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Abstract—We develop a covariance-matrix-based uncertainty 

analysis for vector-network-analyzer scattering-parameter 
measurements. The covariance matrix captures all of the 
measurement uncertainties and statistical correlations between 
them. This allows the uncertainties of vector-network-analyzer 
scattering-parameter measurements to be propagated into the 
uncertainties of other quantities derived from scattering 
parameters, including temporal waveforms.  

Index Terms—covariance matrix, vector network analyzer, 
scattering parameters, uncertainty analysis, frequency-domain 
measurements, time-domain measurements 
 

I. INTRODUCTION 

e develop a new uncertainty analysis for vector-
network-analyzer (VNA) scattering-parameter  (S-

parameter) measurements. The key feature of our approach is 
that the VNA measurement uncertainties we provide can be 
translated into the uncertainty of any other quantity derived 
from the S-parameters. In particular, our uncertainties can be 
propagated into the time domain and used in the uncertainty 
analysis of time-domain measurement systems that involve 
frequency-domain VNA characterization. Such systems 
include electro-optic measurement systems [1], high-
frequency sampling oscilloscopes [2, 3] and large-signal 
network analyzers [4]. 

Covariance-matrix descriptions of S-parameter 
measurement uncertainties have already been employed in 
some early contributions on six-port measurement systems. 
References [5, 6], for example, present a comprehensive 
covariance-matrix-based uncertainty analysis of a single-
frequency S-parameters measurement in a 2-18 GHz dual six-
port measurement system.  

Recently, a covariance-matrix uncertainty description for S-
parameter measurements was presented in [1, 7, 8]. 
 

Manuscript received November ..., 2009.  
Arkadiusz Lewandowski is with the Warsaw University of Technology, 

Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland 
(phone: +48 22 234 7877; e-mail: A.Lewandowski@ ieee.org).  

Dylan F. Williams, Paul D. Hale, Jack C. M. Wang, and Andrew 
Dienstfrey are with the National Institute of Standards and Technology, 325 
Broadway, Boulder, CO 80305, USA  

* This work is a publication of the National Institute of Standards and 
Technology (NIST), an agency of the U.S. government, and is not subject to 
U.S. copyright. 

References [7, 8] demonstrate that statistical correlations 
between measurement uncertainties for different S-parameters 
are required when propagating S-parameter measurement 
uncertainties into uncertainties of other frequency-domain 
quantities. References [7, 8] capture these correlations in 
covariance matrices of  a form similar to the one suggested in 
[5]. Reference [1] generalizes those results and shows that in 
the case of propagation into temporal-domain quantities, 
statistical correlations between S-parameter measurement 
uncertainties for different frequencies become essential. 
Reference [1] captures these correlations in a multi-frequency 
covariance matrix, that is, a covariance matrix that accounts 
for the uncertainties and statistical correlations between them 
for all measurement frequencies. We use the representation 
introduced in [1] in this work. 

Typical approaches to the VNA S-parameter measurement 
uncertainty analysis do not account for the statistical 
correlations between S-parameter measurement uncertainties 
(e.g [9, 10, 11]). This is due to the fact that these approaches 
do not trace the underlying physical mechanisms of 
measurements errors. Instead, these typical approaches follow 
an empirical paradigm in which S-parameter measurement 
uncertainties are obtained based on some approximate 
estimates of errors in S-parameters of calibration standards 
and raw VNA measurements. 

In our approach, we follow a physical paradigm. We begin 
with the identification of all of the fundamental statistically 
independent physical error mechanisms in the VNA 
measurement. We then characterize these mechanisms with 
frequency-dependent physical models. Based on these models 
we determine the contribution of these error mechanisms to 
the VNA measurement uncertainty for all measurement 
frequencies and S-parameters at the same time. Consequently, 
we can readily determine all of the statistical correlations 
between these uncertainties and capture them with a 
covariance matrix.  

II. PHYSICAL ERROR MECHANISMS  

The notion of a physical error mechanism is fundamental to 
our covariance-based uncertainty analysis. It reflects the fact 
that the overall measurement error is caused by a set of 
fundamental physical error mechanisms. These error 
mechanisms correspond to both systematic measurement 
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errors (e.g., uncertainties of dimensional and material 
parameters of the calibration standards) and random 
measurement errors (e.g., bending of the cables, misalignment 
of inner and outer conductors, or displacements of the inner 
conductor fingers in coaxial connectors). 

