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References [7, 8] demonstrate that statistical etations
Abstract—We develop a covariance-matrix-based uncertainty between measurement uncertainties for differenai@speters
analysis for vector-network-analyzer scattering-paameter  are required when propagating S-parameter measateme
e o by Uneeanies Mo uncerais of oftr fequedomain
them. This allows the uncertainties of vector-netwid-analyzer quantmes. Refe_rences [7. 8] c_ap_ture these cdiveln |r_1
scattering-parameter measurements to be propagatethto the ~Ccovariance matrices of a form similar to the onggested in
uncertainties of other quantites derived from scaering [5]. Reference [1] generalizes those results amdvstthat in
parameters, including temporal waveforms. the case of propagation into temporal-domain qtiasti
Index Terms—covariance matrix, vector network analyzer, statistical correlations between S-parameter measemt
scattering parameters, uncertainty analysis, frequecy-domain  yncertainties for different frequencies become essential.
measurements, time-domain measurements Reference [1] captures these correlations in ai+fretjuency
covariance matrix, that is, a covariance matrix #ecounts
| INTRODUCTION for the uncertainties and statis-tical correlatibesween them
' for all measurement frequencies. We use the reptaien
We develop a new uncertainty analysis for vectolintroduced in [1] in this work.
network-analyzer (VNA) scattering-parameter  (S- Typical approaches to the VNA S-parameter measuteme
parameter) measurements. The key feature of ouoappis yncertainty analysis do not account for the sfatibt
that the VNA measurement Uncertainties we prOVidB be Correlations between S_parameter measurement an‘ﬁm‘s
translated into the uncertainty of any other qugrdierived (eg [9, 10, 11]). This is due to the fact that thesprapches
from the S-parameters. In particular, our uncetiegncan be do not trace the underlying physical mechanisms of
propagated into the time domain and used in then®ioty measurements errors. Instead, these typical appesdollow
analysis of time-domain measurement systems thathie@ an empirical paradigm in which S-parameter measurement
frequency-domain VNA characterization. Such systemgncertainties are obtained based on some appraximat
include electro-optic measurement systems [1], -highsstimates of errors in S-parameters of calibrastandards
frequency sampling oscilloscopes [2, 3] and laiges 5nd raw VNA measurements.
network analyzers [4]. In our approach, we follow physical paradigm. We begin
Covariance-matrix ~ descriptions  of  S-parameteyiith the identification of all of the fundamentahsstically
measurement uncertainties have already been entploye jngependent physical error mechanisms in the VNA
some early contributions on six-port measuremestesys. measurement. We then characterize these mechamiitins
References [5, 6], for example, present a compsen frequency-dependent physical models. Based on thestls
covariance-matrix-based uncertainty analysis of imgls- e determine the contribution of these error meismas to
frequency S-parameters measurement in a 2-18 Ghizstd  the VNA measurement uncertainty for all measurement
port measurement system. frequencies and S-parameters at the same time eGoestly,
Recently, a covariance-matrix uncertainty des@ipfor S- \ve can readily determine all of the statistical retations
parameter measurements was presented in [1, 7, Bftween these uncertainties and capture them with a

covariance matrix.
Manuscript received November ..., 2009.
Arkadiusz Lewandowski is with the Warsaw Universif Technology, . P E M
Institute of Electronic Systems, Nowowiejska 15/09;665 Warsaw, Poland : HYSICAL ERRORMECHANISMS
(phone: +48 22 234 7877; e-mail: A.Lewandowski@ier). The notion of a physical error mechanism is fundataieto

Dylan F. Williams, Paul D. Hale, Jack C. M. WangidaAndrew . b d . lvsis. It ceslehe f
Dienstfrey are with the National Institute of Starts and Technology, 325 OUr covariance-based uncertainty analysis. It césiéne fact

Broadway, Boulder, CO 80305, USA that the overall measurement error is caused byetaot
" This work is a publication of the National Instéuof Standards and fundamental physical error mechanisms. These error

Leéhggiﬂcﬁér(:t\usn an agency of the U.S. governmand is not subject o o oh 2 nisms  correspond to both systematic measutemen



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATIONNUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

errors €.g., uncertainties of dimensional and material _aml(é) om (&) 1
parameters of the calibration standards) and random — e
measurement errorge.g., bending of the cables, misalignment 04, &=0 9w v =0
of inner and outer conductors, or displacementthefinner J, = am(f) = E E : , (4)
conductor fingers in coaxial connectors). 08 =0 | om, () om, (©)

