NIST's Programmatic Approach to Advanced Communications: CTL, CAC, and NASTCN

Kent Rochford Director, Communications Technology Laboratory

October 8, 2014

Drivers

NIST organizational response

Communications Technology Laboratory: three priority goals background approach key activities

Capability planning priorities

Trends and drivers

Societal demands:

- Insatiable consumption of (mobile) data
- Public safety interoperability

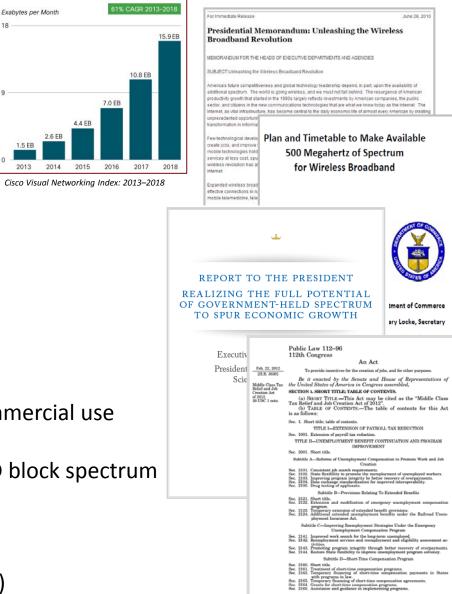
Policy drivers:

2010 National Broadband Plan

Goals: 300 MHz by 2015; 500 MHz by 2020

2012 PCAST report recommendation

Share underutilized spectrum to "maximum extent" possible


2012 "spectrum act" (Title VI of P.L. 112-96)

- Transfers spectrum from government to commercial use
- Increases unlicensed spectrum
- Authorizes public safety network; provides D block spectrum

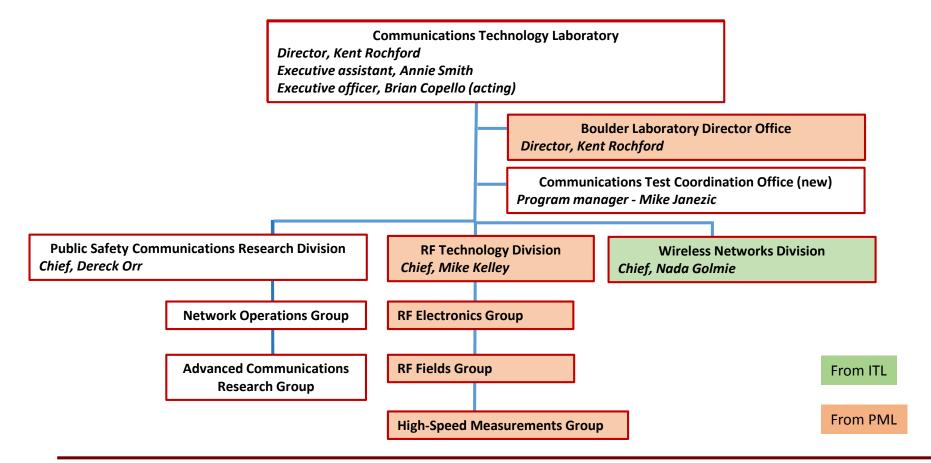
18

2014 FCC

- 3.5 GHz "innovation band" sharing proposal
- "Frontier band" NOI for mm-wave (> 24 GHz)

NIST response: Communications Technology Laboratory

Material Measurement Laboratory	Physical Measurement Laboratory	Engineering Laboratory	Information Technology Laboratory	Commu Techn Labor	ology	Center for Nanoscale Science and Technology	NIST Center for Neutron Research
Metrology Laboratories		Technology Laboratories			National User Facilities		
Driving innovation through Measurement Science and Standards		Accelerating the adoption and deployment of advanced technology solutions			Providing world class, unique, cutting- edge research facilities		


CTL promotes the development and deployment of advanced communications technologies through the conduct of:

- leading edge R&D on both the metrology and understanding of physical phenomena, materials capabilities, complex systems relevant to advanced communications;
- research targeted at supporting testing, including the development of precision instrumentation, validated test-protocols, models, and simulation tools necessary to support the testing and validation of new communications technologies;
- a "Center for Advanced Communications" (with NTIA/ITS) to provide opportunities for collaborative R&D and access to test-bed resources.