We represent a physical error mechanism with a scalar 
random variable ξ  that describes the variability of an 

underlying physical parameter characterizing this mechanism, 
and with a physical model that describes the relationship 
between this physical parameter and the corresponding error 
in S-parameter measurement. This relationship is determined 
by the electrical models of the calibration standards and the 
VNA instrumentation, and the mathematical description of the 
VNA calibration and correction procedure.   

As the random parameter ξ  describes changes,  we assume 

that it has a zero mean value and a variance 2
ξσ . Typically, 

this parameter has a Gaussian or uniform probability density 
function. We further define the physical model representing 
the error mechanism as a vector function, 

 ( )ξ∆ =s m , (1) 

where ∆s  is the error in S-parameter measurement s . Both 
∆s  and s  are real-valued vectors with real and imaginary 
parts of corresponding S-parameters. These vectors have 

22Q N K=  elements, where N  is the number of ports of the 

device under test (DUT) and K  is the number of 
measurement frequencies. The particular ordering of S-
parameters in ∆s  and s  is arbitrary and is not relevant for the 
following discussion. 

III.  COVARIANCE MATRIX  

The statistical properties of the physical error mechanisms 
can be conveniently captured in a covariance matrix  
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where M is the number of mechanisms. Matrix (2) is 
diagonal, because the physical error mechanisms are 
statistically independent. 

In order to determine the statistical properties of the error 
∆s  in S-parameter measurement, we need to propagate the 
variability of the random parameters ξ  through the physical 

model (1).  This model is, in general, nonlinear.  However, 
since ξ  and ∆s  describe changes, we can assume that both 

variables are small. Consequently, we can linearize (1) and 
apply the superposition rule. The overall error in S-parameter 
measurement s  is then written as a linear combination 
 ,∆ = ms J ξ  (3) 

where [ ]1, ,
T

Mξ ξ=ξ …  is a vector of random parameters 

representing the physical error mechanisms, and matrix mJ  is 

the Jacobian matrix defined by  
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whose elements are the sensitivities of S-parameter 
measurement s  to individual error mechanisms in ξ . By use 

of (3) and (4) we then readily obtain the covariance matrix sΣ  

of error ∆s  in S-parameter measurement s  as [12]  

  T T T TE E   = ∆ ∆ = =   s m m m ξ mΣ s s J ξξ J J Σ J , (5) 

where [ ]E ⋅  is the expectation value operator [12].  In order to 

make sure that the linear approximation (5) holds, we verify it 
with numerical Monte Carlo simulations. 

Matrix (5) contains a wealth of information. Its diagonal 
elements describe the variance of real and imaginary parts of  
the error in the corresponding S-parameters in the vector s . 
The off-diagonal terms in sΣ  correspond to all possible 

statistical correlations between these errors.  In particular, 
these terms account for correlations between errors in S-
parameter measurements at different frequencies. 

We further note that for Q M≤ it is possible for matrix (5) 

to be full rank; however, for Q M>  the rank of matrix (5) is 

necessarily less than Q , hence its rows and columns are 

linearly dependent. This has an important implication. In 
practice Q  is usually much larger than M , because we 

measure S-parameters for a large number of frequencies. 
Consequently, we observe the variability of Q  random 

variables that results from only M  independent physical 
random mechanisms. Therefore, some fixed deterministic 
relationships between the variables in ∆s  exist, which are 
captured in  the matrix mJ . As a result, instead of directly 

estimating the matrix sΣ  based on repeated measurements, 

which is difficult because of a large number of variables [12, 
13], it is more efficient to identify the underlying independent 
error mechanism ξ  and the matrix mJ  whose columns 

capture the physical relationships between these error 
mechanisms and the measurement error. 

Equation (5) also suggests another convenient form for 
representing the information captured in sΣ . Let the square 

root 
ξ
σ  of covariance matrix 

ξ
Σ  be defined by  

 =
ξξ ξ

Σ σ σ . (6) 

Since the physical error mechanisms are uncorrelated, 
ξ
Σ  is 

diagonal, and its square root matrix is also a diagonal matrix 
containing the square roots (standard deviations) of the 
variances in 

ξ
Σ . With the use of 

ξ
σ  we can now rewrite (5) as 

 ( )( )TT T
σ σ= Σ = =s m ξ m m ξ m ξΣ J J J σ J σ J J . (7) 

Thus, we can uniquely represent the Q Q×  matrix sΣ  with a 
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much smaller Q M× matrix σJ  made up of columns of mJ  

multiplied by standard deviations of error mechanisms in ξ . 

