2 H2B1B2B3—US Senate
3 3 H2B1B2B3—US House
3 4 H2B1B2B3—State Senate
3 6 H2B1B2B3—State House H2
3 8 H2B1B2B3—Council
3 9 H2B1B2B3—initiative B1
3 10 H2B1B2B3—initiative B2
3 11 H2B1B2B3—initiative B3
4 1 H2B1B2B3M1B4—Pres
4 2 H2B1B2B3M1B4—US Senate
4 3 H2B1B2B3M1B4—US House
4 4 H2B1B2B3M1B4—State Senate
4 6 H2B1B2B3M1B4—State House H2
4 8 H2B1B2B3M1B4—Council
4 9 H2B1B2B3M1B4—initiative B1
4 10 H2B1B2B3M1B4—initiative B2
4 11 H2B1B2B3M1B4—initiative B3
4 12 H2B1B2B3M1B4—initiative B4
4 13 H2B1B2B3M1B4—City Council
5 1 H3B1B2—Pres
5 2 H3B1B2—US Senate
5 3 H3B1B2—US House
5 4 H3B1B2—State Senate
5 7 H3B1B2—State House H3

*** DRAFT *** 115 *** DRAFT ***

5 8 H3B1B2—Council
5 9 H3B1B2—initiative B1
5 10 H3B1B2—initiative B2

Table 19: Choice (before write-ins)

Choice Contest Is
Id Id Name Affiliation WriteIn MyDescription

1 1 PresidentC1 Moderate No US President Candidate 1
2 1 PresidentC2 Progressive No US President Candidate 2
3 1 PresidentC3 Action No US President Candidate 3
4 2 USSenateC1 Moderate No US Senate Candidate 1
5 2 USSenateC2 Progressive No US Senate Candidate 2
6 3 USHouseC1 Moderate No US House Candidate 1
7 3 USHouseC2 Progressive No US House Candidate 2
8 3 USHouseC3 Conservation No US House Candidate 3
9 4 SSenateC1 Moderate No State House Candidate 1
10 4 SSenateC2 Progressive No State House Candidate 2
11 4 SSenateC3 Conservation No State House Candidate 3
12 5 SHouseD1C1 Moderate No State House D1 Candidate 1
13 5 SHouseD1C2 Progressive No State House D1 Candidate 2
14 5 SHouseD1C3 Conservation No State House D1 Candidate 3
15 6 SHouseD2C1 Moderate No State House D2 Candidate 1
16 6 SHouseD2C2 Progressive No State House D2 Candidate 2
17 6 SHouseD2C3 Independent No State House D2 Candidate 3
18 7 SHouseD3C1 Independent No State House D3 Candidate 1
19 8 CCouncilC01 Moderate No Council Candidate 1
20 8 CCouncilC02 Progressive No Council Candidate 2
21 8 CCouncilC03 No Council Candidate 3
22 8 CCouncilC04 Conservation No Council Candidate 4
23 8 CCouncilC05 Progressive No Council Candidate 5
24 8 CCouncilC06 No Council Candidate 6
25 8 CCouncilC07 Moderate No Council Candidate 7
26 8 CCouncilC08 Independent No Council Candidate 8
27 8 CCouncilC09 Conservation No Council Candidate 9
28 8 CCouncilC10 Progressive No Council Candidate 10
29 9 Yes No Yes on Ballot Initiative 1
30 9 No No No on Ballot Initiative 1
31 10 Yes No Yes on Ballot Initiative 2
32 10 No No No on Ballot Initiative 2
33 11 Yes No Yes on Ballot Initiative 3
34 11 No No No on Ballot Initiative 3
35 12 Yes No Yes on Ballot Initiative 4
36 12 No No No on Ballot Initiative 4
37 13 MCCouncilC1 No

*** DRAFT *** 116 *** DRAFT ***

38 13 MCCouncilC2 No
39 13 MCCouncilC3 No
40 13 MCCouncilC4 No
41 13 MCCouncilC5 No

Table 20: Party

Name MyDescription
Action National Action Party
Conservation State Conservation Party
Independent State Registered Independent
Moderate National Moderate Party
Progressive National Progressive Party

Table 21: ReportingContext

Name MyDescription
County1 County
StateHouseD1 State House District #1
StateHouseD2 State House District #2
StateHouseD3 State House District #3
P01 Precinct 1
P02 Precinct 2
P03 Precinct 3
P04 Precinct 4
P05 Precinct 5
P06 Precinct 6
P07 Precinct 7
P08 Precinct 8
P09 Precinct 9
P10 Precinct 10
Municipality1 Municipality

Table 22: BallotStyleReportingContextAssociation

StyleId ReportingContext MyDescription
1 County1 County—S1
2 County1 County—S2
3 County1 County—S3
4 County1 County—S4
5 County1 County—S5
1 StateHouse1 House District #1—Not in municipality—S1
2 StateHouse1 House District #1—In municipality—S2
3 StateHouse2 House District #2—Not in municipality—S3

*** DRAFT *** 117 *** DRAFT ***

4 StateHouse2 House District #2—In municipality—S4
5 StateHouse3 House District #3—S5
2 Municipality1 Municipality—House District 1—S2
4 Municipality1 Municipality—House District 2—S4

Table 23: Endorsement

Party ChoiceId Value MyDescription
Action 3 1 US President Candidate 3—Action
Action 4 1 US Senate Candidate 1—Moderate
Action 7 1 US House Candidate 2—Progressive
Action 11 1 State Senate Candidate 3—Conservation
Action 22 1 Council Candidate 4—Conservation
Action 24 1 Council Candidate 6
Action 26 1 Council Candidate 8—Independent
Action 27 1 Council Candidate 9—Conservation
Action 30 1 No on Ballot Initiative 1
Action 31 1 Yes on Ballot Initiative 2
Conservation 8 1 US House Candidate 3—Conservation
Conservation 11 1 State Senate Candidate 3—Conservation
Conservation 14 1 State House D1 Candidate 3—Conservation
Conservation 17 1 State House D2 Candidate 3—Independent
Conservation 22 1 Council Candidate 4—Conservation
Conservation 23 1 Council Candidate 5—Progressive
Conservation 25 1 Council Candidate 7—Moderate
Conservation 27 1 Council Candidate 9—Conservation
Conservation 29 1 Yes on Ballot Initiative 1
Conservation 32 1 No on Ballot Initiative 2
Conservation 33 1 Yes on Ballot Initiative 3
Conservation 36 1 No on Ballot Initiative 4
Conservation 39 2 Municipal Council Candidate 3
Moderate 1 1 US President Candidate 1—Moderate
Moderate 4 1 US Senate Candidate 1—Moderate
Moderate 6 1 US House Candidate 1—Moderate
Moderate 9 1 State Senate Candidate 1—Moderate
Moderate 12 1 State House D1 Candidate 1—Moderate
Moderate 15 1 State House D2 Candidate 1—Moderate
Moderate 18 1 State House D3 Candidate 1—Independent
Moderate 19 1 Council Candidate 1—Moderate
Moderate 20 1 Council Candidate 2—Progressive
Moderate 25 1 Council Candidate 7—Moderate
Moderate 27 1 Council Candidate 9—Conservation
Moderate 30 1 No on Ballot Initiative 1
Moderate 31 1 Yes on Ballot Initiative 2
Progressive 2 1 US President Candidate 2—Progressive