Communications Technology Laboratory: organization

Create CTL as a NIST measurement science laboratory to address current and next-generation issues (March 2014)

• Realign to bring communications related programs into CTL (Oct 1)

Through the development of appropriate measurements and standards:

- 1. Enable robust, mission-critical, interoperable **public safety communications**
- 2. Enable effective and efficient **spectrum use and sharing**
 - Center for Advanced Communications
 - National Advanced Spectrum and Communications Test Network (NASCTN)
- 3. Enable advanced communications technologies

Public safety communications: background

Interoperability among 8000+ public safety jurisdictions is challenging

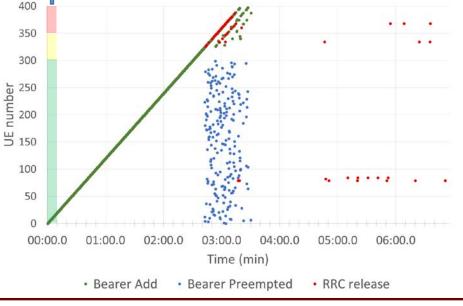
- Public Safety Communication Research (PSCR) program established by NIST in 2002
 - provides research, development, standards, testing, and evaluation to foster nationwide communications interoperability.

- PL 112-96 (2012) created "FirstNet"
 - First Responder Network Authority to provide emergency responders with the first nationwide, high-speed, broadband network dedicated to public safety.

Public safety communications: approach

The Public Safety Communications Research program has taken a leadership role

- PSCR R&D is driven by practitioner requirements
 - o National Public Safety Telecommunications Council
 - Association of Public-Safety Communications Officials
 - o DHS-Office of Emergency Communications
 - o DHS- Office for Interoperability and Compatibility
 - o Public Safety Broadband Stakeholder Conferences
 - o PSCR R&D Roadmap Workshop

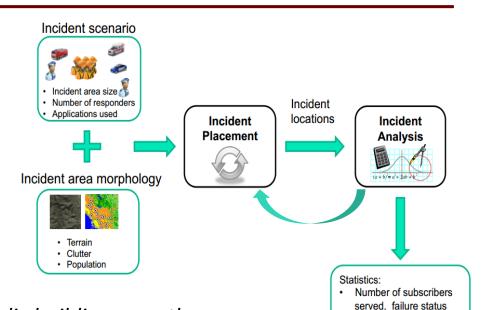

• PSCR transforms practitioner input into real-world results

Public safety communications: key activities

Develop and validate public safety comms requirements

- Gather first responder requirements
- Develop required LTE standards within 3GPP
 - o Direct Mode
 - o Mission Critical Push-To-Talk
 - o Group Communications
- LTE Demonstration network
 - o 5 LTE base stations
 - o Over 75 CRADAs
- Testing & Evaluation
 - o Quality of Service
 - o Priority & Pre-emption

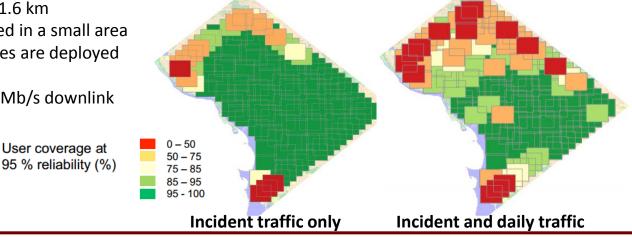
Pre-emption by device priority UEs 0-299: Low Priority 300-349: Medium Priority 350-399: High Priority