IV.  PROPAGATING  COVARIANCE-MATRIX-BASED 

UNCERTAINTIES 

In this section we review the propagation of covariance-
based uncertainties into the uncertainties of quantities derived 
from S-parameter measurements. We focus here on a general 
case when the quantity derived from S-parameters depends on 
measurements of S-parameters for all frequencies. Cases, for 
which the derived quantities depend on S-parameters at only 
one frequency have already been discussed in the literature 
[7].  

There are many practical situations when we need to derive 
some quantities from S-parameter measurements performed 
for multiple frequencies. Examples here are the transformation 
of the reflection coefficient into the time-domain in VNA-
based time-domain reflectometry, or the mismatch correction 
in oscilloscope measurements. Other examples are  
measurement-based circuit modeling, such as determining  the 
equivalent circuit of a transistor from S-parameter 
measurements. 

In all of these cases we can represent the relationship 
between S-parameter measurements and the derived quantities 
as a vector function 
 ( )=y f s , (8) 

where y  is vector of derived quantities, and s  is the S-

parameter measurement vector†. For a given measurement 0s  

of S-parameters, we assume that ( )f s  is differentiable in 0s  

and approximate it with a first-order Taylor expansion of (8) 
around 0s , that is , 

 0( )≈ + ∆fy f s J s, (9) 

where ∆s  is the measurement error in s  and fJ  is the 

Jacobian matrix of partial derivatives,  defined as 

 
0

( )
T

=

∂=
∂f

s s

f s
J

s
, (10) 

which has a similar form to (4). We then insert (5) in (9) and 
determine the covariance matrix as 

 ( )E E
T T T T   ≈ ∆ ∆ = ∆ ∆ =  f f f f sfy fJ s J s s J JΣJ s JΣ . (11) 

Expression (11) gives us an approximation of the 
covariance matrix of the quantity derived from S-parameter 
measurements. When ( )f s  is linear, equation (11) is exact. 

For a function that is nonlinear, approximation (11) holds as 
long as ( )f s  is differentiable at 0s  and errors in S-parameter 

measurement are small relative to neglected nonlinear terms.  
In the case when ( )f s  is highly nonlinear or errors are large, a 

numerical Monte Carlo simulation may be necessary to obtain 

yΣ . 

 
† The derived quantities may also depend on some quantities other than S-

parameters; however, for the sake of simplicity, we do not explicitly account 
for this dependence in our notation. 

Equation (11) shows that both covariance matrices  yΣ  and 

sΣ  are closely related. In the case when each element of y  

depends on S-parameter measurements at only one frequency, 

the Jacobian matrix fJ  has a block diagonal form. 

Consequently, correlations between S-parameter measurement 
uncertainties for different frequencies do not affect yΣ . 

However, when elements of y  depend on S-parameter 

measurement uncertainties for all frequencies, such as in the 
case of conversion from the frequency domain into the 
temporal domain, the Jacobian matrix fJ  is dense and 

correlations between S-parameter measurements uncertainties 
contribute to both variances and covariances inyΣ . 

We can put (11)  in a different form by use of  (7). We then 
obtain  

 ( )( )T T

σ σ≈ =f f fy fsJ J J J J JΣ Σ . (12) 

This relationship suggests that we can perform the uncertainty 
propagation entirely by use of Jacobian matrices with columns 
scaled by the standard uncertainties of the physical error 
mechanisms. Consequently, we may evaluate the full 
covariance matrix of derived quantities only at the last step of 
the uncertainty propagation.  

V. REPORTING COVARIANCE-MATRIX-BASED 

UNCERTAINTIES 

Covariance-matrix yΣ  describes the measurement 

uncertainty in vector y  representing the quantity derived from 

S-parameter measurement (or, in the simplest case, the S-
parameter measurement itself). When reporting the uncertainty 
captured in yΣ , as in the scalar case, we are typically 

interested in the confidence region. Assuming that yΣ  is full 

rank, this region is defined as a multidimensional ellipsoid 
around the estimate ŷ  of  y  within which we expect, with a 

prescribed likelihood 1 α− , the true value of y  to lie [12, 13].  

This confidence region can be written as  

 ( ) ( )1 2
, ,1

ˆ ˆT

M PT α
−

−− − ≤yy y Σ y y , (13) 

where 2
, ,1pTν α−  is the 1 α−  quintile of Hotteling’s 2T  

distribution with ν and p  degrees of freedom [12, 13], M is 

the number of physical error mechanisms, andP is the number 
of elements in the vector y . 