*** DRAFT *** 118 *** DRAFT ***

Progressive 5 1 US Senate Candidate 2—Progressive
Progressive 7 1 US House Candidate 2—Progressive
Progressive 10 1 State Senate Candidate 2—Progressive
Progressive 13 1 State House D1 Candidate 2—Progressive
Progressive 16 1 State House D2 Candidate 2—Progressive
Progressive 18 1 State House D3 Candidate 1—Independent
Progressive 20 1 Council Candidate 2—Progressive
Progressive 23 1 Council Candidate 5—Progressive
Progressive 25 1 Council Candidate 7—Moderate
Progressive 28 1 Council Candidate 10—Progressive
Progressive 29 1 Yes on Ballot Initiative 1
Progressive 32 1 No on Ballot Initiative 2

6.5 Generating relevant test cases

The purpose of this subsection is to describe how to use the tables identified in Section 6.4, to-
gether with the Votetest model, to produce test cases relevant to the characteristics of the election
example presented. The tester may use tests already generated by Votetest to test the general
validity of a voting system. Additional tests generated here serve to exercise the voting system
in an environment that most closely approximates a specific election with specific ballot styles
and reporting requirements. The following subsections describe the steps taken to assign relevant
probability distributions and to create a representative number of test ballots. In general, a tester
would follow these same steps to generate test ballots for a specific election.

6.5.1 Populate the tables

The first step is to use local election characteristics to prepare content for all of the non-empty
tables identified in Section 6.4. The MyDescription attribute may be omitted as it is not used by
Votetest. In addition, the Endorsement table is optional because in this election the straight-party
voting variation is not used.

6.5.2 Assign Ballot number and general Ballot distributions

Table 24 indicates the distribution of sample ballots over the Categories and Accepted attributes
of the Ballot class (presented in Section 6.3.3) that the tester in this example wants to generate.
A probability is given for each category in the BallotCategory table; in addition, the probability of
a ballot being rejected or blank is included. The total number of ballots that the tester wants to
generate is 2000.

Each of the named probability distributions is treated as an independent, random binomial event.
So we expect approximately 1 % of the 2000 generated ballots to have the Accepted attribute set
to false, 1 % to be a blank ballot, 13 % to have Absentee in the Categories attribute, and 6 % to
have Provisional in the Categories attribute. None of the other category entries in this table will
occur at all.

*** DRAFT *** 119 *** DRAFT ***

Table 24: BallotCategory, rejected and blank ballot distributions

Name Distribution
RejectedBallots 1 %
BlankBallots 1 %
Absentee 13 %
Challenged 0 %
Early 0 %
IneligibleVoter 0 %
InPerson 0 %
NotRegistered 0 %
Provisional 6 %
Regular 0 %
WrongPrecinct 0 %

Note that all four of these potential events are treated as independent. Thus it is possible for a
Provisional ballot to be an Absentee ballot. It is also possible that a Rejected ballot be Provisional,
Absentee, Blank, or any combination of the three. If desired, a testing facility could set up a
more sophisticated ballot distribution with conditional probabilities for those events that have
interdependencies.

The Ballot table is created first with 2000 rows. Then the Accepted attribute is set to true or
false depending on the RejectedBallots distribution of 1 %. Next the BallotCategoryAssociation
table is populated—first with 13 % Absentee associations and then, independently, with 6 % Pro-
visional distributions. Then 1 % of the ballots are independently tagged as blank ballots so that
no associations will ever be created from a blank ballot to a Choice instance.

6.5.3 Assign Precinct and BallotStyle distributions

Most elections will have pre-determined relationships among the precincts, reporting contexts, and
ballot styles. Using the precinct relationships information in Section 6.2.7, Table 25 shows the
probability distributions for assigning ballots to precincts. The other distributions are then derived
from the precinct distribution.

The general abstract model in Section 3.5 supports precincts that may not be the smallest reporting
unit. If that is the case, then a testing facility could assign probability distributions to the smallest
reporting units and then have those probabilities distributed over all of the other reporting units
and ballot styles.

The precinct probability distributions should add up to 100 %. The assignment of ballots to
precincts is not considered to be a collection of independent events. Instead, the assignment
of precincts is handled as a single, random multinomial event. Using the precinct probability
distributions given in Table 25 one is able to populate the BallotReportingContextAssociation
table between Ballot and ReportingContext to satisfy the requirement that each ballot be assigned
to at least one reporting context, i.e., its precinct.

*** DRAFT *** 120 *** DRAFT ***

Table 25: Precinct and BallotStyle distributions

Precinct P Dist District D Dist Munic M Dist BallotStyle BS Dist
P01 5 % H1 28 % H1B1B2 24 %
P02 12 % H1 28 % H1B1B2 24 %
P03 7 % H1 28 % H1B1B2 24 %
P04 4 % H1 28 % M1 12 % H1B1B2M1B4 4 %
P05 8 % H2 36 % M1 12 % H2B1B2B3M1B4 8 %
P06 13 % H2 36 % H2B1B2B3 28 %
P07 15 % H2 36 % H2B1B2B3 28 %
P08 6 % H3 36 % H3B1B2 36 %
P09 11 % H3 36 % H3B1B2 36 %
P10 19 % H3 36 % H3B1B2 36 %

6.5.4 Assign undervote distributions

The Contest table contains a list of potential contests for each ballot. In practice, some ballots may
leave a given contest unvoted. It is possible to add one additional column to the Contest table to
assign a probability that the contest will be left unvoted on a given ballot. Contests like a national
presidential contest may have a very low probability of being left unvoted, whereas some complex
ballot initiatives may have a relatively high probability of being left unvoted. One could assume
different probabilities for each contest, depending on which ballot style is being used, or in which
political unit a ballot is cast. For simplicity, this section assumes that all ballots will have the same
probability of leaving a specific contest unvoted.

Table 26 carries the undervote probability distributions for each contest. The undervote distribution
is independent of the CountingLogic, N, MaxWriteIns, or Rotate attributes of a contest, so those
columns are elided.

Table 26: Undervote distributions

ContestId Description Unvoted
1 President 1 %
2 U.S. Senate 2 %
3 U.S. House 3 %
4 State Senate 4 %
5 State House #1 5 %
6 State House #2 5 %
7 State House #3 22 %
8 County Council 3 %
9 Ballot Initiative 1 15 %
10 Ballot Initiative 2 15 %
11 Ballot Initiative 3 20 %
12 Ballot Initiative 4 25 %
13 Muni City Council 30 %

Each time a contest appears on a ballot, whether or not it is left unvoted is treated as a random,

*** DRAFT *** 121 *** DRAFT ***

independent binomial event with the above probabilities. Each ballot is linked to a ballot style,
and each ballot style is linked to a set of contests. Thus a join of these tables, with the elimination
of blank ballots, produces a link between a specific ballot and the contests relevant to that ballot.
Each row of that table is considered as an independent event for being voted or unvoted and rows
are tagged as appropriate. Ballots linked to an unvoted contest will not be linked to any choices
for that contest.

6.5.5 Assign Choice distributions

The Choice table as initialized in Table 19 consists of a collection of choices for each contest. Since
a number of candidates are already known to be running specifically as write-in candidates, choices
for these candidates may also be created in advance of the election. The tester prepares a list of
likely write-ins for each contest as shown in Table 27.

