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OBJECTIVES:  The Spectroscopy school participants will use elastic scattering to measure the ferromagnetic 
order parameter and transition temperature, and inelastic neutron scattering measurements to study the spin wave 
excitations in the perovskite La0.7Sr0.3MnO3.  This system will allow us to demonstrate the versatility and power 
of triple-axis spectrometry in studying the static and dynamic properties of condensed matter systems. 
 
I.  Introduction to the system 
 

The improved modern-day material synthesis 
techniques for oxide materials were developed in part 
in the quest to fabricate high temperature 
superconductors, and has enabled researchers to revisit 
other systems such as the LaMnO3 class of materials.  
The crystal structure of these materials is based on the 
cubic perovskite system, where the Mn ion is 
surrounded by six oxygen ions with octahedral 
symmetry, with the La ions on a simple cubic lattice 
as shown in Fig. 1.  LaMnO3 is an antiferromagnetic 
insulator (TN=140 K), but the properties can be 
changed by substituting 2+ cations such as Ca, Sr, and 
Ba for La3+.  Doping La1-xAxMnO3 in the range 
0.2<x<0.5 produces an isotropic, metallic ferromagnet 
at low temperature.  The magnetic ordering (Curie) 
temperature is accompanied by a metal-insulator 
transition, with can then be controlled by the 
application of a magnetic field.  The effect on the 
resistivity can be enormous—several orders-of-
magnitude—which would be ideal for device 
applications such as for sensors and for read/write 
heads in magnetic storage media, where information is 
stored in the form of bits which are read by magnetic 
read heads.  These magnetic read/write heads work by 
exhibiting a small change in their electrical resistivity 
as they pass over a magnetic bit.  This change in the 
resistivity when the magnetic field changes is called 
magnetoresistance (MR) and materials evincing it are 
called magnetoresistive.  Most materials have 
negligible MR, while the magnetoresistance is 
typically only a few percent in select metals and 
semiconductors.  One favorable material is Permalloy, 
an alloy of iron and nickel, and this material was used 
for many years as read/write heads in disk media.  The 
current generation of read/write heads in hard drives is 

based on multilayer thin film technology, which 
amplifies the magnetoresistive effect (≈20 %) and is 
termed giant magnetoresistance (GMR).  The 
manganites, on the other hand, possess colossal 
magnetoresistance (CMR), as compared to the much 
smaller MR or GMR observed previously. 

The basic physics behind this colossal change in 
resistivity is this insulator-to-metal transition, which 
often is first-order in nature and results in electronic 
phase separation (in which two electronic phases are 
spatially distinct) between ferromagnetic metallic and 
paramagnetic insulating states.  The particular material 
that we will examine is La0.7Sr0.3MnO3, where doped 
holes induce ferromagnetism and metallic 
conductivity.  Let us first briefly discuss how doping 
the system leads to metallic conductivity [1].   

 
Fig. 1.  A unit cell of a cubic perovskite ABO3 structure  The 
yellow, red, and blue spheres are La, Mn, and O sites, 
respectively. 
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Fig. 2.  (a) Cubic and tetragonal crystal field splitting of 3d 
orbitals of Mn³⁺.  (b) A simple representation of 
ferromagnetic coupling via double exchange. 
 

In a crystal, the wave functions of electrons on 
neighboring atoms mix and their energy levels expand 
into bands of allowed energies.  Because electrons 
follow the Pauli Exclusion principle, they cannot 
occupy the same states simultaneously.  Thus, the 
electrons fill the available states up to an energy 
known as the Fermi energy, EF.  In metals, electrons 
near EF are still free to move because there are 
unoccupied states available in the band.  An insulator 
(like LaMnO3) is the case when all the available states 
are filled with electrons. 