A GLOBAL INITIATIVE

Public safety communications: key activities

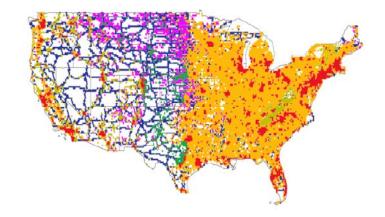
Inform FirstNet requirements


- Modeling & Simulation
 - **Incident Modeling** Ο
 - Site count estimation \bigcirc
 - Excess capacity analysis \bigcirc
 - **Resiliency** analysis \bigcirc

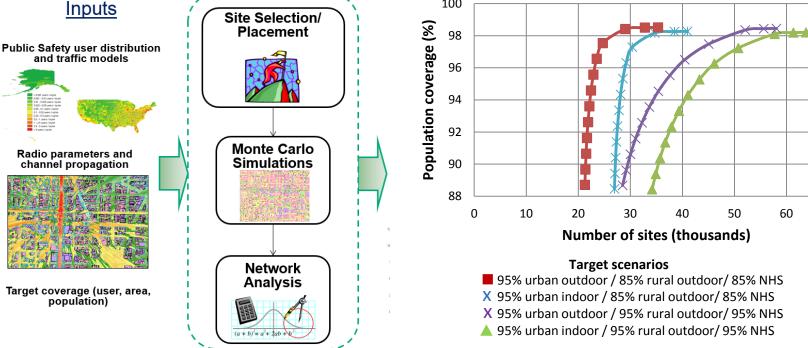
Scenario: "toxic gas leak in a large public building near the National Mall in Washington, DC."

User coverage at

- Use known geodata and cell coverage for DC
- Incident perimeter is 1.6 km x 1.6 km •
- Incident command concentrated in a small area •
- 327 responders and 127 vehicles are deployed ٠ uniformly in the incident area.
- Aggregate 7.4 Mb/s uplink; 11 Mb/s downlink



Sector load and throughput


Public safety communications: key activities

Inform FirstNet requirements

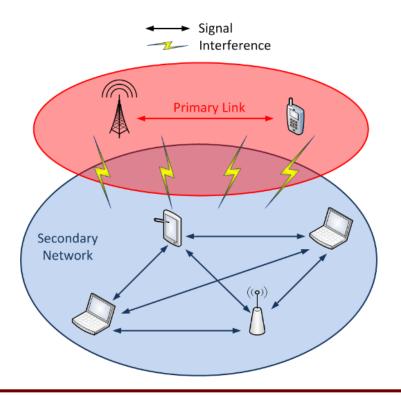
- Modeling & Simulation
 - **Incident Modeling** \bigcirc
 - Site count estimation \cap
 - Excess capacity analysis Ο
 - **Resiliency analysis** Ο

Population coverage 100 Population coverage (%) 98 96 94 92 90 88 0 10 20 30 40 50 60 70 Number of sites (thousands) **Target scenarios** 95% urban outdoor / 85% rural outdoor / 85% NHS

CTL priority goals

Through the development of appropriate measurements and standards:

1. Enable robust, mission-critical, interoperable public safety communications

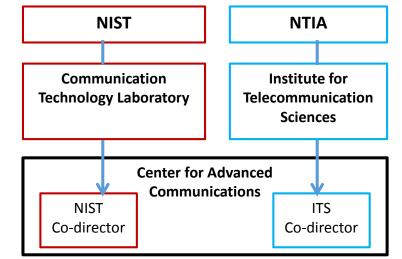

2. Enable effective and efficient spectrum use and sharing

- Center for Advanced Communications
- National Advanced Spectrum and Communications Test Network (NASCTN)
- 3. Enable advanced communications technologies

Spectrum sharing: background

The Administration has directed the reallocation or sharing of 500 MHz from federal use to commercial use to spur innovation

- National Broadband Plan directs efficient use of federal spectrum
- PL 112-96 (2012) transfers some spectrum and increases unlicensed spectrum
- PCAST report (2012) and FCC's 3.5 GHz "innovation band" proposal (2014) encourages tiered access (Spectrum Access System) and small cells
- DOD and other agencies with target spectrum are seeking ways to analyze trade-offs and understand impacts using less conservative estimates