When evaluating (13), we need to pay special attention to 
the rank of yΣ . As already mentioned, the variability of y  

results from a finite number of M physical error mechanisms. 
We determine this number based on the number of columns in 
the σJ  matrix used to construct yΣ . When M is smaller than 

the size P  of the vector y , the covariance matrix yΣ  

becomes rank deficient and cannot be inverted. Consequently, 
(13) is no longer valid. In this case, the confidence region 
needs to be defined in terms of physical mechanisms rather 
than measured quantities and then mapped into the domain of 
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y .  This is, however, beyond the scope of this paper. 

In practice we are often interested in the uncertainties of 
only single elements of the vector y . Examples are real and 

imaginary part, or magnitude and phase, of an S-parameter at 
a particular frequency, or waveform voltage at a particular 
time-point. The confidence region then reduces to a typical 
one-dimensional confidence interval [14]. Denoting this 
element by y  and its estimate by ̂y , we can write the 

confidence interval as 

 ,1 ,1

ˆ
,M M

y

y y
t tα ασ− −

−− ≤ ≤  (14) 

where ,1tν α−  is the 1 α−  quintile of the Student’s t -

distribution with ν degrees of freedom [14]. 
 

VI.  UNCERTAINTY ANALYSIS FOR VNA  MEASUREMENT 

Our uncertainty analysis for VNA S-parameter 
measurements is based on the covariance-matrix description 
introduced in Section III.  We perform our analysis in two 
steps. In the first step, we carefully identify all of the 
independent physical sources of measurement errors. As a 
result of this step we obtain the variances of these 
mechanisms, as captured in matrix 

ξ
Σ . In the second step, we 

determine how these mechanisms affect corrected S-parameter 
measurements at all frequencies and represent this information 
with the matrix σJ as defined by (7). This matrix allows us to 

eventually determine the covariance matrix sΣ . 

We divide the error mechanisms into two groups: 
calibration standard errors and VNA instrumentation errors. 
The calibration standard errors result from uncertainties in the 
dimensional and material parameters of the calibration 
standards. The VNA instrumentation errors are caused 
primarily by the connector nonrepeatability and cable 
instability.  We write the overall error in S-parameter 
measurement as a sum 
 ,STD STD VNA VNA∆ = +s J ξ J ξ  (15) 

where STDξ  and VNAξ  are vectors of random variables 

corresponding to physical parameters that characterize the 
calibration standard and VNA instrumentation error 
mechanisms, respectively, and STDJ  and VNAJ  are the 

corresponding Jacobian matrices, defined by (4). These 
matrices capture the transformation between changes in the 
physical parameters in STDξ  and VNAξ  and the resulting error 

∆s  in the frequency-dependent S-parameter measurement s . 
In the following we discuss the approach we employed to 
obtain the representation (15). 

A. Calibration standard errors 

In order to identify the calibration-standard error- 
mechanisms, we begin with physical modeling of the 
calibration standards. The goal of this modeling is to express 
S-parameters of calibration standards in terms of some 
fundamental dimensional and material parameters. Examples 

here are lengths and diameters of conductors in the coaxial 
transmission line. Such models for different calibration 
standards have been extensively discussed in the literature 
(e.g., see [15] and [16]); we will not discuss them in more 
detail. 

In the next step, we measure these fundamental dimensional 
parameters. For example, in the case of coaxial calibration 
standards used in this work, such measurements involve the 
use of precision air gages and mechanical blocks. The 
uncertainties of these measurements then become the 
estimates of standard deviations of calibration-standard error-
mechanisms in STDξ . In order to determine  the columns of 

matrix STDJ , we then use the rules described in Section IV to 

propagate  these uncertainties through the physical models of 
the calibration standards and the VNA calibration and 
correction procedure. We use the flexible calibration approach 
of [17] which allows us to easily adjust our uncertainty 
analysis to an arbitrary calibration procedure. 

We illustrate this with the multiline TRL calibration [18] in 
the 1.85 mm coaxial connector standard. This calibration 
employed a set of five insertable airlines, a flat short as the 
reflect standard, and the direct connection of test ports as the 
thru standard. The only systematic errors in our calibration 
result from the Type B uncertainties for the lengths and 
diameters of 1.85 mm airline standards, which are listed in 
Table I. We derived these uncertainties from the specifications 
of the air-gage and mechanical blocks used to measure the 
airlines.  