We represent a physical error mechanism witkcaar M) Ime&)
random variable ¢ that describes the variability of an | 0¢, &=0 0Sy =0 |

underlying physical parameter characterizing thechanism,

and with aphysical model that describes the relationshipwhose elements are the sensitivities of S-parameter
between this physical parameter and the correspgneliror measuremens to individual error mechanisms i§. By use

in S-parameter measurement. This relationship terogned ¢ (3) and (4) we then readily obtain the covarantatrix
by the electrical models of the calibration staddaand the . °
VNA instrumentation, and the mathematical desariptf the of error As in S-parameter measurements [12]

VNA calibration and correction procedure. L, =E[AAS |= JE[&E |97, =3,230, (5)

As the random parametgt describeshanges, we assume \ypere E[] is the expectation value operator [12]. In orter

that it has a zero mean value and a varian§e Typically, make sure that the linear approximation (5) holes verify it

this parameter has a Gaussian or uniform probphikinsity With numerical Monte Carlo simulations.

function. We further define the physical model esgnting Matrix (5) contains a wealth of information. Itsadbnal
the error mechanism as a vector function elements describe the variance of real and imagiparts of

As= m({) (1) the error in the corresponding S-parameters invewor s .
' The off-diagonal terms inX_ correspond to all possible
tatistical correlations between these errors. panticular,
hese terms account for correlations between eriorS-
parameter measurements at different frequencies.
We further note that foQ < M it is possible for matrix (5)
to be full rank; however, foQ >M the rank of matrix (5) is

necessarily less tha@, hence its rows and columns are

where As is the error in S-parameter measuremgntBoth
As and s are real-valued vectors with real and imaginar
parts of corresponding S-parameters. These vediane
Q=2N?K elements, whereéN is the number of ports of the
device under test (DUT) andK is the number of
measurement frequencies. The particular ordering Sef
parameters iM\s and s is arbitrary and is not relevant for the

following discussion. linearly dependent. This has an important implaatiIn
practice Q is usually much larger tharM , because we
[ll.  COVARIANCE MATRIX measure S-parameters for a large number of freigenc
The statistical properties of the physical errorchamisms Consequently, we observe the variability @ random
can be conveniently captured in a covariance matrix variables that results from only independent physical
o2 random mechanisms. Therefore, some fixed detertitinis
s - “ . ) relationships between the variables &3 exist, which are
e~ B @) captured in the matrixJ, . As a result, instead of directly
o
&

estimating the matrixx, based on repeated measurements,
where Mis the number of mechanisms. Matrix (2) iswhich is difficult because of a large number ofiahtes [12,

diagonal, because the physical error mechanisms &g itis more efficient to identify the underlgrindependent
statistically independent. error mechanismg and the matrixJ, whose columns

In order to determine the statistical propertieghaf error . . .
. apture the physical relationships between theser er
As in S-parameter measurement, we need to propalbate .

mechanisms and the measurement error.

variability of the random parameteis through the physical Equation (5) also suggests another convenient feom

model (1). This model is, in general, nonlineddowever, representing the information captured X. Let the square
since & and As describe changes, we can assume that both

. . root o, of covariance matriXZ‘.é be defined by
variables are small. Consequently, we can lineafldeand

apply the superposition rule. The overall erroSiparameter L, =0.0,. (6)
measuremens is then written as a linear combination Since the physical error mechanisms are uncorcgldig is
As=J.&, 3) diagonal, and its square root matrix is also a alia matrix

where %z[flwwfm ]T is a vector of random parameterscontaining the square roots (standard deviatioris)the

. . . . variances inZ, . With the use ofs, we can now rewrite (5) as
representing the physical error mechanisms, andxmayj, is

. : . T T T
the Jacobian matrix defined by X =J,2J, = (Jmﬁg)(JmGg) =J,J,. (7
Thus, we can uniquely represent tQexQ matrix X, with a
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much smallerQxM matrix J, made up of columns o
multiplied by standard deviations of error mecharssn & .