Table 27: Choices for anticipated write-ins

ChoiceId ContestId Name Affiliation IsWriteIn MyDescription
1001 5 SHouseD1 Writein1 Yes Canonical
1002 5 SHouseD1 Writein2 Yes Canonical
1003 5 Invalid Writein Yes Indeterminate
1004 6 SHouseD2 Writein1 Yes Canonical
1005 6 Invalid Writein Yes Indeterminate
1006 7 SHouseD3 Writein1 Yes Canonical
1007 7 SHouseD3 Writein2 Yes Canonical
1008 7 SHouseD3 Writein3 Yes Canonical
1009 7 Invalid Writein Yes Indeterminate
1010 8 CCouncil Writein1 Yes Canonical
1011 8 CCouncil Writein2 Yes Canonical
1012 8 CCouncil Writein3 Yes Canonical
1013 8 CCouncil Writein4 Yes Canonical
1014 8 CCouncil Writein5 Yes Canonical
1015 8 Invalid Writein Yes Indeterminate

None of the choices listed in Table 27 will ever be referenced directly by a given ballot. Instead,
each time a write-in is chosen on a ballot, the new Choice created for it will be aliased to one of
these “canonical” write-ins, or to one of the invalid write-ins if the given write-in is indeterminate
or illegal. If a valid write-in were received that did not match anything on this list, then the Choice
instance created for it would not be aliased to anything. See Section 6.3.3 for more discussion on
the use of aliasing in this example.

The tester now needs to assign a probability distribution to each of the possible choices, including
potential write-ins. The result is shown in Table 28.

*** DRAFT *** 122 *** DRAFT ***

Table 28: Canonical choice and write-in distribution

IsW
Choi Cont rite
ceId estId Name Affiliation In MyDescription Dist
1 1 PresidentC1 Moderate No US President Cand 1 41 %
2 1 PresidentC2 Progressive No US President Cand 2 41 %
3 1 PresidentC3 Action No US President Cand 3 18 %
4 2 USSenateC1 Moderate No US Senate Cand 1 50 %
5 2 USSenateC2 Progressive No US Senate Cand 2 50 %
6 3 USHouseC1 Moderate No US House Cand 1 33 %
7 3 USHouseC2 Progressive No US House Cand 2 34 %
8 3 USHouseC3 Conservation No US House Cand 3 33 %
9 4 SSenateC1 Moderate No State House Cand 1 34 %
10 4 SSenateC2 Progressive No State House Cand 2 33 %
11 4 SSenateC3 Conservation No State House Cand 3 33 %
12 5 SHouseD1C1 Moderate No State House D1 Cand 1 36 %
13 5 SHouseD1C2 Progressive No State House D1 Cand 2 36 %
14 5 SHouseD1C3 Conservation No State House D1 Cand 3 21 %
1001 5 SHouseD1 Writein1 Yes Canonical 3 %
1002 5 SHouseD1 Writein2 Yes Canonical 2 %
1003 5 Invalid Writein Yes Indeterminate 2 %
15 6 SHouseD2C1 Moderate No State House D2 Cand 1 42 %
16 6 SHouseD2C2 Progressive No State House D2 Cand 2 42 %
17 6 SHouseD2C3 Independent No State House D2 Cand 3 10 %
1004 6 SHouseD2 Writein1 Yes Canonical 5 %
1005 6 Invalid Writein Yes Indeterminate 1 %
18 7 SHouseD3C1 Independent No State House D3 Cand 1 40 %
1006 7 SHouseD3 Writein1 Yes Canonical 45 %
1007 7 SHouseD3 Writein2 Yes Canonical 8 %
1008 7 SHouseD3 Writein3 Yes Canonical 4 %
1009 7 Invalid Writein Yes Indeterminate 3 %
19 8 CCouncilC01 Moderate No Council Candidate 1 25 %
20 8 CCouncilC02 Progressive No Council Candidate 2 20 %
21 8 CCouncilC03 No Council Candidate 3 45 %
22 8 CCouncilC04 Conservation No Council Candidate 4 15 %
23 8 CCouncilC05 Progressive No Council Candidate 5 30 %
24 8 CCouncilC06 No Council Candidate 6 20 %
25 8 CCouncilC07 Moderate No Council Candidate 7 40 %
26 8 CCouncilC08 Independent No Council Candidate 8 20 %
27 8 CCouncilC09 Conservation No Council Candidate 9 20 %
28 8 CCouncilC10 Progressive No Council Candidate 10 25 %
1010 8 CCouncil Writein1 Yes Canonical 28 %
1011 8 CCouncil Writein2 Yes Canonical 15 %
1012 8 CCouncil Writein3 Yes Canonical 10 %
1013 8 CCouncil Writein4 Yes Canonical 10 %

*** DRAFT *** 123 *** DRAFT ***

1014 8 CCouncil Writein5 Yes Canonical 5 %
1015 8 Invalid Writein Yes Indeterminate 3 %
29 9 Yes No Yes on Ballot Initiative 1 60 %
30 9 No No No on Ballot Initiative 1 40 %
31 10 Yes No Yes on Ballot Initiative 2 50 %
32 10 No No No on Ballot Initiative 2 50 %
33 11 Yes No Yes on Ballot Initiative 3 40 %
34 11 No No No on Ballot Initiative 3 60 %
35 12 Yes No Yes on Ballot Initiative 4 51 %
36 12 No No No on Ballot Initiative 4 49 %
37 13 MCCouncilC1 No 5 %
38 13 MCCouncilC2 No 35 %
39 13 MCCouncilC3 No 10 %
40 13 MCCouncilC4 No 20 %
41 13 MCCouncilC5 No 30 %

A test facility may use the above distributions in a variety of ways. For example, suppose a single-
winner contest has 2 candidates each with a 50 % probability distribution. The tester could regard
this contest as a single, random binomial event for each ballot, or it could regard the contest as two
independent, random binomial events for each ballot. In the first case, each candidate would have
a 50 % chance of being selected on the ballot and there would be no undervotes and no overvotes.
In the second case there would be a 25 % chance of neither candidate receiving a vote, a 50 %
chance of exactly one candidate receiving a vote, and a 25 % chance of both candidates receiving
a vote. The second case would have 25 % undervotes and 25 % overvotes. The process would be
different, but each candidate would receive, on average, the same number of votes.

For this example, we assume that each single-winner contest, i.e., each 1-of-M contest, whose choice
probabilities add to 100 %, is treated as a single, random multinomial event with exactly one
candidate receiving a vote on that ballot. There will be no overvotes for these contests. However,
there may still be some undervotes because of the previous allocation for blank ballots and unvoted
contests. This technique still works even if the choice probabilities add to less than 100 %; the
difference between the sum and 100 % would just add to the undervote population.

For multiple-winner N-of-M contests, it is often more realistic to consider the contest to be a
sequence of M independent, binomial events, with each candidate having its given probability of
receiving a vote. We apply this technique to the County Council contest. Note that the above
probabilities for choices in the County Council contest (ContestId = 8) sum to 331 %. This means
that on average, a non-blank, voted ballot for this contest will select only 3.31 council candidates;
however, there will be a distribution from 0 to 16 of the candidates being selected, likely resulting
in a substantial number of undervotes and overvotes. One could modify the distribution to add or
subtract from the sum, thereby adding to the number of undervoted or overvoted ballots.

