

Volumetric Flow Measurements of Stationary Sources: Common Mistakes, Corrective Measures

> Presented By Scott Swiggard, Ph.D., QSTI

Measurement Challenges and Metrology for Monitoring CO₂ Emissions from Smokestacks NIST, Gaithersburg, MD April 20 – 21, 2015

Stream flow - Stack flow (Emissions)
 The conglomeration of gases with varying chemical structures and masses homogeneously (most often) mixed, under pressure (+ or -) in a kinetic state flowing through a confined structure such as a duct, pipe or stack.

Flow Measurements

Standard Pitot

S-Type/Reverse/Stauscheibe

Inspection Tools

10" Liquid Manometer Block

Accuracy of Manometers

$p = (g_t / g_o)(\rho_w - \rho_a)h$ ρ_o

gt = gravity at instrument location go = standard gravity (980.665 cm/sec2) pa = density of air at observed temperature pw = density of water at observed temperature po = density of water at standard temperature h = height of water column in inches

Secondary references or tools often used

Equal Concentric Areas 0 О O \circ Centers of area of the .316 R equal concentric areas Round Duct .949 R

Pitot Tube Stations Indicated by O

Standard Pitot in Pipe

Typical Equipment

- Systematic
- Random
- Mistakes

Problems/Mistakes/Errors

- Leaks and leak checks
- Calibrations: pitot, thermocouples, Fyrite, Barometer, tape measure
- Diameter measurements
- Operator error: eye position, leveling, consistent measurements, documentation, pinching of lines.
- Coefficient assignments: 0.84
- Flow turbulence and cyclonic
- Changing ID of stack due to material buildup
- Equations, units of measure, bad macro

Thermocouple wires

FLOW

Laminar – Cyclonic - Turbulent

The stream moves in parallel paths NRe <2100

in a swirling cyclonic manner

N_{Re} = **Reynolds** number

Stack buildup

Damaged/Dented/Properly Built

Method 1 states "this method cannot be used when: (1) the flow is cyclonic or swirling...

EPA Method 1

Verification of the Absence of Cyclonic Flow

The Pitot is positioned at the first traverse point and rotated so the planes of the face openings are perpendicular to the direction of the flow. This is the 0° reference or null.

Cyclonic Flow May Exist

Tangential Entrance

Source Modification

tangential Entrance to a tangential Exit

Source Modifications

EPA Method 1

Verification of the Absence of Cyclonic Flow

After null angle has been applied to each traverse point, average the absolute values including any zero readings.

EPA Method 1

Section 11.4 Verification of the Absence of Cyclonic Flow

If the average angle is greater than twenty degrees (>20°), the flow condition in the stack is unacceptable for Method 1 flow measurements.

It is cyclonic!

An alternative methodology must be used subject to the approval of the Administrator.

Volumetric Flow

- Stack Diameter
- Velocity
- Stack Pressure
- Pitot Coefficient
- Stack Temperature
- Molecular Weight
- Moisture

Temperature Impact on CERMS

Flow measurements @ ~100F

RATA Calculations		
Ten - 21 minute average		
	N ₂ O	Flow
	(ppmvd)	(SCFM)
D-Bar=	9.49	1,448.8
Sigma-D=	4.74	2,025.0
CC=	3.39	1,448.59
RA(%)=	0.74%	1.89%

Flow measurements @ ~250F

RATA Calculations

Ten - 21 minute average		
	N ₂ O	Flow
	(lb/hr)	(SCFM)
D-Bar=	176.46	15,164.1
Sigma-D=	16.62	1,795.3
CC=	11.89	1,284.29
RA(%)=	11.73%	12.02%

S-Type Pitot paired analysis (ft/sec)

S-Type Pitot paired analysis Dry Standard Cubic Feet Minute

S-type pitot paired analysis

Stack Gas Velocity (ft/sec)

Relativ	e Devia	ation

	<u>Train A</u>	<u>Train B</u>	Deviation
Run 1	63.58	62.07	1.2%
Run 2	63.62	60.96	2.1%
Run 3 (3.1% Diff)	65.61	61.65	3.1%
Run 4	63.93	62.69	1.0%
Run 5 (0.7% Diff)	64.07	64.91	0.7%

-Relative Deviation

Rolativo

Same Source Temperature Measurement Error

Stack Temp ~100F

RATA Calculations		
Ten - 21 minute average		
	N ₂ O	Flow
	(ppmvd)	(SCFM)
D-Bar=	9.49	1,448.8
Sigma-D=	4.74	2,025.0
CC=	3.39	1,448.59
RA(%)=	0.74%	1.89%

Stack Temp ~250F

RATA Calculations		
Ten - 21 minute average		
	N ₂ O	Flow
	(lb/hr)	(SCFM)
D-Bar=	176.46	15,164.1
Sigma-D=	16.62	1,795.3
CC=	11.89	1,284.29
RA(%)=	11.73%	12.02%

Low Flow Rate, RA S-Type Pitot

First time test (6-28-13) the MW lower and static pressure positive. The second time test (12-3-13), MW was higher and static pressure negative. Consistent RM data, obvious change to CERMS

RATA Calculations		
Nine - 21 minute average		
	Flow	
	(ft/sec)	
*Average RM Data	18.61	
*Average CERMS Data	7.92	
D-Bar=	10.69	
Sigma-D=	0.71	
CC=	0.55	
RA=	60.40%	

RATA Calculations		
Nine - 21 minute average		
	Flow	
	(ft/sec)	
*Average RM Data	19.94	
*Average CERMS Data	18.33	
D-Bar=	1.61	
Sigma-D=	0.37	
CC=	0.29	
RA=	9.52%	

Ways to Improve Accuracy in Measurement

- 1. Make the measurement with an instrument that has the highest level of precision. The smaller the unit, or fraction of a unit, on the measuring device, the more precisely the device can measure. The precision of a measuring instrument is determined by the smallest unit to which it can measure.
- Know your tools! Apply correct techniques when using the measuring instrument and reading the value measured. Avoid the error called "parallax" -- always take readings by looking straight down (or ahead) at the measuring device. Looking at the measuring device from a left or right angle will give an incorrect value.
- 3. Repeat the same measure several times to get a good average value.
- 4. Measure under controlled conditions. If the object you are measuring could change size depending upon climatic conditions (swell or shrink), be sure to measure it under the same conditions each time. This may apply to your measuring instruments as well.

THE GOLD STANDARD FOR AIR TESTING.

Testing - Laboratory - Instrumentation 1-888-908-8234

Visit our website at: www.goldenspecialty.com

Scott B. Swiggard, PhD, QSTI (281)984-7021 sswiggard@goldenspecialty.com

GOLDEN SPECIALTY