V. PROPAGATING COVARIANCE-MATRIX-BASED
UNCERTAINTIES

In this section we review the propagation of comace-
based uncertainties into the uncertainties of qtiesitderived
from S-parameter measurements. We focus here amera)
case when the quantity derived from S-parametegpertts on

Equation (11) shows that both covariance matriégs and
X, are closely related. In the case when each eleofemt
depends on S-parameter measurements atooelfrequency,
the Jacobian matrixJ, has a block diagonal form.
Consequently, correlations between S-parameterursagnt
uncertainties for different frequencies do not eiffex, .
However, when elements off depend on S-parameter
measurement uncertainties falt frequencies, such as in the

measurements of S-parameters dbirfrequencies. Cases, for case of conversion from the frequency domain irtte t

which the derived quantities depend on S-parametemnly
one frequency have already been discussed in theatliter
[7].

There are many practical situations when we neeatkiive
some quantities from S-parameter measurements rpatb
for multiple frequencies. Examples here are thesfiarmation
of the reflection coefficient into the time-domaiim VNA-
based time-domain reflectometry, or the mismatatextion
in oscilloscope measurements. Other examples
measurement-based circuit modeling, such as datergnithe
equivalent circuit of a transistor
measurements.

from S-parametemechanisms.

temporal domain, the Jacobian matrix is dense and

correlations between S-parameter measurementstaimtiers
contribute to both variances and covariances,in

We can put (11) in a different form by use of . (f)e then
obtain

x, =323 =(3,3,)(3,3,)" - (12)
This relationship suggests that we can perfornutieertainty

apeopagation entirely by use of Jacobian matricab wolumns

scaled by the standard uncertainties of the phlysceor
Consequently, we may evaluate the full
covariance matrix of derived quantities only at dst step of

In all of these cases we can represent the refdtipn the uncertainty propagation.

between S-parameter measurements and the derieedtos
as a vector function

y=£f(s), C)
where y is vector of derived quantities, ansl is the S-
parameter measurement vectdfor a given measuremest
of S-parameters, we assume tligd) is differentiable ins,

and approximate it with a first-order Taylor expansof (8)
arounds,, that is ,

y =f(s,) + J;As, 9
where As is the measurement error is and J, is the
Jacobian matrix of partial derivatives, defined as

3, =26 (10)

0s |s
which has a similar form to (4). We then insert ifbY9) and
determine the covariance matrix as

x, = E[JfAs(JfAs)T]sz Elass]J= 957, (11)

V. REPORTINGCOVARIANCE-MATRIX-BASED
UNCERTAINTIES

the

uncertainty in vectoly representing the quantity derived from

S-parameter measurement (or, in the simplest dhseS-
parameter measurement itself). When reporting tloertainty
captured in X, as in the scalar case, we are typically

Covariance-matrix I describes measurement

interested in the confidence region. Assuming thatis full
rank, this region is defined as a multidimensioabipsoid
around the estimatg of y within which we expect, with a
prescribed likelihood - a , the true value o¥ to lie [12, 13].
This confidence region can be written as

(y - 9)T Z;,l (y - 9) = TMZ,P,l—a ' (13)

where T? is the 1-a quintile of Hotteling’s T?

v,pl-a

distribution with v and p degrees of freedom [12, 13M is

Expression (11) gives us an approximation of ththe number of physical error mechanisms, Riglthe number

covariance matrix of the quantity derived from Sgmaeter

measurements. Whefi(s) is linear, equation (11) is exact.

For a function that is nonlinear, approximation)(hblds as

of elements in the vector.

When evaluating (13), we need to pay special attertd
the rank of £ . As already mentioned, the variability of

long asf(s) is differentiable ats, and errors in S-parameter rggyits from a finite number d¥1 physical error mechanisms.

measurement are small relative to neglected naaditerms.

We determine this number based on the number aofmad in

In the case wheffi(s) is highly nonlinear or errors are large, ahe J, matrix used to construct, . WhenM is smaller than

numerical Monte Carlo simulation may be necessambtain
x

y -

" The derived quantities may also depend on sometitjea other than S-
parameters; however, for the sake of simplicity,deenot explicitly account
for this dependence in our notation.