The manganites of interest here have crystal 
structures derived from cubic perovskite lattices (see 
Fig. 1), in which each Mn cation is surrounded by six 
oxygen ions which form an octahedron around it.  For 
La3+Mn3+O-2

3, the Mn3+ ion has four d-electrons.  In 
this cubic crystal environment, the energy levels of the 
d-electrons split into three degenerate orbitals 
(designated t2g) and two degenerate eg orbitals, as 
shown in Fig. 2(a).  Strong Hund's rule coupling 
(related to the minimization of Coulomb repulsion of 
the electrons on a given atom, while satisfying the 
Pauli exclusion principle) results in the spins of the 3d 
electrons needing to be aligned.  As a result, three 
electrons with parallel spins occupy the lowest lying 
t2g orbitals, and form a localized magnetic moment 
with S=3/2.  The fourth electron occupies the doubly 
degenerate eg level.  This electron must also have its 
spin aligned with the spins in the t2g orbitals because 
of the same strong Hund’s rule coupling.  There are 
still six d orbitals that are unoccupied—another 3 t2g 
orbitals and two eg orbitals where the spins would be 
in the reverse direction, but these are very high in 
energy (compared to the thermal energies kT of 
interest) because of the Hund’s rule coupling and are 
out of the picture. 

Note that the occupied eg is doubly degenerate, 
which makes Mn³⁺ a Jahn-Teller (JT) active ion.  That 
is, the system may be able to lower its energy by 

allowing a distortion of the oxygen environment.  Such 
a distortion breaks the degeneracy of the eg orbitals, 
with one orbital becoming lower in energy and the 
other higher than in the degenerate case (Fig. 2(a)).  
Since there is only one electron occupying the eg level, 
it can always lower its energy (at the cost of the elastic 
energy of the distortion).  Therefore all these Mn3+ 
oxides exhibit small distortions away from the ideal 
cubic structure, but are still insulating. 

As we replace La³⁺ cations with Sr²⁺ cations, we 
change some of the Mn³⁺ ions into Mn⁴⁺ ions, where 
the eg orbital is unoccupied.  This allows the eg 
electrons the possibility to hop to an adjacent 
unoccupied site (Fig. 2(b)).  As the carrier 
concentration is varied, the system's physical 
properties change as shown in Fig. 3 [2].  The 
ferromagnetic order and metallic conductivity first 
show up at x≈0.1 and at x≈0.15, respectively.  When 
the Sr concentration reaches x≈0.3, the ferromagnetic 
transition temperature, TC, becomes maximum and the 
system is a good metal. 

Now, we've suggested how the system becomes 
metallic with doping, but the question remains, why 
does it become ferromagnetic (that is, why do the spins 
on different Mn sites spontaneously align in the same 
direction?).  While there are various causes of 
magnetism in materials, the dominant factor for the 
manganites is known as double exchange.  Here, there 
is a “virtual process” in which the eg electrons are 
allowed to hop from site to site through an oxygen 
orbital.  If you imagine that the eg electron is hoping 
from an occupied Mn³⁺ site to an unoccupied  

 
 

Fig. 3.  (a) Resistivity of La1-xSrxMnO3 as a function of 
temperature.  The arrows indicate critical temperatures for 
magnetic transitions.  (b) The phase diagram of the La1-

xSrxMnO3 system.  The abbreviations F, P, CN, M, and I 
stand for ferromagnetic, paramagnetic, spin-canted 
antiferromagnetic, metallic and insulating, respectively [2]. 
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Mn⁴⁺ site, and back again, the probability of hoping 
will depend on the relative orientation of spins on the 
two sites (see Fig. 2(b)).  In fact, because of the strong 
Hund's rule coupling, as the spin moves from the Mn³⁺ 
site to the Mn⁴⁺ site, it must be aligned with the t2g 
“core” spins on both sites.  Therefore ferromagnetism 
evolves from the system by maximizing the 
probability of hopping.  This is the physical basis 
behind the double-exchange model for the manganites. 

 
II.  THE BT-7 TRIPLE-AXIS SPECTROMETER 

 
The basics of neutron scattering and the flexibility 

of a triple-axis spectrometer is covered in a separate 
experiment handout, so here we only give a brief 
overview of the BT-7 triple-axis spectrometer [3].  The 
instrument (Fig. 4) has the choice of either a copper 
[Cu(220)] or pyrolytic graphite [PG(002)] doubly-
focusing monochromator, providing a continuous 
incident neutron energy range from 5 to 500 meV.  The 
400 cm² reflecting area for each monochromator 
yields as much as an order-of-magnitude gain of 
neutrons onto the sample over earlier instruments, 
with available fluxes well into the 10⁸ n/cm²/s range.  
Generally speaking, neutron scat- 

 

 
 

Fig. 4 The BT-7 triple-axis spectrometer with the polarized 
beam system installed. 

tering is a flux-limited technique, and every 
experimenter wants higher count rates and better 
resolution.  Unfortunately these are contradictory 
requirements, and the experimenter must carefully 
balance these to successfully measure the quantity of 
interest with sufficient resolution in the beam time 
available.  It is therefore highly desirable to have a 
wide range of choices of instrumental parameters in 
order to optimize the resolution and intensity of the 
instrument. 