B. VNA instrumentation errors 

A covariance-matrix based description of VNA 
instrumentation errors poses a more complex problem than the 
evaluation of calibration standard errors. It is difficult, in 
practice, to characterize the VNA instrumentation errors with 
analytical models derived from fundamental mechanical and 
electrical parameters of the VNA. For example, in the case of 

TABLE I 
PHYSICAL PARAMETERS OF 1.85 MM  COAXIAL TRANSMISSION LINES 

Parameter
†
 Value [mm] 

Standard 
uncertainty [µ m] 

Line 1 OC length 29.981 5 
Line 2 OC length 23.066 5 

Line 3 OC length 18.573 5 
Line 4 OC length 16.337 5 
Line 5 OC length 14.999 5 
Line 1 IC length 29.971 5 
Line 2 IC length 23.060 5 
Line 3 IC length 18.572 5 
Line 4 IC length 16.331 5 
Line 5 IC length 14.991 5 

Line 1 OC diameter 1.8499 0.6 
Line 2 OC diameter 1.851 1 
Line 3 OC diameter 1.8503 0.6 
Line 4 OC diameter 1.852 1 
Line 5 OC diameter 1.8518 0.6 
Line 1 IC diameter 0.803 5 
Line 2 IC diameter 0.804 6 
Line 3 IC diameter 0.805 7 
Line 4 IC diameter 0.804 6 
Line 5 IC diameter 0.804 6 

†IC - inner conductor, OC -outer conductor 
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connector repeatability errors, this would require careful 
mechanical characterization of all of the possible mechanical 
displacements in the connector interface, and then electro-
mechanical modeling of their influence on the interface S-
parameters. Although such an approach has been applied to 
simplified connector models (e.g., see [19] and [20]), the real 
connector structures are extremely difficult to model .  The 
situation is even more difficult with the random errors caused 
by cable instability or test-set drift. Analytical modeling of 
electrical parameters of such complex structures is beyond our 
capacity. 

Hence, our approach to the description of VNA 
instrumentation errors is different and is based on behavioral 
stochastic modeling. We begin with the generic physical 
model for the VNA random errors proposed in [21], and 
shown schematically in Fig. 1. This model describes the 
frequency-dependence of VNA random errors with a set of 
lumped-element perturbations located at fixed distances within 
the VNA error box.  Based on that description, we build a 
stochastic model in which parameters of the perturbations may 
vary randomly. We then identify statistical properties of these 
parameters based on repeated measurements. In this way, we 
represent the complicated frequency-dependent behavior of 
VNA instrumentation errors with a very small set of 
frequency-independent random variables VNAξ  and some fixed 

functions that capture the frequency dependence of these 
errors. These functions stem from the structure of the model 
shown in Fig. 1; for  more details refer to [21].  Similarly to 
the calibration standard errors, we then determine the columns 
of the matrix VNAJ  by propagating these functions through the 

VNA calibration and correction procedure with the use the 
rules described in Section IV. 

In order to identify statistical properties of VNAξ , we use 

repeated measurements. In the case of connector repeatability 
errors, we perform multiple reflection coefficient 
measurements of a highly reflective load while reconnecting 
the load between the measurements. In the case of cable 
instability errors, we proceed in a similar way; however, 
instead of reconnecting the load, we randomly bend the cable 
between the measurements.  

For a given sample of repeated measurements is , for 

1, ,i R= … , we first determine the mean s  and calculate the 

estimates i i∆ = −s s s of the  measurement error.  We use the 

model-identification approach presented in [21] to determine 
the parameters ,VNA iξ   that model the measurement error i∆s , 

and then determine the sample covariance matrix 
rξ

Σ for the 

parameters ,VNA iξ , for 1, ,i R= … . We further apply principal 

component analysis (see [12]) to diagonalize this matrix and 
reduce its dimensionality while capturing the most important 
error mechanisms in the system. As a result, we are usually 
able to adequately represent the connector repeatability and 
cable instability errors with only two or three random 
variables. 

In Fig. 2, we illustrate our approach with modeling results 

for the connector repeatability errors. This figure shows the in-
phase and quadrature component (see [22]) of the standard 
uncertainty of 16 repeated measurements of a 5.4 mm long 
1.85 mm coaxial offset short along with the uncertainty 
prediction from our stochastic behavioral model. We took the 
measurements for a narrow intermediate-frequency bandwidth 
of 10 Hz in order to reduce the noise impact. For this reason, 
the 16 repeated measurements took approximately 30 minutes.  