the size P of the vectory, the covariance matrixz,

becomes rank deficient and cannot be inverted. &prently,
(13) is no longer valid. In this case, the confickenmegion
needs to be defined in terms of physical mechanisatiser
than measured quantities and then mapped intodhmiah of
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y. This is, however, beyond the scope of this paper TABLE |
In practice we are often interested in the uncetits of PHYSICAL PARAMETERS OF1.85MM COAXIAL TRANSMISSIONLINES

only single elements of the vectgr. Examples are real and T Standard
. . _ Parameter Value [mm] uncertainty [ m]
imaginary part, or magnitude and phase, of an &mater at :
. . Line 1 OC length 29.981 5
a particular frequency, or waveform voltage at atipalar Line 2 OC length 23066 5
time-point. The confidence region then reduces typacal Line 3 OC length 18.573 5
one-dimensional confidence interval [14]. Denotirlis Line 4 OC length 16.337 5
| t b d it timate bvo ite th Line 5 OC length 14.999 5
element by y and its estimate byy, we can write the Line 1 IC length 29 971 5
confidence interval as Line 2 IC length 23.060 5
y 9 Line 3 IC length 18.572 5
- Line 4 IC length 16.331 5
- < <
twa-a < o <tvia (14) Line 5 IC length 14.991 5
Y Line 1 OC diameter 1.8499 0.6
where t,,_, is the 1-a quintile of the Student'st- Line 2 OC diameter 1.851 1
o ) Line 3 OC diameter 1.8503 0.6
distribution with v degrees of freedom [14]. Line 4 OC diameter 1.852 1
Line 5 OC diameter 1.8518 0.6
Line 1 IC diameter 0.803 5
Line 2 IC diameter 0.804 6
VI. UNCERTAINTY ANALYSIS FORVNA MEASUREMENT Line 3 IC diameter 0.805 7
. . Line 4 IC diameter 0.804 6
Our uncertainty analysis  for _ VNA S-_pgre_lmeter Line 5 IC diameter 0.804 6
measurements is based on the covariance-matrixipigsc TIC - inner conductor, OC -outer conductor
introduced in Section Ill. We perform our analygistwo

steps. In the first step, we carefully identify af the here are lengths and diameters of conductors inctiaial

independent physical sources of measurement erAwsa transmission line. Such quels fpr differeljt caithl_m
result of this step we obtain the variances of ghestandards have been extensively discussed in theatlire

mechanisms, as captured in matlx. In the second step, we (eg. see [15] and [16]); we will not discuss them i

) ) detail.
determine how these mechanisms affect correctear&¥eter In the next step, we measure these fundamentahdiomwal

m_easuremenf[s atl frequgncies and represent t_his informatiorbarameters. For example, in the case of coaxiabresion

with the matrixJ,, as defined by (7). This matrix allows us t0gtandards used in this work, such measurementsvimtbe

eventually determine the covariance matix use of precision air gages and mechanical blockse T
We divide the error mechanisms into two groupsdncertainties of these measurements then become the

calibration standard errors and VNA instrumentatimors. €Stimates of standard deviations of calibratiomd#ad error-

The calibration standard errors result from undetiess in the mechanisms N, . In order to determine the columns of
dimensional and material parameters of the calmat matrix Jg,, we then use the rules described in Section IV to

standards. The VNA instrumentation errors are GaUSG . aqate these uncertainties through the physicalels of
primarily by the connector nonrepeatability and leab yhe " cajibration standards and the VNA calibrationd a
instability. ~ We write the overall error in S-par@fer ., ection procedure. We use the flexible calilm@pproach
measurement as a sum of [17] which allows us to easily adjust our uneérty
As = Jsp8srp + Jynabuna: (15) analysis to an arbitrary calibration procedure.
where &g, and §,, are vectors of random variables We illustrate this with the multiline TRL calibrati [18] in
corresponding to physical parameters that chaiaetehe the 1.85 mm coaxial connector standard. This catiin
calibration standard and VNA instrumentation errofmployed a set of five insertable airlines, a #aort as the
mechanisms, respectively, andg, and J,, are the reflect standard, and the direct connection c_>f pests as the
thru standard. The only systematic errors in ouibion

corresponding Jacobian matrices, -defined by (4)esgh result from the Type B uncertainties for the lesgthand

matrices capture the transformation between changeke . - . ) .
P Y diameters of 1.85 mm airline standards, which @&t&d in

physlcal parameters idgy, and &y, and the resulting error Table I. We derived these uncertainties from thecsgations
As in the frequency-dependent S-parameter measurementof the air-gage and mechanical blocks used to meathe
In the following we discuss the approach we empoy®e jjrlines.