For multiple winner N-of-M contests, it is also possible to consider the contest as a sequence of
N independent multinomial events, with each candidate having its given probability of receiving a
vote on each event. We apply this technique to the municipal City Council contest (ContestId =
13) where the counting logic is Cumulative, up to 2 votes allowed, and the 5 given probabilities add
to exactly 100 %. Each candidate will have 2 independent chances to receive a vote, so some will
receive 0 votes, some exactly 1 vote, and some exactly 2 votes. Since this contest has cumulative

*** DRAFT *** 124 *** DRAFT ***

counting logic, there will be no overvotes from this approach and no new undervotes. There will
still be some undervotes because of the previous allocation for blank ballots and unvoted contests.

6.5.6 Generate a simulated election

It’s now time to vote! We simulate an election based on the above probability distributions by
taking the following actions:

1. Populate the Ballot table with 2000 ballots. Do not yet enforce the integrity constraint to
BallotStyle.

2. Assign an appropriate value to the Accepted attribute, based upon the binomial distribution
for RejectedBallots defined in Section 6.5.2.

3. Populate the BallotCategoryAssociation table according to the binomial distributions for Cat-
egories defined in Section 6.5.2.

4. Populate the BallotReportingContextAssociation table according to the Precinct probability
distributions defined in Section 6.5.3.

5. Update the Ballot table to assign a value to the StyleId attribute using the Precincts just
generated for each ballot to link to ReportingContext and the existing BallotStyleReporting-
ContextAssociation table to identify the appropriate BallotStyle ID. Turn on the referential
integrity check from Ballot to BallotStyle.

6. Populate the Choice table with new choices for the write-ins identified in Table 27.

7. Populate the Choice table with a new choice for each write-in in any contest where a write-in
choice is generated by the distributions given in Table 28.

8. Populate the Alias table to have each write-in choice linked to the appropriate “canonical”
write-in. Recall that the canonical write-ins in the Choice table do not identify a choice on
any ballot; instead the dynamically generated write-in choices are now linked to a canonical
write-in if one exists.

9. Populate the VoterInput table for all 1-of-M contests making sure not to add choices for ballots
that have been tagged as blank ballots or for ballot-contest combinations that have been tagged
as unvoted contests.

10. Populate the VoterInput table for the County Council contest with the same provisions for
blank ballots and unvoted contests.

11. Populate the VoterInput table for the municipal City Council contest with the same provisions
for blank ballots and unvoted contests.

A Microsoft Access database implementing this example appears in the TestGenerator subdirectory
of the Votetest distribution with file name WorkedExampleDataGenerator.mdb. The database
contains all of the relational database tables, plus macros that implement the steps of the test data
generation process. The READ ME base table contains additional documentation specific to the
Access database. A tester could modify the data and rerun the macros to generate test data for
example elections with different contests and probability distributions.

N.B., An alternative test generator was documented in Section 5.7 as part of the Votetest advanced
test development environment.

*** DRAFT *** 125 *** DRAFT ***

6.5.7 Input ballots to a specific voting system

Use the simulated ballots generated in the previous subsection as input to a specific voting system
under test. This may take some effort to define a suitable interface to the voting system, since no
standard test interface is required by the VVSG.

Cast all of the ballots and then compare the results from the voting system to the reports generated
by Votetest. They should be identical.

6.6 Reports generated by Votetest

The database tables generated in Section 6.5 were transferred to the advanced test development
environment of Votetest (discussed in Section 5) by exporting them to a tab-delimited text format
and then importing them with the PostgreSQL COPY command. The Votetest infrastructure
for integrity checking and reporting was then invoked as for any other test case. The results are
presented in the following subsections.

To conserve space, not all reports are fully presented below. However, the Votetest integrity check
report, the county report, the three district reports, the municipality report, and representative
examples of the precinct reports are presented in full.

6.6.1 Integrity checks

##
BEGIN TEST CASE OUTPUT 2008-03-11 15:47:35-04

##

$Id: Documentation.tex 508 2009-03-19 21:08:47Z dflater $

----- Begin integrity check output -- All results should be empty -----

Out Of Range Voter Inputs
ballotid | choiceid | value
----------+----------+-------
(0 rows)

Out Of Range Endorsements
party | choiceid | value
-------+----------+-------
(0 rows)

Extraneous Inputs
ballotid | choiceid | value
----------+----------+-------
(0 rows)

Unreported Ballots
ballotid

*** DRAFT *** 126 *** DRAFT ***

(0 rows)

Double Votes
ballotid | choiceid | count | sum
----------+----------+-------+-----
(0 rows)

Cross Contest Aliases
aliasid | aliasname | aliascontestid | choiceid | choicename | choicecontestid
---------+-----------+----------------+----------+------------+-----------------
(0 rows)

Double Indirect Aliases
aliasid | aliasedaliasid
---------+----------------
(0 rows)

Ballot Styles With More Than One Straight Party Contest
styleid

(0 rows)

Non-Existent Parties In Straight Party Contest
contestid | name
-----------+------
(0 rows)

Circular Straight Party Endorsements
party | choiceid
-------+----------
(0 rows)

Endorsed Aliases
party | choiceid | value
-------+----------+-------
(0 rows)

Straight Party Overrides
ballotid | contestid | choiceid | value
----------+-----------+----------+-------
(0 rows)

Too Many Write-Ins
ballotid | contestid | writeinscount
----------+-----------+---------------
(0 rows)

*** DRAFT *** 127 *** DRAFT ***

----- End integrity check output ---- All results should be empty -----

Report total volume: 155990
- Includes optional reporting of blank ballots.
- Excludes separate reporting of ballots cast vs. read.

##

6.6.2 Countywide results

Report for context County1 generated 2008-03-11 15:48:07-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 2000 1979

Absentee 254 251
Provisional 120 119

Blank 19 19

H1B1B2 479 475
Absentee 68 67

Provisional 30 30
Blank 5 5

H1B1B2M1B4 87 87
Absentee 11 11

Provisional 6 6
Blank 2 2

H2B1B2B3 547 540
Absentee 61 61

Provisional 33 32
Blank 6 6

H2B1B2B3M1B4 148 146
Absentee 21 20

Provisional 7 7
Blank 1 1

H3B1B2 739 731
Absentee 93 92

Provisional 44 44
Blank 5 5

*** DRAFT *** 128 *** DRAFT ***

VOTE TOTALS

President
PresidentC1 (Moderate) 796
PresidentC2 (Progressive) 778
PresidentC3 (Action) 370
Overvotes 0
Undervotes 35
Counted ballots 1979
Balance 0

U.S. Senate
USSenateC2 (Progressive) 968
USSenateC1 (Moderate) 964
Overvotes 0
Undervotes 47
Counted ballots 1979
Balance 0

U.S. House
USHouseC2 (Progressive) 678
USHouseC1 (Moderate) 625
USHouseC3 (Conservation) 616
Overvotes 0
Undervotes 60
Counted ballots 1979
Balance 0

State Senate
SSenateC2 (Progressive) 647
SSenateC1 (Moderate) 627
SSenateC3 (Conservation) 620
Overvotes 0
Undervotes 85
Counted ballots 1979
Balance 0

State House #1
SHouseD1C1 (Moderate) 200
SHouseD1C2 (Progressive) 193
SHouseD1C3 (Conservation) 108
SHouseD1 Writein1 (write-in) 12
SHouseD1 Writein2 (write-in) 11
Invalid Writein (write-in) 7
Overvotes 0
Undervotes 31

*** DRAFT *** 129 *** DRAFT ***

Counted ballots 562
Balance 0

State House #2
SHouseD2C1 (Moderate) 269
SHouseD2C2 (Progressive) 266
SHouseD2C3 (Independent) 72
SHouseD2 Writein1 (write-in) 44
Invalid Writein (write-in) 2
Overvotes 0
Undervotes 33
Counted ballots 686
Balance 0