The sample stage of the instrument includes two 
coaxial rotary tables, one for sample rotation and one 
for the independent rotation of magnetic field coils, 
and a computer controlled sample goniometer and 
elevator.  Polarized He3 cells are available to provide 
neutron polarization capability with either 
monochromator and the standard PG analyzer system. 

The BT-7 analyzer system has various detectors 
and related collimators housed in a shield that is 
supported on air pads, as shown in Fig. 5.  The 
analyzer system has a multi-strip PG(002) analyzer 
array that can be used in a horizontally focused mode, 
or in a flat configuration either with a linear position-
sensitive detector (PSD) or with conventional Söller 
collimators.  All options can be selected and 
interchanged through the instrument control program 
(ICE) without any mechanical changes or user 
intervention.  A separate diffraction detector is 
provided in front of the analyzer for Bragg peak  

 
Fig. 5.  Schematic of the BT-7 detector/analyzer system. 
 
measurements, and a series of 11 detectors imbedded 
in the shielding behind the analyzer continuously 
monitor the neutron flux entering the analyzer system.  
These detectors can also be used for measurements of 

Question:  (1) Based on the picture described in Fig.3, 
explain how magnetic field reduces the resistivity in CMR 
materials.  (2) In Fig. 3(b), what would you suggest is the 
hole doping concentration that is potentially useful for a 
CMR read/write head application, and why? 
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the instantaneous correlation function, for example, or 
with a radial collimator to determine a diffraction 
pattern over a limited angular range.  The PSD can also 
be used with a radial collimator to determine the 
diffraction pattern or instantaneous correlation 
function, with higher angular resolution. 
 
General Specifications for BT-7:   
 
• Velocity Selector or PG filter in reactor beam, 

remotely insertable. 
• Double focusing PG(002) (d=3.35416 Å) or 

Cu(220) (d=1.273 Å) monochromator crystals 
• Flat PG or horizontally focused PG (13 blades, 2 

cm wide each) 
• Optically pumped He3 polarizers, computer 

controlled guide field, NMR spin rotation 
capability 

• Monochromator take-off angles 2θ from 16 to 
75 degrees 

• Variable incident energy from 5.0 to 500 meV 
• Scattering angles from 0 to 120 degrees 
• Söller slit collimation of 10′, 25′, 50′, 80′and 

open at most positions. 
• Radial collimators are available before and after 

the analyzer. 
• Computer controlled vertical or horizontal guide 

field at sample position. 
 

III.  EXPERIMENT AND ANALYSIS 
 
Simple ferromagnetic spin-waves 
 
Perhaps one of the simplest microscopic models of 

magnetism starts from the Heisenberg Hamiltonian.  It 
is generally applicable to systems in which the spins 
are localized on atomic sites, and where the spin 
interactions are mediated by direct overlap of their 
atomic wave-functions, or through intermediaries such 
as oxygen (superexchange) or through conduction 
electrons (indirect, or Ruderman-Kittel-Kosuya-
Yosida (RKKY) exchange).  The resulting magnetism 
originates from a combination of the Coulomb 
repulsion and the Pauli exclusion principle.  In this 

model, the interaction energy between two 
neighboring spins is simply  

 
21 SS ⋅−= JE      (1) 

 
where J is the exchange constant representing the 
strength of magnetic exchange, and Si is a vector 
operator of the ith spin.  If J is positive, then a lower 
energy occurs when the moments are parallel, while if 
J is negative then the spins will align antiparallel to 
lower their energies.  To get the total energy of the 
system we simply sum over all the spins in the system: 

SS ji
ji

jiJH ⋅−= ∑
,

,2
1

 . (2) 

Typically, the exchange for nearest-neighbor spins 
dominates the energetics and the ground state is either 
a ferromagnet (all spins parallel) or an 
antiferromagnetic (nearest neighbor spins 
antiparallel).  More complicated spin arrangements 
(See Fig. 6(a)) certainly can and do occur in many 
systems.  Typically the exchange energies are taken as 
fitting parameters to be determined experimentally, 
and due to its simplicity this model is often used as a 
starting point to fit data regardless of the underlying 
physics of the magnetism.  