obtain the representation (15). B VNAIng tati
. instrumentation errors

A. Calibration standard errors A covariance-matrix based description of VNA

In order to identify the calibration-standard efrorinstrumentation errors poses a more complex probiem the
mechanisms, we begin with physical modeling of thevaluation of calibration standard errors. It idfidilt, in
calibration standards. The goal of this modelingoigxpress practice, to characterize the VNA instrumentatioroms with
S-parameters of calibration standards in terms @fes analytical models derived from fundamental mecheinand
fundamental dimensional and material parameterantples electrical parameters of the VNA. For example hia tase of
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connector repeatability errors, this would requzareful
mechanical characterization alfl of the possible mechanical
displacements in the connector interface, and thlectro-
mechanical modeling of their influence on the if#tee S-
parameters. Although such an approach has beemedppl
simplified connector model®.¢., see [19] and [20]), the real
connector structures are extremely difficult to mlod The
situation is even more difficult with the randomaes caused
by cable instability or test-set drift. Analyticatodeling of
electrical parameters of such complex structuréey®nd our
capacity.

Hence, our approach to the description of VN,
instrumentation errors is different and is basedehavioral
stochastic modeling. We begin with the generic @ajs
model for the VNA random errors proposed in [21hda
shown schematically in Fig. 1. This model descrilibs

IONNUMBER (DOUBLE-CLICK HERE TO EDIT) < 5
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frequency-dependence of VNA random errors with ofe Fig. 1. Behavioral physical model for VNA randomces: (a) overview, (b)
lumped-element perturbations located at fixed dista within single perturbation.

the VNA error box. Based on that description, welda
stochastic model in which parameters of the peatishs may
vary randomly. We then identify statistical propestof these
parameters based on repeated measurements. Mapjsve
represent the complicated frequency-dependent bmhaV
VNA instrumentation errors with a very small set of
frequency-independent random variab&gs, and some fixed
functions that capture the frequency dependencehes$e
errors. These functions stem from the structuréhef model
shown in Fig. 1; for more details refer to [21%imilarly to
the calibration standard errors, we then deterrirecolumns
of the matrixJ,,, by propagating these functions through the
VNA calibration and correction procedure with thseuthe
rules described in Section IV.

In order to identify statistical properties @f,, .
repeated measurements. In the case of connecteatedylity
errors, we perform multiple reflection coefficient
measurements of a highly reflective load while rewxting
the load between the measurements. In the caseldé c
instability errors, we proceed in a similar way;wsver,
instead of reconnecting the load, we randomly kttedcable
between the measurements.

For a given sample of repeated measurements for

i=1...,R, we first determine the meas and calculate the
estimatesAs = § —'s of the measurement error.

model-identification approach presented in [21]d&iermine
the parameterg,,,; that model the measurement erds; ,

we use

and then determine the sample covariance maitixfor the

parameters;,,,, for i =1,...,R. We further apply principal

component analysis (see [12]) to diagonalize thérix and
reduce its dimensionality while capturing the miosportant
error mechanisms in the system. As a result, weuatglly
able to adequately represent the connector repkigtaind
cable instability errors with only two or three dam
variables.

In Fig. 2, we illustrate our approach with modelirggults

We use the

0.0020
—— measurement
— del
0.0016 | mode
2
c
g 0.0012
g Quadrature
E
=} L
S 0.0008
©
[
8
® 0.0004 |
In-phase
0
0 10 20 30 40 50 60 70
f[GHZ]

Fig. 2. Inphase and quadrature component of the standardtaimte of 1¢
measurements of a 5.4 mm long 1.85 mm coaxial toffsert: measureme
(grey) and stochastic behavioral model predictidagk).

for the connector repeatability errors. This figah®ws the in-
phase and quadrature component (see [22]) of tedatd
uncertainty of 16 repeated measurements of a 5.4long
1.85 mm coaxial offset short along with the undatta
prediction from our stochastic behavioral model. ek the
measurements for a narrow intermediate-frequenogWwalth
of 10 Hz in order to reduce the noise impact. s teason,
the 16 repeated measurements took approximatetyi3@es.
The model we used employed two random variablelse T
agreement between the model prediction and measutefor
the quadrature (phase) errors is very good exaaph fsmall
discrepancy in the frequency range below 4 GHz.sThi
discrepancy is caused by an increased test-sdt idrithe
frequency range below 4 GHz, a phenomenon we atoedl

in other experiments.