State House #3
SHouseD3 Writein1 (write-in) 266
SHouseD3C1 (Independent) 221
SHouseD3 Writein2 (write-in) 41
SHouseD3 Writein3 (write-in) 20
Invalid Writein (write-in) 14
Overvotes 0
Undervotes 169
Counted ballots 731
Balance 0

County Council
CCouncilC03 595
CCouncilC07 (Moderate) 511
CCouncilC05 (Progressive) 378
CCouncil Writein1 (write-in) 330
CCouncilC10 (Progressive) 329
CCouncilC01 (Moderate) 322
CCouncilC06 248
CCouncilC02 (Progressive) 241
CCouncilC08 (Independent) 233
CCouncilC09 (Conservation) 230
CCouncilC04 (Conservation) 176
CCouncil Writein2 (write-in) 165
CCouncil Writein3 (write-in) 104
CCouncil Writein4 (write-in) 102
CCouncil Writein5 (write-in) 62
Invalid Writein (write-in) 30
Overvotes 1584
Undervotes 2276
Counted ballots 1979
Balance 0

Ballot Initiative 1

*** DRAFT *** 130 *** DRAFT ***

Yes 987
No 663
Overvotes 0
Undervotes 329
Counted ballots 1979
Balance 0

Ballot Initiative 2
No 843
Yes 832
Overvotes 0
Undervotes 304
Counted ballots 1979
Balance 0

Ballot Initiative 3
No 311
Yes 207
Overvotes 0
Undervotes 168
Counted ballots 686
Balance 0

Ballot Initiative 4
Yes 93
No 86
Overvotes 0
Undervotes 54
Counted ballots 233
Balance 0

Muni City Council
MCCouncilC2 115
MCCouncilC5 91
MCCouncilC4 65
MCCouncilC3 34
MCCouncilC1 13
Overvotes 0
Undervotes 148
Counted ballots 233
Balance 0

6.6.3 Precinct results

Report for context P01 generated 2008-03-11 15:48:07-0400

BALLOT COUNTS

*** DRAFT *** 131 *** DRAFT ***

Configuration Read Counted
------------- ---- -------
Total 93 93

Absentee 19 19
Provisional 6 6

Blank 0 0

H1B1B2 93 93
Absentee 19 19

Provisional 6 6

VOTE TOTALS

President
PresidentC2 (Progressive) 42
PresidentC1 (Moderate) 37
PresidentC3 (Action) 14
Overvotes 0
Undervotes 0
Counted ballots 93
Balance 0

U.S. Senate
USSenateC1 (Moderate) 47
USSenateC2 (Progressive) 46
Overvotes 0
Undervotes 0
Counted ballots 93
Balance 0

U.S. House
USHouseC2 (Progressive) 32
USHouseC1 (Moderate) 31
USHouseC3 (Conservation) 29
Overvotes 0
Undervotes 1
Counted ballots 93
Balance 0

State Senate
SSenateC1 (Moderate) 35
SSenateC3 (Conservation) 31
SSenateC2 (Progressive) 27
Overvotes 0
Undervotes 0
Counted ballots 93

*** DRAFT *** 132 *** DRAFT ***

Balance 0

State House #1
SHouseD1C1 (Moderate) 33
SHouseD1C2 (Progressive) 27
SHouseD1C3 (Conservation) 17
SHouseD1 Writein2 (write-in) 3
Invalid Writein (write-in) 3
SHouseD1 Writein1 (write-in) 1
Overvotes 0
Undervotes 9
Counted ballots 93
Balance 0

County Council
CCouncilC03 27
CCouncilC05 (Progressive) 23
CCouncilC07 (Moderate) 17
CCouncilC02 (Progressive) 16
CCouncilC10 (Progressive) 14
CCouncil Writein1 (write-in) 13
CCouncilC01 (Moderate) 12
CCouncilC06 12
CCouncilC08 (Independent) 11
CCouncilC09 (Conservation) 11
CCouncil Writein2 (write-in) 9
CCouncil Writein4 (write-in) 7
CCouncilC04 (Conservation) 6
CCouncil Writein3 (write-in) 5
CCouncil Writein5 (write-in) 3
Invalid Writein (write-in) 1
Overvotes 80
Undervotes 105
Counted ballots 93
Balance 0

Ballot Initiative 1
Yes 40
No 34
Overvotes 0
Undervotes 19
Counted ballots 93
Balance 0

Ballot Initiative 2
Yes 46
No 36
Overvotes 0

*** DRAFT *** 133 *** DRAFT ***

Undervotes 11
Counted ballots 93
Balance 0

Report for context P04 generated 2008-03-11 15:48:08-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 87 87

Absentee 11 11
Provisional 6 6

Blank 2 2

H1B1B2M1B4 87 87
Absentee 11 11

Provisional 6 6
Blank 2 2

VOTE TOTALS

President
PresidentC1 (Moderate) 29
PresidentC2 (Progressive) 29
PresidentC3 (Action) 22
Overvotes 0
Undervotes 7
Counted ballots 87
Balance 0

U.S. Senate
USSenateC2 (Progressive) 44
USSenateC1 (Moderate) 40
Overvotes 0
Undervotes 3
Counted ballots 87
Balance 0

U.S. House
USHouseC2 (Progressive) 37
USHouseC3 (Conservation) 25
USHouseC1 (Moderate) 20
Overvotes 0

*** DRAFT *** 134 *** DRAFT ***

Undervotes 5
Counted ballots 87
Balance 0

State Senate
SSenateC2 (Progressive) 30
SSenateC3 (Conservation) 28
SSenateC1 (Moderate) 25
Overvotes 0
Undervotes 4
Counted ballots 87
Balance 0

State House #1
SHouseD1C1 (Moderate) 31
SHouseD1C2 (Progressive) 26
SHouseD1C3 (Conservation) 20
SHouseD1 Writein1 (write-in) 3
SHouseD1 Writein2 (write-in) 3
Invalid Writein (write-in) 0
Overvotes 0
Undervotes 4
Counted ballots 87
Balance 0

County Council
CCouncilC03 25
CCouncilC07 (Moderate) 23
CCouncilC05 (Progressive) 17
CCouncil Writein1 (write-in) 15
CCouncilC08 (Independent) 14
CCouncilC10 (Progressive) 13
CCouncilC01 (Moderate) 12
CCouncilC09 (Conservation) 12
CCouncilC06 8
CCouncilC02 (Progressive) 7
CCouncilC04 (Conservation) 7
CCouncil Writein2 (write-in) 4
CCouncil Writein3 (write-in) 4
CCouncil Writein4 (write-in) 4
CCouncil Writein5 (write-in) 3
Invalid Writein (write-in) 2
Overvotes 88
Undervotes 90
Counted ballots 87
Balance 0

Ballot Initiative 1

*** DRAFT *** 135 *** DRAFT ***

Yes 41
No 34
Overvotes 0
Undervotes 12
Counted ballots 87
Balance 0

Ballot Initiative 2
Yes 43
No 30
Overvotes 0
Undervotes 14
Counted ballots 87
Balance 0

Ballot Initiative 4
No 34
Yes 33
Overvotes 0
Undervotes 20
Counted ballots 87
Balance 0

Muni City Council
MCCouncilC2 47
MCCouncilC5 30
MCCouncilC4 28
MCCouncilC3 10
MCCouncilC1 5
Overvotes 0
Undervotes 54
Counted ballots 87
Balance 0