 
 

But given the ground state of the system, how do 
we make a magnetic excitation?  One of the simplest 
excitations we could imagine is to simply flip the 
direction of one of the spins.  However, the energy cost 
of this would be very large (12J for a cubic lattice), in 
fact, this is the highest energy excitation you can 
make.  A much lower energy excitation can be 
achieved if this single spin reversal is shared among 
many spins.  Classically, if we allow the spins to 
precess about their axes, then a spin-wave can be 
thought of as a constant phase difference between the 
precession rates of neighboring spins (see Fig. 6(b)). 

 

Question:  (1) What are the advantages of using a 
position-sensitive detector? (2) What is the best 
instrumental configuration if the spin-wave 
excitations above 40 meV were to be measured on 
BT-7? 

Question:  where did the factor of ½ come from in 
Eq. (2)? 
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Fig. 6(a) Examples of simple magnetic ordering patterns.  
(b) Classical representation (side and top views) of a spin 
wave excitation in a one-dimensional ferromagnet. 
 

The measured spin wave dispersion relation at low 
temperatures for La0.85Sr0.15MnO3 [4], which is similar 
to the sample we are going to study [5], is shown in 
Fig. 7.  We can see that the energy of the spin waves 
at small reduced wave vector q (long spin wave 
wavelength) is very small, while at the zone boundary, 
the excitation energy rises to a relatively high energy 
of 55 meV (short wavelength excitations mean that the 
excitation is shared by fewer spins and that 
neighboring spins are out of phase to a much greater 
extent, thus requiring more energy to excite).  
Assuming nearest-neighbor exchange only, the 
solution to the spin wave excitation energies for our 
simple Hamiltonian gives the following spin wave 
dispersion relation: 






= 2sin8 2 qaSJESW   (3) 

where a is the lattice parameter (nearest-neighbor 
distance).  Because of time restrictions, we will be 
focusing on the small-q spin wave excitations in this 
experiment, where we may expand the sine function in 
the dispersion relation to obtain the approximate 
expression  

222 qJSaESW =   . (4) 

Note that we have 0→E  as 0→q , which is the 
definition of an isotropic ferromagnet;  with 

λπ2=q , q=0 corresponds to infinite wavelength, 
i.e. a uniform rotation of the entire spin system, which 
for an isotropic system costs no energy by definition.  
More generally, we should also include the possibility 

of magnetic anisotropy in the system, because in real 
spin systems the moments prefer to point along one 
particular crystallographic direction.  This is 
represented by the gap parameter, ∆.  This particular 
direction is called the magnetic easy axis, and 
represents the energy required to rotate the spins away 
from this easy direction.  Then for a completely 
isotropic system, ∆≡0.  A "soft" ferromagnet is one 
where ∆ is small, which judging from Fig. 7 is the case 
for the present system.  A recent example of a kagome 
lattice isotropic ferromagnetic is Fe3Sn2.[6] For a 
“hard” or “permanent” magnet, this costs a lot of 
energy, and ∆ will be large. 

 
 

 
 

Fig. 7.  Measured spin wave dispersion relations in 
La0.85Sr0.15MnO3.  The wave vectors are based on the 
orthorhombic representation for the crystal structure [4]. 

 
 
Temperature Dependent Properties 
 
For a ferromagnet, the ordered magnetic moment 

on each atomic site (or equivalently, the bulk 
magnetization) is a maximum at low T, in the ground 
state, while it vanishes (by definition) at the ordering 
temperature, TC.  How do we get from the state with 
maximum magnetization to one where it vanishes?  By 
thermally exciting spin waves—each spin wave we 
create lowers the magnetization by 1 µB.  As we 
approach the ordering temperature, the magnetization 
is expected to follow a power law: 

Question:  What kind of magnet is your 
refrigerator, hard, soft, or non-magnetic? 
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where the critical exponent β≈0.3 for this type of 
magnet. 