The agreement for the in-phase (magnitude) ersonei as
good; however, the in-phase errors are much smadied
therefore less important than the quadrature errors
Consequently, our stochastic behavioral model mabk of
adequately representing the dominant variability tbe
connector interface observed in the measuremerteathort.
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VII. APPLICATION EXAMPLES

buT OSCILLOSCOPE
A. Mismatch-correcting waveform measurements T T | b, a, :'""'""""":
Measurement of waveforms with bandwidths reachin| 1 =  —>! h &V
microwave frequencies are typically performed witlgh- | l?—v> ; ™ ! >—eo !
. . . . DUT: YDUT
speed sampling oscilloscopes. Unlike their low-fleacy | : ! !
counterparts, these oscilloscopes are designed tminected | our ! ! Iy !
directly to the circuit under test and to measbeevoltage the | LA b, 1 !
circuit generates across the oscilloscope’'s €0 input ! :4_ 0O <_i !
impedance [23]. Accuracy of such measurements l@an ! ! ! a.=ha, !
I I

improved if the impedance mismatch between theuitirc - _____________ N [ — .
under-test and the oscilloscope is accounted fdiis Tis Fig. 3. SignaHow graph describing the propagation of signalsveen thi
typically done by measuring the DUT and OSCi||0£E:Op DUT and oscilloscope. The DUT injects into the cuit the S|gnalbDUT
impedance with the VNA and applying an appropriateW“h no distortion, as indicated by the unity trmsfunction. The signa
correction to the waveform measured by the oscitipe [23] delivered to the oscilloscope is modified by thensfer function , as well

. y p " being reflected multiple times by, and I, .
Here, we will show that the uncertainty analysis safch

mismatch-corrected waveform measurements requiréd| a M our (O) r (0) VDUT(O)
covariance-matrix description of the uncertaintiasVNA °
measurements r.. = I'DUT(fl) r = rs(fl) _ VDUT(fl)
) DUT — : s T : ,andvp; = :
Fig. 3 shows the signal-flow graph that models the : : :
propagation of the signal between the DUT and the Cour (fn) ro(fy) Vour (fn)

oscilloscope [23]. The DUT generates the signalthwihe

forward-wave voltagevy,; =/50Q by, , Where b, ; is the where f,, for i=0,...,N are the measurement frequencies,
forward-wave source amplitude, and the oscilloscopgnd f, =0. Similarly, we represent the temporal waveforms
measures the voltage :\/ﬁaS corresponding to the wave V, (ti) and V,,,; (ti)’ where t for i=1...,2N are the time
amplitudea;. We can write the relationship between the tW@oints, as vectors made up of measurements fotirat

voltages as [23] points, that is
Vour = VSM , (16) VDUT (t1) Vs (tl)
h Vour = : ,andV = '
whereT  is the input reflection coefficient of the oscétmpe Vour (tZN) V, (tZN)

and h is the oscilloscope’s complex frequency response (

] -2 Since the spectra are determined fdr+1l frequencies, the
the Fourier transform of its impulse resporise)

) _ corresponding waveforms ha@N time points [24].
In order to perform the uncertainty analysis of)(&& use . . . :

th taint i les d ibed in iSectV With the use of (11) we can write the covariancerixaf
e uncertainty propagation rules described in iSectv. .\ o co spectrum as

Here, we focus only on the uncertainty componentstd the . .
errors in VNA measurements. A complete uncertainty Ly :‘]rszrs‘]rs +‘]FDUTEFDUT‘]FDUT' 17
analysis, however, also needs to account for errthe where £, and I, ~ are the covariance matrices of the

oscilloscope’s raw measuremen] and the oscilloscope’s oscilloscope’s input reflection coefficient and thaUT's

complex frequency response reflection coefficient, respectively, an#{. and J. ~ are the
We represent the reflection coefficient measurenoérthe

oscilloscope and DUT as vectoR, . and T, respectively, Jacobian matrices. The uncertainty of the DUT wanaf

spectrum at a particular frequency depends on dhby
and the waveform spectrum of the DUT as vectqy,;. uncertainties of reflection coefficient measuremefur that
These vectors are constructed out of measurementslf same frequency; hence matricds, and J,  are block

frequencies, that is diagonal and consist of first derivatives of (16)hwespect to

I, and I,,;, evaluated at each measurement frequency.
However, the matricesX, and X, ~ are dense, and

consequently the covariance matdly_  is also dense.