The model we used employed two random variables.  The 
agreement between the model prediction and measurement for 
the quadrature (phase) errors is very good except for a small 
discrepancy in the frequency range below 4 GHz. This 
discrepancy is caused by an increased test-set drift in the 
frequency range below 4 GHz, a phenomenon we also noticed 
in other experiments.  

The agreement for the in-phase (magnitude) errors is not as 
good; however, the in-phase errors are much smaller, and 
therefore less important than the quadrature errors. 
Consequently, our stochastic behavioral model is capable of 
adequately representing the dominant variability of the 
connector interface observed in the measurements of the short. 
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Fig. 1. Behavioral physical model for VNA random errors: (a) overview, (b) 
single perturbation. 
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Fig. 2.  In-phase and quadrature component of the standard uncertainty of 16 
measurements of a 5.4 mm long 1.85 mm coaxial offset short: measurement 
(grey) and stochastic behavioral model prediction (black). 
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VII.  APPLICATION EXAMPLES 

A. Mismatch-correcting waveform measurements 

Measurement of waveforms with bandwidths reaching 
microwave frequencies are typically performed with high-
speed sampling oscilloscopes. Unlike their low-frequency 
counterparts, these oscilloscopes are designed to be connected 
directly to the circuit under test and to measure the voltage the 
circuit generates across the oscilloscope’s 50 Ω  input 
impedance [23].  Accuracy of such measurements can be 
improved if the impedance mismatch between the circuit-
under-test and the oscilloscope is accounted for. This is 
typically done by measuring the DUT and oscilloscope 
impedance with the VNA and applying an appropriate 
correction to the waveform measured by the oscilloscope [23]. 
Here, we will show that the uncertainty analysis of such 
mismatch-corrected waveform measurements requires a full 
covariance-matrix description of the uncertainties in VNA  
measurements. 

Fig. 3 shows the signal-flow graph that models the 
propagation of the signal between the DUT and the 
oscilloscope [23]. The DUT generates the signal  with  the 

forward-wave voltage 50DUT DUTv b= Ω , where DUTb  is the 

forward-wave source amplitude, and the oscilloscope 

measures the voltage 50s sv a= Ω corresponding to the wave 

amplitude sa .  We can write the relationship between the two 

voltages as [23] 

 
1 s DUT

DUT sv v
h

− Γ Γ
= , (16) 

where sΓ  is the input reflection coefficient of the oscilloscope 

and h  is the oscilloscope’s complex frequency response (i.e., 
the Fourier transform of its impulse response) ‡.  

In order to perform the uncertainty analysis of (16) we use 
the uncertainty propagation rules described in Section IV. 
Here, we focus only on the uncertainty components due to  the 
errors in VNA measurements. A complete uncertainty 
analysis, however, also needs to account for errors in the 
oscilloscope’s raw measurement sv  and the oscilloscope’s 

complex frequency response h .  
We represent the reflection coefficient measurement of the 

oscilloscope and DUT as vectors DUTΓ  and sΓ , respectively, 

and the waveform spectrum of the DUT as vector DUTv . 

These vectors are constructed out of measurements for all 
frequencies, that is  

 
‡ Equation (16) is suitable when the frequency content of the signals is 

within the bandwidth of the oscilloscope, i.e., h  is roughly a unit magnitude. 

At high frequencies, as h  rolls off, (16) is ill-posed and cannot be directly 

used to determine DUTv . Regularization techniques need to be then used (see 

[3]). 
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     
     
Γ Γ          

Γ Γ v
⋮ ⋮ ⋮

 
where if , for 0, ,i N= …  are the measurement frequencies, 

and 0 0f = . Similarly, we represent the temporal waveforms  

( )s iV t  and ( )DUT iV t , where it  for 1, ,2i N= …  are the time 

points, as vectors made up of measurements for all time 
points, that is 

 

( )

( )

( )

( )

1 1

2 2

,and .
DUT s

DUT s

DUT N s N

V t V t

V t V t

   
   = =   
   
   

V V⋮ ⋮  

Since the spectra are determined for 1N +  frequencies, the 
corresponding waveforms have 2N  time points [24].  

With the use of (11) we can write the covariance matrix of 
the waveform spectrum as 

 
DUT s s s DUT DUT DUT

T T= +v Γ Γ Γ Γ Γ ΓΣ J Σ J J Σ J , (17) 

where 
sΓ

Σ  and 
DUTΓΣ  are the covariance matrices of the 

oscilloscope’s input reflection coefficient and the DUT’s 
reflection coefficient, respectively, and 

sΓ
J  and 

DUTΓJ  are the 

Jacobian matrices. The uncertainty of the DUT waveform 
spectrum at a particular frequency depends on only the 
uncertainties of reflection coefficient measurements for that 
same frequency; hence matrices 

sΓ
J  and 

DUTΓJ  are block 

diagonal and consist of first derivatives of (16) with respect to 

sΓ  and DUTΓ , evaluated at each measurement frequency. 

