

Neutron Field Profiling for Neutron Activation Analysis

Rafael Virador

National Institute of Standards and Technology U.S. Department of Commerce

Importance of Neutron Activation Analysis (NAA)

- Quantifying trace elements
 - Arsenic: 19ppm from 100 mg; 19 needles in 1 ton of hay
- Used in over 300 SRMs since 1990

Standards!

How NAA Works

- Technique
 - Neutron irradiation
 - Counting radioisotope
- The gamma rays energy identify elements
- Interactions are dependent on energy of neutrons in the core
 - Important
- Used at UMD reactor

Reason/Background

- Neutron drop inside the rabbit
- correction used at the NIST reactor no longer reliable
- Investigate this discrepancy for the purpose of standardization

Purpose/Aim of this project

- UMD MUTR: 100 KW, light water
- NIST reactor: 20 MW, heavy water
- Foils target regions
 - Metal foils include: Cu, Ni, Zn, and Fe

Neutron Monitors

- Gamma Acquisition
 - HPGe detectors
- Total neutrons and neutron energy
 - captured neutrons are dependent on type of metal foil
 - Measuring captured neutrons by released gamma rays

Neutrons/cm^2/second

Results

- Other foils highlight the energy regions of these neutrons
 - Thermal and Epithermal energies
- Cadmium coverings used to isolate epithermal and fast regions of neutron energy

	Thermal+Epithermal Neutrons/cm^2/sec	rsd%	Epithermal Neutrons/cm^2/sec	rsd%	Thermal only Neutrons/cm^2/sec	rsd%
Cu	1.75E+12	5%	6.19E+10	9%	1.70E+12	4%
Zn	1.85E+12	3%	6.69E+10	1%	1.75E+12	7%
Ni	1.75E+12	7%	N/A	N/A	N/A	N/A

Future work

- Calculating the shape of the energy profile
- Investigating scattering effects at UMD
- Perform measurements at NCNR

Acknowledgements

- Dr. Nicholas Sharp
- Luke Gilde UMD
- Mike Hottinger UMD