Report for context P05 generated 2008-03-11 15:48:08-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 148 146

Absentee 21 20
Provisional 7 7

Blank 1 1

*** DRAFT *** 136 *** DRAFT ***

H2B1B2B3M1B4 148 146
Absentee 21 20

Provisional 7 7
Blank 1 1

VOTE TOTALS

President
PresidentC2 (Progressive) 63
PresidentC1 (Moderate) 53
PresidentC3 (Action) 29
Overvotes 0
Undervotes 1
Counted ballots 146
Balance 0

U.S. Senate
USSenateC1 (Moderate) 70
USSenateC2 (Progressive) 69
Overvotes 0
Undervotes 7
Counted ballots 146
Balance 0

U.S. House
USHouseC2 (Progressive) 53
USHouseC1 (Moderate) 46
USHouseC3 (Conservation) 42
Overvotes 0
Undervotes 5
Counted ballots 146
Balance 0

State Senate
SSenateC3 (Conservation) 51
SSenateC1 (Moderate) 48
SSenateC2 (Progressive) 42
Overvotes 0
Undervotes 5
Counted ballots 146
Balance 0

State House #2
SHouseD2C1 (Moderate) 61
SHouseD2C2 (Progressive) 58
SHouseD2C3 (Independent) 11
SHouseD2 Writein1 (write-in) 10

*** DRAFT *** 137 *** DRAFT ***

Invalid Writein (write-in) 1
Overvotes 0
Undervotes 5
Counted ballots 146
Balance 0

County Council
CCouncilC07 (Moderate) 44
CCouncilC03 39
CCouncilC05 (Progressive) 34
CCouncilC09 (Conservation) 25
CCouncilC10 (Progressive) 24
CCouncil Writein1 (write-in) 22
CCouncilC01 (Moderate) 21
CCouncilC02 (Progressive) 19
CCouncilC04 (Conservation) 16
CCouncil Writein2 (write-in) 16
CCouncilC08 (Independent) 15
CCouncilC06 14
CCouncil Writein4 (write-in) 8
CCouncil Writein3 (write-in) 4
CCouncil Writein5 (write-in) 3
Invalid Writein (write-in) 3
Overvotes 120
Undervotes 157
Counted ballots 146
Balance 0

Ballot Initiative 1
Yes 78
No 41
Overvotes 0
Undervotes 27
Counted ballots 146
Balance 0

Ballot Initiative 2
No 66
Yes 60
Overvotes 0
Undervotes 20
Counted ballots 146
Balance 0

Ballot Initiative 3
No 69
Yes 48
Overvotes 0

*** DRAFT *** 138 *** DRAFT ***

Undervotes 29
Counted ballots 146
Balance 0

Ballot Initiative 4
Yes 60
No 52
Overvotes 0
Undervotes 34
Counted ballots 146
Balance 0

Muni City Council
MCCouncilC2 68
MCCouncilC5 61
MCCouncilC4 37
MCCouncilC3 24
MCCouncilC1 8
Overvotes 0
Undervotes 94
Counted ballots 146
Balance 0

Report for context P08 generated 2008-03-11 15:48:08-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 129 129

Absentee 17 17
Provisional 5 5

Blank 0 0

H3B1B2 129 129
Absentee 17 17

Provisional 5 5

VOTE TOTALS

President
PresidentC1 (Moderate) 55
PresidentC2 (Progressive) 46
PresidentC3 (Action) 27

*** DRAFT *** 139 *** DRAFT ***

Overvotes 0
Undervotes 1
Counted ballots 129
Balance 0

U.S. Senate
USSenateC1 (Moderate) 66
USSenateC2 (Progressive) 62
Overvotes 0
Undervotes 1
Counted ballots 129
Balance 0

U.S. House
USHouseC3 (Conservation) 44
USHouseC1 (Moderate) 40
USHouseC2 (Progressive) 40
Overvotes 0
Undervotes 5
Counted ballots 129
Balance 0

State Senate
SSenateC1 (Moderate) 43
SSenateC2 (Progressive) 41
SSenateC3 (Conservation) 41
Overvotes 0
Undervotes 4
Counted ballots 129
Balance 0

State House #3
SHouseD3C1 (Independent) 42
SHouseD3 Writein1 (write-in) 40
SHouseD3 Writein2 (write-in) 6
SHouseD3 Writein3 (write-in) 4
Invalid Writein (write-in) 4
Overvotes 0
Undervotes 33
Counted ballots 129
Balance 0

County Council
CCouncilC03 44
CCouncilC05 (Progressive) 32
CCouncilC07 (Moderate) 28
CCouncilC10 (Progressive) 28

*** DRAFT *** 140 *** DRAFT ***

CCouncilC01 (Moderate) 19
CCouncilC02 (Progressive) 17
CCouncil Writein1 (write-in) 17
CCouncilC08 (Independent) 14
CCouncilC06 10
CCouncilC09 (Conservation) 10
CCouncil Writein2 (write-in) 10
CCouncilC04 (Conservation) 8
CCouncil Writein3 (write-in) 7
CCouncil Writein4 (write-in) 4
CCouncil Writein5 (write-in) 4
Invalid Writein (write-in) 3
Overvotes 116
Undervotes 145
Counted ballots 129
Balance 0

Ballot Initiative 1
Yes 64
No 49
Overvotes 0
Undervotes 16
Counted ballots 129
Balance 0

Ballot Initiative 2
Yes 55
No 49
Overvotes 0
Undervotes 25
Counted ballots 129
Balance 0

6.6.4 Statehouse District results

Report for context StateHouseD1 generated 2008-03-11 15:48:09-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 566 562

Absentee 79 78
Provisional 36 36

Blank 7 7
H1B1B2 479 475

Absentee 68 67

*** DRAFT *** 141 *** DRAFT ***

Provisional 30 30
Blank 5 5

H1B1B2M1B4 87 87
Absentee 11 11

Provisional 6 6
Blank 2 2

VOTE TOTALS

President
PresidentC1 (Moderate) 224
PresidentC2 (Progressive) 212
PresidentC3 (Action) 112
Overvotes 0
Undervotes 14
Counted ballots 562
Balance 0

U.S. Senate
USSenateC1 (Moderate) 279
USSenateC2 (Progressive) 271
Overvotes 0
Undervotes 12
Counted ballots 562
Balance 0

U.S. House
USHouseC2 (Progressive) 202
USHouseC3 (Conservation) 175
USHouseC1 (Moderate) 171
Overvotes 0
Undervotes 14
Counted ballots 562
Balance 0

State Senate
SSenateC3 (Conservation) 185
SSenateC2 (Progressive) 177
SSenateC1 (Moderate) 175
Overvotes 0
Undervotes 25
Counted ballots 562
Balance 0

State House #1
SHouseD1C1 (Moderate) 200
SHouseD1C2 (Progressive) 193
SHouseD1C3 (Conservation) 108

*** DRAFT *** 142 *** DRAFT ***

SHouseD1 Writein1 (write-in) 12
SHouseD1 Writein2 (write-in) 11
Invalid Writein (write-in) 7
Overvotes 0
Undervotes 31
Counted ballots 562
Balance 0