However, the matrices 
sΓ

Σ  and 
DUTΓΣ  are dense, and 

consequently the covariance matrix 
DUTVΣ  is also dense. 

 In order to determine the uncertainty of the DUT 
temporal waveform we need to use the discrete inverse Fourier 
transform. This transform is a linear operation, hence the 
relationship between DUT waveform spectrum and its 
temporal representation can be written as 

 DUT OSCILLOSCOPE

bDUT, vDUT

as, vs

ΓsΓDUT

b1 a2

a1 b2

as = h a2

h1

 
Fig. 3.  Signal-flow graph describing the propagation of signals between the 

DUT and oscilloscope. The DUT injects into the  circuit the signal 
DUT

b   

with no distortion, as indicated by the unity transfer function.  The signal 
delivered to the oscilloscope is modified by the transfer function , as well as 
being reflected multiple times by sΓ  and DUTΓ . 
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 DUT DUT=V Mv , (18) 

where M is the matrix of the Fourier series coefficients. This 
matrix is dense, because a single time-domain sample is a 
function of all spectrum components. By use of (18) and (11) 
we can write 

 ( )
DUT s s s DUT DUT DUT

T T T= +V Γ Γ Γ Γ Γ ΓΣ M J Σ J J Σ J M . (19) 

Expression (19) is a very important result. Simple 
investigation shows that the uncertainties of waveform 
amplitudes depend both on uncertainties in S-parameter 
measurements and on statistical correlations between these 
uncertainties at different frequencies. Therefore estimation of 
these correlations is essential when VNA S-parameter 
measurements are used in the calibration of waveform 
measurement systems.  

In order to illustrate the importance of these correlations, 
we performed an experiment. We measured a pulse generated 
by a photodiode with a 50 GHz sampling oscilloscope  and 
from that we determined the mismatch-corrected impulse 
response of the oscilloscope by means of the approach of [2].  
Both the photodiode and the oscilloscope had 1.0 mm coaxial 
connectors. The output reflection coefficient of the pulse 
generator and the input reflection coefficient of the 
oscilloscope were measured with a VNA calibrated with the 
use of 1.0 mm coaxial short-open-load-through (SOLT) 
calibration. The covariance matrix of uncertainties in S-
parameters was determined with the methods discussed in 
Section VI. We then analyzed the impact of mismatch 
correction uncertainty on the impulse response uncertainties.  
We analyzed two different cases: when the uncertainties in the 
mismatch-corrected impulse response are determined 
accounting for the correlations between uncertainties for 
different frequencies, and when these correlations are 
neglected. Results of our experiment are shown in Fig. 4. We 
see that when  the statistical correlations between the 
uncertainties are accounted for, the standard uncertainty (solid 
grey line) in the corrected waveform (solid black line) 
approximately follows the shape of the waveform. In 
particular, we note increased measurement uncertainty around 
the impulse response peak. When these correlations are 
neglected, the uncertainties (dashed grey line) are uniformly 
spread over the duration of the impulse response. 
Consequently, the uncertainties away from the impulse 
response peak are overestimated, while the uncertainties 
around the peak are underestimated. 

  

B. Measurement-based modeling 

In the measurement-based modeling we determine an 
electrical model of a device based on a measurement of its 
electrical characteristics, such as a wideband VNA S-
parameters measurement. Examples include modeling of 
active devices, such as microwave transistors, and passive 
devices, such as  transmission line discontinuities [25]. 

A number of different approaches are used in the 
measurement-based modeling. These approaches are typically 
based on a statistical formulation of the modeling problem and 

employ numerical optimization techniques to determine model 
parameters from VNA S-parameter measurements of the 
device [26]. In the context of uncertainty analysis, we can 
write the modeling procedure as a function that transforms the 
VNA S-parameter measurement s  into model parameters  p , 

that is, 

 ( )=p f s . (20) 

Parameters in the vector p  are typically frequency 

independent (e.g. capacitances, inductances of resistances of 
an equivalent circuit), while the vector s  contains 
measurement of S-parameters for multiple frequencies. The 
particular form of the function f  depends on the formulation 
of the modeling problem and methods used to solve it.  