 
The magnetization, or sublattice magnetization for 

an antiferromagnet, can be directly determined in a 
neutron measurement.  The integrated intensity for a 
magnetic Bragg reflection is given (for a simple 
collinear magnetic structure) by [7]  

𝐼𝐼 = 𝐶𝐶𝐶𝐶(𝜃𝜃𝐵𝐵) �1 − �𝜏𝜏
^
⋅ 𝑀𝑀

^
�
2
� |𝐹𝐹𝑀𝑀|2 (6) 

where 
^
τ and 

^
M  are unit vectors in the direction of the 

reciprocal lattice vector τ and the spin direction, M, 
respectively, and the orientation factor <…> must be 
evaluated for all possible domains.  C includes an 
instrumental constant which includes the resolution of 
the measurement, and A(θ) is an angular factor which 
depends on the method of measurement.  The 
magnetic structure factor FM, is given by  
 
𝐹𝐹𝑀𝑀 = γ𝑒𝑒2

2𝑚𝑚𝑐𝑐2
∑ 〈µ𝑗𝑗

𝑧𝑧〉𝑗𝑗 𝑓𝑓(τ)𝑗𝑗𝑒𝑒−𝑊𝑊𝑗𝑗𝑒𝑒−𝑖𝑖τ⋅𝒓𝒓𝒋𝒋  (7) 

where <…> is the thermal average of the aligned 
magnetic moment in Bohr magnetons of the magnetic 
ion at the jth site at position rj, Wj is the Debye Waller 
factor for the jth atom, f(τ) is the magnetic form factor 
(Fourier transform of the magnetization density), the 
neutron-electron coupling constant is γ𝑒𝑒2

2𝑚𝑚𝑐𝑐2
=-0.2695 

⋅10-12 cm, and the sum extends over all magnetic atoms 
in the unit cell.  We see from these expressions that 
neutrons are sensitive to the location of magnetic 
atoms and the spatial distribution of their magnetic 
electrons;  the temperature, field,... dependence of the 
thermal average of the ordered moment, which is 
directly related to the order parameter for the magnetic 
phase.  An example of the magnetic scattering is given 
in Fig. 8 [8].  Note that the magnetic intensity is 
proportional to the square of the ordered moment. 

We should also expect the spin wave spectrum to 
change with temperature.  Mean field theory simply  

 
 
Fig. 8.  Temperature dependence of the integrated intensity 
of the ferromagnetic (1 1 0) peak for La0.8Ca0.2MnO3 [8]. 

 
 

replaces S with the thermal average value, which 
(within a constant) is the magnetization.  From Eq. (3) 
we can then expect the spin waves to lower their 
energies, or renormalize, with T.  Generally, we can 
write the spin wave dispersion relation in the small q 
regime as a Taylor series in q: 

...)()()( 42 +++∆= qTEqTDTEspinwaves (8) 

where D is the spin-wave “stiffness” parameter, and 
the rest of the terms are higher order terms in a Taylor 
expansion.  The quantitative value of the stiffness 
parameter D depends on the details of the interactions 
and the nature of the magnetism, such as whether the 
magnetic electrons are localized or itinerant, or the 
structure is amorphous or crystalline, but the general 
from of the spin wave dispersion relation is the same 
for all isotropic ferromagnets.  As T→TC, D(T) 
follows M(T) in mean field theory, while more 
generally in the critical regime just below magnetic 
ordering temperature TC, D(T) should follow a power 
law given by  

βν −′








 −
∝

C

C

T
TTTD )(   (9) 

where ν′ (≈2/3) is the critical exponent for the 
correlation length below TC.  Fig. 9 shows examples 
of spin waves measurements, and Fig. 10 shows the 
renormalization of the spin waves energies with 
temperature. 

Question:  What do you mean, “this type of 
magnet”?  What controls the value of β? 
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Fig. 9.  Constant-Q scans revealing spin wave excitations 
for La0.7Sr0.3MnO3 (a) at T = 300 K, for several wave 
vectors, and (b) Q = (0 0 0.965), for several temperatures 
[5]. 