¥ Equation (16) is suitable when the frequency aunté the signals is In order to determine the uncertainty of the DUT
within the bandwidth of the oscilloscopiee., |h| is roughly a unit magnitude. temporal waveform we need to use the discrete s&vEourier
transform. This transform is a linear operationndee the

relationship between DUT waveform spectrum and its
used to determing/, ,; . Regularization techniques need to be then use (Stemporal representation can be written as

(3D

At high frequencies, a*;h| rolls off, (16) is ill-posed and cannot be dirgctl
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. Vour =MVour, . (12_3) 0.08 —— 0.0010
where M is the matrix of the Fourier series coefficienthisT ___ Mismatch corrected
matrix is dense, because a single time-domain sanspla impulse response 1 0.0008
function of all spectrum components. By use of (a8) (11) — Standard uncertainty ' S
we can write 004 | Uncerta_linty calcula_lted -S
. neglecting correlations | 0.0006 £
T, =M.z 97 +3, T, UL IMT. (19) 0006 5
s s s buT buT buT o o
Expression (19) is a very important result. Simple § 0.0004 §
investigation shows that the uncertainties of wewxmf 3 I °
amplitudes depend both on uncertainties in S-paeme §
measurements and on statistical correlations betwhese 10.0002 2
uncertainties at different frequencies. Therefastngtion of
these correlations is essential when VNA S-paramete -0.04 ‘ 0
02 04 06 08 1 12 14 16

measurements are used
measurement systems.

In order to illustrate the importance of these elations,
we performed an experiment. We measured a pulserafeal
by a photodiode with a 50 GHz sampling oscilloscopad
from that we determined the mismatch-corrected Isgu
response of the oscilloscope by means of the apbro&[2].
Both the photodiode and the oscilloscope had 1.0coaxial
connectors. The output reflection coefficient ok tipulse
generator and the input reflection coefficient offiet
oscilloscope were measured with a VNA calibrateth e
use of 1.0 mm coaxial short-open-load-through (SPLT
calibration. The covariance matrix of uncertaintigs S-
parameters was determined with the methods disdusse
Section VI. We then analyzed the impact of mismatc
correction uncertainty on the impulse response naicdies.
We analyzed two different cases: when the uncditsiin the
mismatch-corrected impulse response are determin
accounting for the correlations between uncertagntfor
different frequencies, and when these correlaticare
neglected. Results of our experiment are shownign4- We
see that when the statistical correlations betwdlem
uncertainties are accounted for, the standard taingyr (solid
grey line) in the corrected waveform (solid blacke)
approximately follows the shape of the waveform.
particular, we note increased measurement uncgrtaround
the impulse response peak. When these correlatarns

in the calibration of warefor

Time [ns]
Fig. 4. Uncertainty analysis of the mismatch ottice in oscilloscop
waveform measurement: pulse voltage after the mtism correctio
(solid black), standard uncertainty of the pulsdtage (solid grey
standard ocertainty of the pulse voltage calculated withoatrelation
(dashed grey).

bead

/\
A /l// 2% z 0.803 mm
& E{A / ) I
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Fig. 5. Schematic of the 1.85 mm coaxial mismakteh. Dimensions wit
numerical values are fixed and taken from [28ther dimensions
estimated in the modeling procedure.

c

employ numerical optimization techniques to deteeminodel
parameters from VNA S-parameter measurements of the
device [26]. In the context of uncertainty analysige can

Write the modeling procedure as a function thatdfarms the
VNA S-parameter measuremesitinto model parameter9,

neglected, the uncertainties (dashed grey line)uaiormly thatis,
spread over the duration of the impulse response. p=f(5)- (20)
Consequently, the uncertainties away from the isgul Parameters in the vectorp are typically frequency

response peak are overestimated, while the uncgesi
around the peak are underestimated.