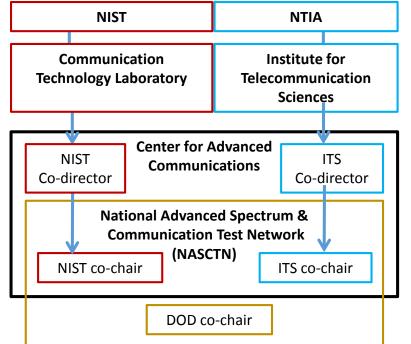

Create the Center for Advanced Communications (CAC)

A joint NIST / NTIA center

CAC is to advance the fundamental understanding of spectrum usage to promote spectrum sharing approaches and innovation.

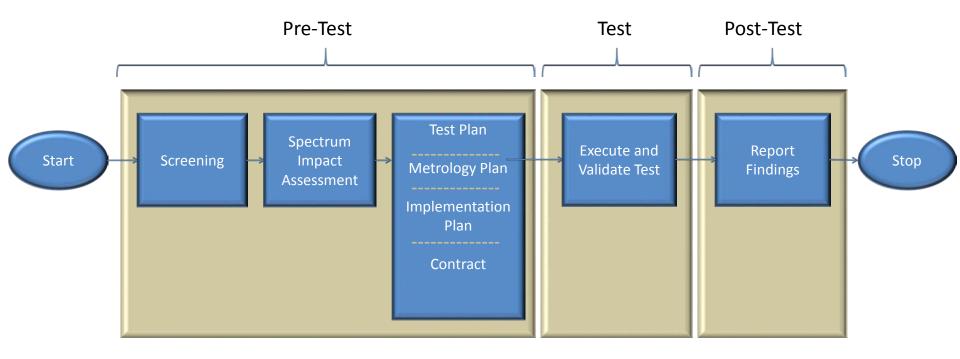
Key Functions:

- Enhance mission effectiveness of NTIA and NIST by coordinating research, standard development and testing functions
- Promote interdisciplinary research, development, and testing in advanced communications
- Provide a single focal point for engaging both industry and other government agencies on advanced communications technologies



National Advanced Spectrum & Communication Test Network (NASCTN) A DOC and DOD partnership

NASCTN is a network of government, academic and commercial capabilities able to coordinate the use of intellectual capacity, modeling and simulation, laboratory, and test ranges to meet national spectrum interests and challenges.


Key Functions:

- Facilitate and coordinate spectrum sharing and engineering capabilities
- Create a trusted capability for spectrum sharing evaluations
- Protecting information (proprietary, classified, and sensitive) while facilitating maximum dissemination

Develop methods for NASCTN engagement

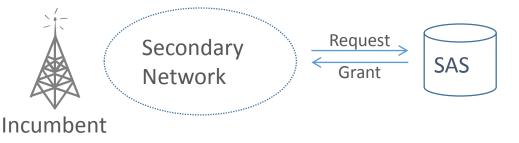
 NASCTN provides a framework for negotiating a measurement sciencebased test plan, facilitates access to test ranges and laboratories, and methods for validating results.

Improve measurements and analyses that enable sharing

Interference metrics determine spectrum re-use

- ITS/CTL clutter measurement campaign
 - \circ 3.5 GHz a hot area for reallocation / sharing
 - Better understanding of 3.5 GHz propagation may improve decision-making
 - o ITS to provide field measurements
 - o Apply CTL/SED DOE and uncertainty analyses
 - o Compare to "state of the art" models

Spectrum sharing: key activities


Improve sensing and monitoring techniques

Determine spectrum occupancy for coordination and planning

- Develop a spectrum monitoring pilot program (CTL/ITS collaboration)
- Wideband sensing using sub-Nyquist sampling; Sensing in low S/N environments