In order to determine the covariance matrix pΣ  of model 

parameters we may now apply the uncertainty propagation 
rules described in Section IV to (20). Since each model 
parameter depends on S-parameter measurement at all 
frequencies, the uncertainties of model parameters will depend 
on statistical correlations between uncertainties in S-parameter 
measurement at different frequencies. 

We illustrate this with an example of measurement-based 
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Fig. 4.  Uncertainty analysis of the mismatch correction in oscilloscope 
waveform measurement:  pulse voltage after the mismatch correction 
(solid black), standard uncertainty of the pulse voltage (solid grey), 
standard uncertainty of the pulse voltage calculated without correlations 
(dashed grey). 
  

 

lc l2l1lp lp

dc

0.
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1 
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m

0.803 mm

bead

Fig. 5.  Schematic of the 1.85 mm coaxial mismatch thru. Dimensions with 
numerical values are fixed and taken from [28]; other dimensions are 
estimated in the modeling procedure. 
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modeling for a 1.85 mm coaxial Beatty standard. This device 
is a section of low-impedance transmission line embedded in a 
nominally 50 Ω  line.  A schematic of this device, along with 
geometrical dimensions, is shown in Fig. 5. We model this 
device as a cascade of transmission lines with additional 
capacitances jointC  and stepC  accounting for the connector 

joint discontinuity (see [27]), and the bead at the impedance 
step. We model the center conductor gap as a section of high 
impedance line  (of fixed diameter 0.511 mm [28]) with length 

pl . We assume that all lines exhibit conductor losses 

characterized by the metal conductivity σ .  
We measured S-parameters of the device with the use of a 

VNA calibrated with the multiline TRL calibration. The 
measurements were performed in the frequency range 0.05-
67 GHz. We obtained model parameters with the classical 
least-squares fitting [26] and then performed the uncertainty 
analysis with methods described in Section VI. In Fig. 6 and 7, 
we compare the magnitudes of 11S  and 21S  obtained from the 

measurement and from the model. The agreement is very 
good. In Table II, we show the model parameters  obtained 
along with the standard uncertainties. We determined these 
uncertainties in two ways: with the use of the full covariance 
matrix and then by neglecting the correlations between S-
parameter uncertainties for different frequencies.  Results 
shown in Table II indicate that neglecting these correlations 
leads to very different estimates of the uncertainties on the 

model parameters.  As in examples  shown in Section VII.A, 
neglecting these correlations may cause both underestimation 
and overestimation of the uncertainties.  

 

VIII.  CONCLUSIONS 

We present a new uncertainty analysis for VNA S-
parameter measurements. Our approach is based on a 
covariance-matrix uncertainty description that allows us to 
capture all of the S-parameter measurement uncertainties and 
statistical correlations between them. In particular, through a 
careful identification and modeling of underlying error 
mechanisms in VNA S-parameter measurements, we are able 
to determine the statistical correlations between uncertainties 
at different frequencies. Consequently, the covariance-based 
uncertainties of VNA S-parameter measurements we report 
can be propagated into the uncertainties of any other quantity 
derived from S-parameters.  

We further showed that the correlations between 
uncertainties at different frequencies become important when 
converting S-parameter uncertainties into a domain different 
from the frequency-domain, such as when converting S-
parameter uncertainties into the temporal domain or 
determining some frequency-independent parameters based on 
S-parameter measurements. We illustrated that with the 
uncertainty analysis of mismatch correction in waveform 
measurements and the uncertainty analysis of S-parameter-
measurement-based modeling. In both cases the experimental 
results we obtained clearly demonstrate that accounting for the 
statistical correlations between S-parameter measurement 
uncertainties at different frequencies is essential for correct 
evaluation of uncertainties in quantities derived from S-
parameter measurements. 
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TABLE II 
PARAMETERS OF 1.85 MM  MISMATCH THRU MODEL 

Parameter Value  
Standard 

uncertainty  

Standard 
uncertainty 

without 
correlations 

l1 [ µ m] 5630 7 9 

l2 [ µ m] 5620 6 9 

lc [ µ m] 14666 25 21 

lp [ µ m] 30 7 5 

σ  [107 S/m] 0.736 0.04 0.16 
dc [ µ m] 1227 0.2 0.3 

Cjoint [fF]  3.96 1.26 1.11 
Cgap [fF]  1.79 0.46 0.27 
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Fig. 6.  Modeling of the 1.85 mm coaxial mismatch thru: magnitude of 11S , 

measurement (solid grey), model (solid black). 
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