 
At elevated temperatures, there will also be many 

spin waves in the system, and collisions between the 
spin waves will result in decays of normal modes and 
consequently finite intrinsic lifetimes for the spin 
waves.  The intrinsic linewidths of the spin wave 
excitations in the long wavelength regime are expected 
to follow: 

2

4 ln),( 

















∝Γ

SWE
kTTqTq  . (10) 

Fig. 11 shows an example of spin wave linewidth 
measurements.  Finally, we can determine the number 
of spin waves that are thermally populated at each 
energy, which is directly related to the observed 
intensity of the spin waves in an inelastic neutron 
scattering experiment.  These are boson excitations 
(bosons are particles in which there are no restrictions 
on the number of particles existing in the same state), 
and should obey the Bose-Einstein population factor: 

1
1)( / −

= kTESW SWe
En  . (11) 

A neutron can annihilate a spin wave excitation in the 
sample and gain energy; the probability for this 
process to occur is directly proportional to the number 
of spin waves n(E) at the spin wave energy ESW.  A 
neutron can also create a spin wave in the system, 
while losing energy.  The probability for this process 
is proportional to 1+n(E), where the 1 comes 

 
 
Fig. 10.  (a) Low energy spin wave dispersion measured at 
two different temperatures and (b) the temperature 
dependence of the spin wave stiffness constant of 
La0.85Sr0.15MnO3 [4]. 
 
from the fact that it is always possible to create a spin 
wave excitation, even at T = 0.  This is something that 
we should also be able to extract from the 
experimental data. 

 
Experimental Planning and Setup 
 
When planning neutron scattering experiments, it 

is important to have as much understanding as possible 
of the basic properties of the material.  For instance, 
understanding of the crystallographic information, 
such as lattice parameters, is imperative.  In the case 
of single crystal samples, it is also important to have 
some idea about the direction of principal crystal axes.  
For an effective investigation, measurements of the  



 8 

 
 

Fig. 11.  Intrinsic spin wave linewidths.  (a) At low 
temperatures there should be no intrinsic linewidth in the 
localized model, while the very large linewidths indicate 
magnon—electron damping in this metallic system.  (b) At 
small wave vectors the linewidths follow the expected 
theoretical form (Eq. 10), but at larger wave vectors there 
are intrinsic linewidths that don’t have a thermal origin [4]. 

 
bulk properties such as the magnetic susceptibility, 
heat capacity, and resistivity, can serve as an 
invaluable guide.  All NCNR facility users should 
avail themselves of any existing data, be it their own, 
or published elsewhere, that could help them make 
more efficient use of their beam time.   

Crystallographically, La0.7Sr0.3MnO3 belongs to a 
space group cR3  with the lattice parameters 
a=b=5.5084Å, c=13.3717Å, α=β=90°, and γ =120°.  
This hexagonal geometry is equivalent to a 
rhombohedral one with a=b=c=3.8835 Å and 
α=β=γ=90.344°.  Since this is close to cubic 

symmetry, for convenience we will carry out the 
measurements based on the cubic notation. 

Fig. 3(b) shows the ferromagnetic transition 
temperatures, TC, of La1-xSrxMnO3 as a function of x.  
La0.7Sr0.3MnO3 has TC ≈ 350 K [5].  Therefore, we 
need sample environment equipment that can control 
higher than room temperature in order to study the 
ferromagnetic transition. 

 

 
The primary goal of this experiment is to measure 

the spin excitation spectrum in the ferromagnetically 
ordered phase and understand its temperature-
dependent behavior.  A ≈4 gram single crystal sample 
of La0.7Sr0.3MnO3 has been sealed inside an aluminum 
container.  Aluminum is among the most commonly 
used materials for sample containers because it is 
relatively transparent to neutrons, easy to machine, 
and is a good thermal conductor.  The container has 
been mounted inside a He closed-cycle 
refrigerator/furnace that can be controlled between 30 
- 600 K, and placed on top of the goniometer (or 
sample) table.  The measurements will be done in the 
temperature range between 30 and 400 K. 