Develop sharing technologies

• Evaluate dynamic spectrum access systems

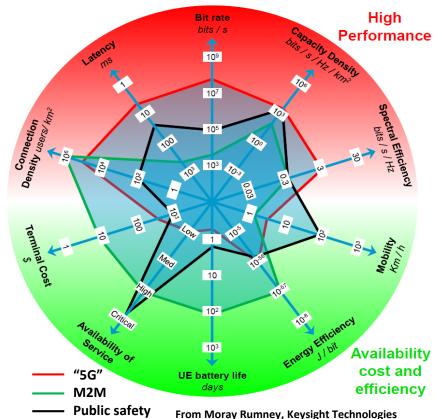
- Develop distributed algorithms for spectrum sharing by secondary systems
- Evaluate control channel alternatives

CTL priority goals

Through the development of appropriate measurements and standards:

- 1. Enable robust, mission-critical, interoperable public safety communications
- 2. Enable effective and efficient spectrum use and sharing
 - Center for Advanced Communications
 - National Advanced Spectrum and Communications Test Network (NASCTN)

3. Enable advanced communications technologies


Advanced communications technologies: background

CTL is to perform leading edge R&D on both the metrology and understanding of physical phenomena, materials capabilities, and complex systems relevant to advanced communications

Expert measurement science is required to support CAC/NASCTN, spectrum sharing, and public safety challenges

Forward-looking opportunity

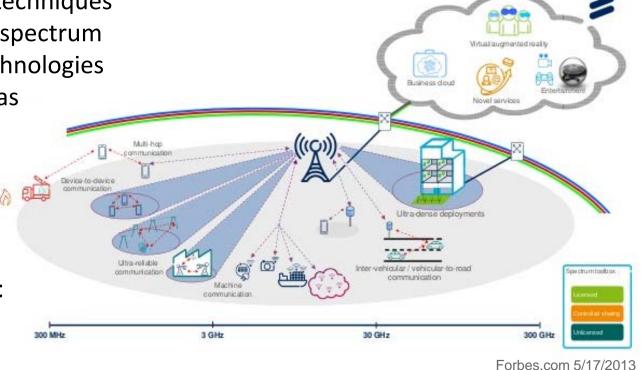
- Trends predict 1000x increase in wireless capacity density demand
- Foresee new and diverse use cases
- Industry participants are now discussing next generation "5G" wireless technology for an aggressive 2020 launch.

Advanced communications technologies: background

Europe and Asia are leading 5G activities

- 5GPPP (EU)
 - o Horizon2020 program: €1.4B
 - o Framework 7: €125M
- METIS (EU)
 - o Funded €29 M (2012-2015)
- Korean 5G forum
 - o ROK to expend \$1.5B through 2020
 - EU and ROK signed agreement to cooperatively define global 5G standards
- UK 5G Innovation Center / Spectrum Policy Forum
 - o **£35M university center**
- IMT2020 Promotion Group (China)
 - Three Chinese ministries (MIIT, NDRC and MOST)
- "2020 and Beyond Ad Hoc (20B AH)" (Japan)
- Global ICT Standardization Forum for India

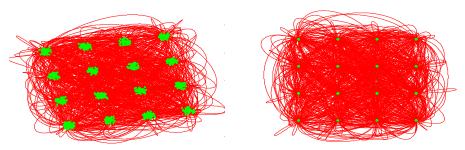
5G Forum Korean 5G will lead the globe

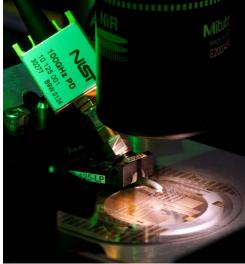

(5G) Promotion Group

Advanced communications technologies: approach

5G is still in the technology development and definition phase

- 5G may include use of
 - o Licensed spectrum and shared use of unlicensed spectrum
 - o Dense, heterogeneous, and agile networks
 - Device-to-device and multi-hop modes
 - o New modulation techniques
 - o Higher frequency spectrum
 - o Multiple radio technologies
 - o Advanced antennas


CTL has a window to develop measurement R&D that enables US technology development and standards


Waveform measurement and traceability

Supports modulated signals characterization

- Electro-optic sampling to provide calibration of waveform instruments to >100 GHz
- Large-signal analysis to 300 GHz
- Precision reference source to 94 GHz for EVM
- Robust point-by-point uncertainty framework
- Calibration services