B. Measurement-based modeling

In the measurement-based modeling we determine
electrical model of a device based on a measurewfeiis
electrical characteristics, such as a wideband VISA
parameters measurement. Examples include modeling
active devices, such as microwave transistors, askive
devices, such as transmission line discontinujis

A number of different approaches are used
measurement-based modeling. These approachesparallty
based on a statistical formulation of the modepingblem and

independentdg. capacitances, inductances of resistances of
an equivalent circuit), while the vectors contains
measurement of S-parameters for multiple frequancide
particular form of the functiorf depends on the formulation
gf,the modeling problem and methods used to sblve i

In order to determine the covariance matty of model
parameters we may now apply the uncertainty prapaga

rales described in Section IV to (20). Since eachdeh
parameter depends on S-parameter measuremendll at

frequencies, the uncertainties of model parametérslepend
in then statistical correlations between uncertaintieS-parameter

measurement at different frequencies.
We illustrate this with an example of measuremexsell
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Fig. 6. Modeling of the 1.85 mm coaxial mismathut magnitude of%l,

measurement (solid grey), model (solid black).

50 60 70

TABLE Il
PARAMETERS OF1.85MM MISMATCH THRU MODEL
Standard
Parameter Value|  Standard uncertainty
uncertainty without
correlations
I1[ g m] 5630 7 9
I2[ g m] 5620 6 9
le[ g m] 14666 25 21
lp[ £ m] 30 7 5
o [10° S/m] 0.736 0.04 0.16
dc[ ¢ m] 1227 0.2 0.3
Cioint [fF] 3.96 1.26 1.11
Caap[fF] 1.79 0.46 0.27

modeling for a 1.85 mm coaxial Beatty standardsTdevice
is a section of low-impedance transmission line edaded in a

— measurement
— model

0.95 |
0.90 |
|821|

0.85 t

0.80 +

0.75

30 40 50 60
Frequency [GHz]

0 10 20 70
Fig. 7. Modeling of the 1.85 mm coaxial mismatietut magnitude ofSZl,

measurement (solid grey), model (solid black).

model parameters. As in examples shown in SedtibA,
neglecting these correlations may cause both ustleaion
and overestimation of the uncertainties.

VIII.

We present a new uncertainty analysis for VNA S-
parameter measurements. Our approach
covariance-matrix uncertainty description that whlous to
capture all of the S-parameter measurement unogesiand
statistical correlations between them. In particularough a
careful identification and modeling of underlyingrar
mechanisms in VNA S-parameter measurements, waldee
to determine the statistical correlations betwepcettainties

CONCLUSIONS

nominally 50 Q line. A schematic of this device, along withat different frequencies. Consequently, the cowagabased

geometrical dimensions, is shown in Fig. 5. We nhdtles
device as a cascade of transmission lines with tiaddi
capacitancesCj,,,

joint discontinuity (see [27]), and the bead at impedance
step. We model the center conductor gap as a seatibigh
impedance line (of fixed diameter 0.511 mm [28ivength

Ip. We assume that all lines exhibit conductor

characterized by the metal conductivity.

We measured S-parameters of the device with theotige
VNA calibrated with the multiline TRL calibrationThe
measurements were performed in the frequency réngfe
67 GHz. We obtained model parameters with the idakss
least-squares fitting [26] and then performed theeutainty
analysis with methods described in Section VI.im B and 7,
we compare the magnitudes 8f, and S,, obtained from the

uncertainties of VNA S-parameter measurements vperte
can be propagated into the uncertainties of angragantity

and C,,, accounting for the connector derived from S-parameters.

We further showed that the correlations between
uncertainties at different frequencies become igmrwhen
converting S-parameter uncertainties into a dondfiferent

lossdiom the frequency-domain, such as when convertiiig

parameter uncertainties into the temporal domain or
determining some frequency-independent parameserscbon
S-parameter measurements. We illustrated that il
uncertainty analysis of mismatch correction in viau
measurements and the uncertainty analysis of Syedea-
measurement-based modeling. In both cases theimqreal
results we obtained clearly demonstrate that adaugifor the
statistical correlations between S-parameter measemt
uncertainties at different frequencies is esserftalcorrect

measurement and from the model. The agreement rig vevaluation of uncertainties in quantities derivednf S-

good. In Table Il, we show the model parameterdainobd
along with the standard uncertainties. We deterdhitiese
uncertainties in two ways: with the use of the fidvariance
matrix and then by neglecting the correlations leetwv S-
parameter uncertainties for different frequenciefResults
shown in Table Il indicate that neglecting theserelations
leads to very different estimates of the unceri@snon the

parameter measurements.
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