County Council
CCouncilC03 191
CCouncilC07 (Moderate) 130
CCouncilC05 (Progressive) 111
CCouncilC10 (Progressive) 102
CCouncilC01 (Moderate) 88
CCouncil Writein1 (write-in) 85
CCouncilC08 (Independent) 75
CCouncilC06 74
CCouncilC09 (Conservation) 72
CCouncilC02 (Progressive) 71
CCouncil Writein2 (write-in) 47
CCouncilC04 (Conservation) 45
CCouncil Writein3 (write-in) 31
CCouncil Writein4 (write-in) 27
CCouncil Writein5 (write-in) 23
Invalid Writein (write-in) 6
Overvotes 372
Undervotes 698
Counted ballots 562
Balance 0

Ballot Initiative 1
Yes 260
No 193
Overvotes 0
Undervotes 109
Counted ballots 562
Balance 0

Ballot Initiative 2
Yes 247
No 225
Overvotes 0
Undervotes 90
Counted ballots 562
Balance 0

Ballot Initiative 4
No 34

*** DRAFT *** 143 *** DRAFT ***

Yes 33
Overvotes 0
Undervotes 20
Counted ballots 87
Balance 0

Muni City Council
MCCouncilC2 47
MCCouncilC5 30
MCCouncilC4 28
MCCouncilC3 10
MCCouncilC1 5
Overvotes 0
Undervotes 54
Counted ballots 87
Balance 0

Report for context StateHouseD2 generated 2008-03-11 15:48:09-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 695 686

Absentee 82 81
Provisional 40 39

Blank 7 7
H2B1B2B3 547 540

Absentee 61 61
Provisional 33 32

Blank 6 6
H2B1B2B3M1B4 148 146

Absentee 21 20
Provisional 7 7

Blank 1 1

VOTE TOTALS

President
PresidentC2 (Progressive) 290
PresidentC1 (Moderate) 267
PresidentC3 (Action) 118
Overvotes 0
Undervotes 11
Counted ballots 686
Balance 0

*** DRAFT *** 144 *** DRAFT ***

U.S. Senate
USSenateC1 (Moderate) 334
USSenateC2 (Progressive) 331
Overvotes 0
Undervotes 21
Counted ballots 686
Balance 0

U.S. House
USHouseC2 (Progressive) 246
USHouseC1 (Moderate) 211
USHouseC3 (Conservation) 208
Overvotes 0
Undervotes 21
Counted ballots 686
Balance 0

State Senate
SSenateC2 (Progressive) 230
SSenateC1 (Moderate) 220
SSenateC3 (Conservation) 207
Overvotes 0
Undervotes 29
Counted ballots 686
Balance 0

State House #2
SHouseD2C1 (Moderate) 269
SHouseD2C2 (Progressive) 266
SHouseD2C3 (Independent) 72
SHouseD2 Writein1 (write-in) 44
Invalid Writein (write-in) 2
Overvotes 0
Undervotes 33
Counted ballots 686
Balance 0

County Council
CCouncilC07 (Moderate) 199
CCouncilC03 197
CCouncilC05 (Progressive) 126
CCouncil Writein1 (write-in) 114
CCouncilC01 (Moderate) 110
CCouncilC10 (Progressive) 106
CCouncilC02 (Progressive) 93
CCouncilC08 (Independent) 85
CCouncilC09 (Conservation) 81

*** DRAFT *** 145 *** DRAFT ***

CCouncilC06 73
CCouncilC04 (Conservation) 66
CCouncil Writein2 (write-in) 64
CCouncil Writein4 (write-in) 39
CCouncil Writein3 (write-in) 34
CCouncil Writein5 (write-in) 20
Invalid Writein (write-in) 11
Overvotes 560
Undervotes 766
Counted ballots 686
Balance 0

Ballot Initiative 1
Yes 353
No 217
Overvotes 0
Undervotes 116
Counted ballots 686
Balance 0

Ballot Initiative 2
No 303
Yes 280
Overvotes 0
Undervotes 103
Counted ballots 686
Balance 0

Ballot Initiative 3
No 311
Yes 207
Overvotes 0
Undervotes 168
Counted ballots 686
Balance 0

Ballot Initiative 4
Yes 60
No 52
Overvotes 0
Undervotes 34
Counted ballots 146
Balance 0

Muni City Council
MCCouncilC2 68
MCCouncilC5 61
MCCouncilC4 37

*** DRAFT *** 146 *** DRAFT ***

MCCouncilC3 24
MCCouncilC1 8
Overvotes 0
Undervotes 94
Counted ballots 146
Balance 0

Report for context StateHouseD3 generated 2008-03-11 15:48:09-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 739 731

Absentee 93 92
Provisional 44 44

Blank 5 5
H3B1B2 739 731

Absentee 93 92
Provisional 44 44

Blank 5 5

VOTE TOTALS

President
PresidentC1 (Moderate) 305
PresidentC2 (Progressive) 276
PresidentC3 (Action) 140
Overvotes 0
Undervotes 10
Counted ballots 731
Balance 0

U.S. Senate
USSenateC2 (Progressive) 366
USSenateC1 (Moderate) 351
Overvotes 0
Undervotes 14
Counted ballots 731
Balance 0

U.S. House
USHouseC1 (Moderate) 243
USHouseC3 (Conservation) 233
USHouseC2 (Progressive) 230
Overvotes 0

*** DRAFT *** 147 *** DRAFT ***

Undervotes 25
Counted ballots 731
Balance 0

State Senate
SSenateC2 (Progressive) 240
SSenateC1 (Moderate) 232
SSenateC3 (Conservation) 228
Overvotes 0
Undervotes 31
Counted ballots 731
Balance 0

State House #3
SHouseD3 Writein1 (write-in) 266
SHouseD3C1 (Independent) 221
SHouseD3 Writein2 (write-in) 41
SHouseD3 Writein3 (write-in) 20
Invalid Writein (write-in) 14
Overvotes 0
Undervotes 169
Counted ballots 731
Balance 0

County Council
CCouncilC03 207
CCouncilC07 (Moderate) 182
CCouncilC05 (Progressive) 141
CCouncil Writein1 (write-in) 131
CCouncilC01 (Moderate) 124
CCouncilC10 (Progressive) 121
CCouncilC06 101
CCouncilC02 (Progressive) 77
CCouncilC09 (Conservation) 77
CCouncilC08 (Independent) 73
CCouncilC04 (Conservation) 65
CCouncil Writein2 (write-in) 54
CCouncil Writein3 (write-in) 39
CCouncil Writein4 (write-in) 36
CCouncil Writein5 (write-in) 19
Invalid Writein (write-in) 13
Overvotes 652
Undervotes 812
Counted ballots 731
Balance 0

Ballot Initiative 1
Yes 374

*** DRAFT *** 148 *** DRAFT ***

No 253
Overvotes 0
Undervotes 104
Counted ballots 731
Balance 0

Ballot Initiative 2
No 315
Yes 305
Overvotes 0
Undervotes 111
Counted ballots 731

6.6.5 Municipality results

Report for context Municipality1 generated 2008-03-11 15:48:07-0400

BALLOT COUNTS

Configuration Read Counted
------------- ---- -------
Total 235 233

Absentee 32 31
Provisional 13 13

Blank 3 3

H1B1B2M1B4 87 87
Absentee 11 11

Provisional 6 6
Blank 2 2

H2B1B2B3M1B4 148 146
Absentee 21 20

Provisional 7 7
Blank 1 1

VOTE TOTALS

President
PresidentC2 (Progressive) 92
PresidentC1 (Moderate) 82
PresidentC3 (Action) 51
Overvotes 0
Undervotes 8
Counted ballots 233