Our measurements will proceed as follows.  
(Some data sets may be taken in advance and 
distributed.) (1) First, we will measure the integrated 
intensity of (1 0 0) Bragg peak as a function of 
temperature in the range 250-400 K.  To properly 
obtain integrated intensities, one needs to perform 
both transverse (θ) and longitudinal (θ:2θ) scans.  
From this, we will be able to extract TC of the sample.  
(2) Second, we will measure the spin wave spectrum 
up to E ≈ 10 meV by scanning the incident energy at 
several Q points.  From the measured data we can 
obtain the spin wave dispersion, which can be fit to 
extract the spin wave stiffness parameter, D(T).  The 
spin wave data may be taken at a few selected 
temperatures, and the collection of data can be used to 
show how D changes as a function of temperature.   

Question:  (1) La0.7Sr0.3MnO3 orders 
ferromagnetically below TC = 350 K.  (1) Where in 
reciprocal space do we expect to find the magnetic 
Bragg peaks?  (2) Where will the low energy spin 
wave excitations be located?  (3) How will the spin 
dynamics differ between above and below TC? 
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Fig. 12. Intensity of the quasielastic peak for 
La0.85Sr0.15MnO3 at (0 0 1.15) as a function of temperature 
[4]. 
 
 
(3) Third, we will measure the quasielastic intensity at 
a certain Q close to (1 0 0) over a temperature range 
going through TC, such as is shown in Fig. 12.  The 
measurement will also be done by scanning the 
incident energy.  By analyzing the integrated 
intensities and the linewidths of the quasielastic peaks 
as a function of temperature, we will be able to gain 
insights into the spin dynamics in the vicinity of the 

transition. 
 
Data and Analysis 
 
Fig. 8 shows the temperature dependence of the 

integrated intensity of the (1 0 0) Bragg peak observed 
from La0.8Ca0.2MnO3 [8].  There is an intensity 
increase observed below TC = 181 K, which follows a 
power law behavior.  This intensity increase comes 
from ferromagnetic order on Mn sites.  The sample we 
are going to study, La0.7Sr0.3MnO3, will show TC at a 
different temperature, but the data should look similar.  
Knowing that spin waves are fluctuations of ordered 

spins around the average moment, one should expect 
to observe the low energy spin excitation spectrum in 
the vicinity of this reflection.  The (1 0 0) position is 
particularly advantageous, since it is the smallest wave 
vector where ferromagnetic intensity is observed.  
This is because the magnetic scattering intensity 
generally decreases at higher momentum transfer due 
to spatial distribution of unpaired electron density 
(magnetic form factor), as indicated in Eq. (7). 

 
 

 
The energy scan data we are going to obtain will 

be similar to what is shown in Fig. 9.  Constant-Q 
scans typically show as many as three peaks:  a central 
(quasi)elastic peak and an inelastic spin wave peak on 
each side of positive (neutron energy loss—spin wave 
creation) and negative (neutron energy gain—spin 
wave annihilation) energy transfer.  Fig. 9(a) shows 
that the spin wave energy increases as we move away 
from the ferromagnetic (0 0 1) peak.  The temperature 
dependence of D is demonstrated by the data shown in 
Fig. 9(b).  Although the lineshape of triple-axis data is 
a complex function of various parameters, one can 
approximately extract the energy values by fitting with 
Gaussian (if the intrinsic linewidth is small) or 
Lorentzian (if the intrinsic spin wave linewidth is 
large) functions.  A series of energy values obtained at 
various momentum transfers can be used to obtain the 
dispersion relation.  The dispersion relation in an 
isotropic ferromagnet can be conveniently expressed 
by Eqs. (3,4), where the temperature dependent spin 
stiffness constant is denoted as D(T).  Fig. 10(a) shows 
results obtained from La0.85Sr0.15MnO3 at two different 
temperatures, and the obtained D(T) is plotted in Fig. 
10(b).  The quantitative values of the stiffness constant 
D depend on the details of the interactions and the 
nature of the magnetism, but the general form of the 
spin wave dispersion relation is the same for all 
Heisenberg ferromagnets. 

Finally, the integrated intensities of the 
quasielastic central peaks are obtained and the result 
will be similar to what is shown in Fig. 12.  These data 
were obtained slightly away from the ferromagnetic 
zone center (q=0), since otherwise the counts will be 
swamped by the intense nuclear and  

Question:  (1) A θ scan may show multiple peaks 
instead of a single Gaussian. 
What could be the reason if it does?  (2) Although 
it is not the case for the (1 0 0) peak in 
La0.7Sr0.3MnO3, what would it mean if a θ:2θ 
scan shows multiple peaks? 