45GHz 16QAM @ 17% and 0.2% Error Vector Magnitude (EVM)

Electro-optic sampling probe

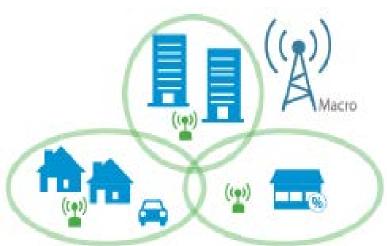
NIST calibrated photodiode

This work provides a fundamental measurement core to support NASCTN, sharing, next-generation frequencies/bandwidths, and test equipment manufacturers

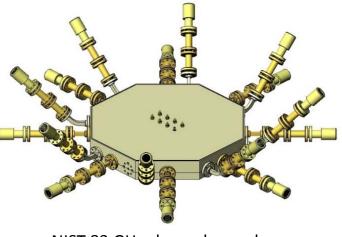
Coexistence measurement science

More wireless in more places demands better interference criteria

- Improve EMC measurements to ensure compatibility of varied wireless applications
- Improve interference criteria to decrease exclusions zones and increase spectrum reuse
- Develop a measurement science approach that includes uncertainties, confidence intervals, and statistical performance.

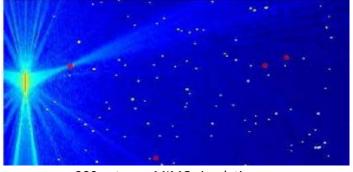


This work also provides measurement science support to NASCTN and sharing activities


"5G wireless" – millimeter waves

Require 3D channel and propagation models

- Improve measurements in
 - o Channel sounding (directional)
 - o Large-scale path loss and blocking
 - o Small-scale delay characteristics
 - o 3D Spatial channel characteristics for MIMO
- Create measurement-based statistical models of realistic channels
- Use models to identify gaps in current communication protocols


Small cells within macrocell

NIST 83 GHz channel sounder

Massive MIMO (multiple input multiple output) antennas

A key 5G technology for throughput

200 antenna MIMO simulation

- FD-MIMO eNB Azimuth beamforming Azimuth beamforming Samsung May 2014
- Requires entirely new antenna characterization methods
- Compare: Current LTE MIMO is 2x2; CTIA OTA test uses 8 transmitter cluster
 - Long calibration and test time (8 channels)
 - $\circ~$ Test zone limited to ~0.7 λ (small for M2M devices?)
 - Limited "sampling": 8 angles, azimuthal only
 - o Uncertainties unknown; Test plan is not final
 - Not scalable to 20, 50, or more antennas!

Federal agencies:

DHS, FirstNet, DOD, DARPA, DOE, FDA

Telecommunication Standard Development Organizations: IEEE 802, 3GPP, CTIA, ISA, TIA, ATIS, IETF, ETSI, IEC, ISO

Industry Alliances:

WiMAX, WiFi Alliance, Zigbee Alliance, Bluetooth SIG, OneM2M

User's groups:

National Public Safety Telecommunications Council, Association of Public Safety Communications Officials

Manufacturers:

Network equipment, Electronics devices and modules, Test equipment

National Metrology Institutes

NPL (UK), PTB (Germany)

Capability planning priorities

1. National Advanced Spectrum and Communications Test Network (NASCTN)

- Create program infrastructure
- Build competence for technical execution (incl. ITL/SED hires)

2. Situational awareness measurements & analytics for public safety comms

• R&D into applications to drive new standards

3. Metrology for next generation wireless networks

- Strengthen spectrum sharing, coexistence, and channel propagation and modeling expertise
- Develop measurements to support 5G features: massive-MIMO, mm-wave, ultra-dense networks

Support development of 5G standards and pre-standards activities

4. Optical communications metrology

Address fiber bottleneck as wireless challenges are solved

<u>Scope decision</u> Seed key areas anticipating future growth

Not

Current funding

funded