*** DRAFT *** 149 *** DRAFT ***

Balance 0

U.S. Senate
USSenateC2 (Progressive) 113
USSenateC1 (Moderate) 110
Overvotes 0
Undervotes 10
Counted ballots 233
Balance 0

U.S. House
USHouseC2 (Progressive) 90
USHouseC3 (Conservation) 67
USHouseC1 (Moderate) 66
Overvotes 0
Undervotes 10
Counted ballots 233
Balance 0

State Senate
SSenateC3 (Conservation) 79
SSenateC1 (Moderate) 73
SSenateC2 (Progressive) 72
Overvotes 0
Undervotes 9
Counted ballots 233
Balance 0

State House #1
SHouseD1C1 (Moderate) 31
SHouseD1C2 (Progressive) 26
SHouseD1C3 (Conservation) 20
SHouseD1 Writein1 (write-in) 3
SHouseD1 Writein2 (write-in) 3
Invalid Writein (write-in) 0
Overvotes 0
Undervotes 4
Counted ballots 87
Balance 0

State House #2
SHouseD2C1 (Moderate) 61
SHouseD2C2 (Progressive) 58
SHouseD2C3 (Independent) 11
SHouseD2 Writein1 (write-in) 10
Invalid Writein (write-in) 1
Overvotes 0
Undervotes 5

*** DRAFT *** 150 *** DRAFT ***

Counted ballots 146
Balance 0

County Council
CCouncilC07 (Moderate) 67
CCouncilC03 64
CCouncilC05 (Progressive) 51
CCouncilC09 (Conservation) 37
CCouncilC10 (Progressive) 37
CCouncil Writein1 (write-in) 37
CCouncilC01 (Moderate) 33
CCouncilC08 (Independent) 29
CCouncilC02 (Progressive) 26
CCouncilC04 (Conservation) 23
CCouncilC06 22
CCouncil Writein2 (write-in) 20
CCouncil Writein4 (write-in) 12
CCouncil Writein3 (write-in) 8
CCouncil Writein5 (write-in) 6
Invalid Writein (write-in) 5
Overvotes 208
Undervotes 247
Counted ballots 233
Balance 0

Ballot Initiative 1
Yes 119
No 75
Overvotes 0
Undervotes 39
Counted ballots 233
Balance 0

Ballot Initiative 2
Yes 103
No 96
Overvotes 0
Undervotes 34
Counted ballots 233
Balance 0

Ballot Initiative 3
No 69
Yes 48
Overvotes 0
Undervotes 29
Counted ballots 146
Balance 0

*** DRAFT *** 151 *** DRAFT ***

Ballot Initiative 4
Yes 93
No 86
Overvotes 0
Undervotes 54
Counted ballots 233
Balance 0

Muni City Council
MCCouncilC2 115
MCCouncilC5 91
MCCouncilC4 65
MCCouncilC3 34
MCCouncilC1 13
Overvotes 0
Undervotes 148
Counted ballots 233
Balance 0

6.7 Conclusion

Any person interested in simulating potential results of a specific election and testing voting systems
for use in that election may follow the procedure described in this section to generate sample ballots.
This procedure helps to identify the features of a specific election that are relevant under the logic
model of the VVSG and provides guidance in representing those features in the abstract and
physical models of Votetest. The database representation can then be augmented with probability
distributions that are most relevant to the local election and sample ballots generated.

The sample ballots can be input to the voting system in use for the local election to verify that
those systems operate as expected for that election. In addition, Votetest reporting results for the
same sample ballots can be used to verify that the voting system being tested produces correct
results for that election as required by the VVSG.

References

[1] Election Assistance Commission. Voluntary Voting System Guidelines, next iteration edition.
To appear, http://www.eac.gov/.

[2] Information technology—Database languages—SQL. ISO/IEC 9075, International Organiza-
tion for Standardization, 2003. http://www.iso.org/.

[3] Election Assistance Commission. Voluntary Voting System Guidelines Recommendations to
the Election Assistance Commission, August 31, 2007. http://vote.nist.gov/vvsg-report.
htm.

*** DRAFT *** 152 *** DRAFT ***

http://www.eac.gov/
http://www.iso.org/
http://vote.nist.gov/vvsg-report.htm
http://vote.nist.gov/vvsg-report.htm

[4] Election Assistance Commission. 2005 Voluntary Voting System Guidelines, Version 1.0,
March 6, 2006. http://www.eac.gov/voting%20systems/voting-system-certification/
2005-vvsg.

[5] OMG Unified Modeling Language specification, version 1.5. Document formal/2003-03-
01, Object Management Group, March 2003. http://www.omg.org/cgi-bin/doc?formal/
2003-03-01.

[6] Sample ballot collection. http://vote.nist.gov/ballots.htm.

[7] PostgreSQL version 8.3.7, March 17, 2009. http://www.postgresql.org/.

[8] Class Library for Numbers version 1.2.2, April 2008. http://www.ginac.de/CLN/.

[9] GNU Compiler Collection version 4.3.3, January 24, 2009. http://gcc.gnu.org/.

[10] Flex version 2.5.35, February 26, 2008. http://flex.sourceforge.net/.

[11] Bison version 2.3, June 2006. http://www.gnu.org/software/bison/.

[12] Programming languages—C++. ISO/IEC 14882, International Organization for Standardiza-
tion, 2003. http://www.iso.org/.

[13] GNU Automake version 1.9.6, July 2005. http://www.gnu.org/software/automake/
automake.html.

[14] Cygwin, December 2007. http://www.cygwin.com/.

[15] Installing PostgreSQL on Windows using Cygwin FAQ, October 2007. http://www.
postgresql.org/docs/faqs.FAQ CYGWIN.html.

*** DRAFT *** 153 *** DRAFT ***

http://www.eac.gov/voting%20systems/voting-system-certification/2005-vvsg
http://www.eac.gov/voting%20systems/voting-system-certification/2005-vvsg
http://www.omg.org/cgi-bin/doc?formal/2003-03-01
http://www.omg.org/cgi-bin/doc?formal/2003-03-01
http://vote.nist.gov/ballots.htm
http://www.postgresql.org/
http://www.ginac.de/CLN/
http://gcc.gnu.org/
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://www.iso.org/
http://www.gnu.org/software/automake/automake.html
http://www.gnu.org/software/automake/automake.html
http://www.cygwin.com/
http://www.postgresql.org/docs/faqs.FAQ_CYGWIN.html
http://www.postgresql.org/docs/faqs.FAQ_CYGWIN.html

	Notes to Reviewers-votetest header for PDF
	Documentation
	Introduction
	What Votetest Is
	What Votetest Is Not
	Structure of this document

	Background
	Test materials
	Overview of test materials
	File listing
	How to use Votetest
	Applicability to VVSG 2005
	Data model
	Basic schema
	Basic test suite
	Required test cases not included in the basic Votetest test suite
	Requirements trace

	Advanced schema
	Conveniences
	Adaptation
	Integrity checks
	Translation of logic model

	Advanced test development environment
	Software prerequisites
	Hardware prerequisites
	File listing
	Installation
	Infrastructure
	Test suite self-tests
	TestGenerator
	On performance and scalability
	PostgreSQL configuration help
	Votetest under Cygwin

	New test case walk-through
	Introduction
	Example election
	Modelling the election in Votetest
	Representing the election in the database
	Generating relevant test cases
	Reports generated by Votetest
	Conclusion