Question:  Why does the ferromagnetic peak 
position coincide with the nuclear peak, say, at (1 
0 0)? How about antiferromagnets? 
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Fig. 13.  An energy scan through the spin wave excitations 
in La0.7Sr0.3MnO3 using polarized neutron incident on the 
sample, and analyzing the polarization state of the scattered 
neutrons.  Spin wave scattering can reverse, or “flip” the 
neutron spin, while spin diffusion may not.  The data here 
were taken for both spin-flip and non-spin-flip channels, 
and the difference in intensities shows that the inelastic 
signal is due to the expected spin wave scattering, while the 
quasielastic peaks in the non-spin-flip scattering is due to 
spin diffusion, while the elastic (resolution-limited) peak is 
from magnetic clusters (polarons [8-12]) and nuclear 
scattering.   
 
 
magnetic Bragg scattering.  In the paramagnetic phase 
the central peak slowly gains intensity as we lower the 
temperature and approach TC, and quickly drops in 
intensity below TC.  The intensity above TC comes 
from paramagnetic spin fluctuations, while that below 
TC it is mostly from spin waves, which quickly move 
to higher energies and out of the range of these 
quasielastic measurements.  The intrinsic linewidths 
(Fig. 11), if available, provide a determination of the 
lifetimes of the magnetic excitations. 

 
 

Polarized Neutron Scattering 
 
Finally, we remark about the use of polarized 

neutrons.  We have previously learned that neutrons 
interact either with nuclei or with unpaired electrons.   

While it is useful to have more than one type of 
neutron-sample interaction, it can also be a source of 
confusion.  Therefore, it becomes an important issue 
how to discriminate magnetic scattering from nuclear 
scattering.  There are several experimental clues to 
identify the origin of the scattering.  Magnetic 
scattering follows a magnetic form factor [Eq. (7)], so 
the intensity decreases with increasing Q, while 
phonon scattering generally increases as Q2.  The 
temperature dependence also can identify whether the 
scattering is spin wave (qualitatively changing 
character above the ordering temperature) or phonon.  
If these trends are not definitive, however, then the 
most powerful and unambiguous method of neutron 
polarization analysis can be employed.  This takes 
advantage of the fact that a neutron can reverse its spin 
direction when the origin of the scattering is magnetic 
(magnetic Bragg peaks, spin waves, critical scattering, 
etc.), while the scattering is always non-spin-flip for 
coherent nuclear scattering (structural Bragg peaks, 
phonons, etc).  Since the neutron polarization analysis 
involves many experimental complexities and requires 
multiple measurements that are time consuming, we 
will not perform this during the school.  Nevertheless, 
the data shown in Fig. 13, which were previously taken 
with this technique, powerfully confirm that the 
scattering we observe in La0.7Sr0.3MnO3 is truly 
magnetic in nature.  The present manganite class of 
materials continues to be under active investigation 
[13]. 
 
IV.  Summary 

 
Neutron scattering can be used to make a complete 

determination of the magnetic properties of a system.  
In order of the complexity of the measurement that 
needs to be carried out, the magnetic order parameter 
is typically the easiest quantity to measure, since the 
scattering is strong and localized at a point in 
reciprocal space.  The magnetic structure and spin 
direction(s) can be determined by measuring a series 
of magnetic Bragg peaks, and the magnetic form 
factor—Fourier transform of the magnetization 
density—can be determined with more effort.  
Inelastic scattering, on the other hand, is spread 
throughout the (three dimensional) Brillouin zone, and 
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is thus much weaker in any particular measurement 
and requires larger samples and considerably more 
effort.  However, it leads to the determination of the 
fundamental magnetic interactions of the systems.  
Further effort still is needed to determine spin wave 
linewidths, critical scattering and exponents, and the 
general nature of paramagnetic fluctuations.  But 
neutron scattering has the capability of making a 
complete determination of the nature and origin of the 
magnetism of any class of materials.  The present 
school has focused on this magnetic system, but 
neutron scattering can be employed equally well in the 
investigation of crystal structures and lattice 
dynamics.  
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