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Shared Vision

• Realize the full impact of the Materials Genome 
Initiative to accelerate materials discovery and 
development

• Demonstrate the power and potential of bringing 
together data science, computational approaches, 
and state-of-the-art experiments to design materials

• Build broad research and outreach programs in 
partnership with government, industry, and academia
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Approach

• Leverage significant strengths and a long history of materials design and 
collaborative research

• Identify thrust areas (use-cases) that:
• focus on particular materials of industrial and scientific importance
• involve industrial collaborators
• transfer the design methodology to industry and other stakeholders

• Develop:
• community standard codes for both hard and soft materials design
• materials databases that are motivated by topics of the use groups
• experimental methods for rapid assessment of materials properties

• Convene workshops and outreach activities on issues that are central to 
the implementation of the Materials Genome Initiative



Program Elements

Use-Case Teams:
• Precipitation-Strengthened Alloys
• In-situ Silicon-Composite Materials
• 2D Heterostructures for Electronics
• Polymer Matrix Composites
• Directed Assembly of Block Copolymers
• Polyelectrolyte Self-Assembly
• Organic Polymer Solar Cells
• Data Mining

Cross-cutting Tools:
• Software: Standard Phase Field Methods
• Software: Coarse Grained Simulations
• Data: CALPHAD Protodata Databases
• Data: Materials Data Facility
• Expt: Resonant Soft X-ray scattering
• Expt: Rapid Assessment of Phase Relations



PRECIPITATION-STRENGTHENED ALLOYS: Co-based
USE-CASE GROUP

 Apply accelerated insertion of materials (AIM) approach for accelerated qualification of 
precipitation-strengthened Co-based bushing/actuator alloy use case

• Refined Co databases to match experiments

• Successfully reduced aging time 
(maintaining strength) using PrecipiCalc 
simulations, targeted experimentation

• Procured new heat of material (300-lb) for 
process optimization, data development for 
AIM calibration

DESIGN GOALS

Databases calibrated with 
experimentation

780°C/2h 780°C/72h 780°C/260h

Experiment
Old database
NIST-Ni

Calibrated strength modeling 
using updated databases

Thermodynamic 
database refined 
with Atom Probe 

Tomography

Kinetic database 
refined with 

literature diffusivity 
data

Next step: AIM simulations (strength) 
and targeted experimentation

New material procured 
(process optimization in 

process)



PRECIPITATION-STRENGTHENED ALLOYS
USE-CASE GROUP

 Characterize phase relations, kinetics, and strengthening behavior in L21 Heusler strengthened 
low-Ni, high-strength “hybrid” (Pd,Ni)(Ti,Zr,Al) and Ni-free (Pd,Fe)(Ti,Al) alloy systems

 Demonstrate transformable hybrid alloy design and improve predictive transformation temperature 
model to allow for design of a superelastic hybrid alloy

• A team of Northwestern undergraduates won 
3rd place in ASM’s Undergraduate Design 
Competition for their hybrid alloy design.

• A transformable low-Ni hybrid prototype was 
designed. 

• The Ni-free alloy exhibited extremely high 
thermal cyclic stability and low hysteresis.

• FEA modeling that utilized an image-based 
mesh to predict minimum fatigue properties 
in the presence of an inclusion stringer. 

DESIGN GOALS



 Materials and processes for sub 10 nm lithography
 Scaling to 5 nm resolution

DESIGN GOALS

Couple to molecular 
simulation

In-film structures revealed

USE-CASE GROUP

DIRECTED SELF-ASSEMBLY OF BLOCK COPOLYMERS

SEM

2D 
Model

• Need to establish manufacturing-relevant 
materials and processes to realize sub 
10 nm resolution, and scaling to 5 nm. 

• Standard metrology cannot be used to 
develop and validate predictive models 
or prototypical systems.

• Objective: develop fully 3D metrology 
tools of DSA structures based on RSoXS

• Experiments are performed on samples 
fabricated by industrial partners

• Results are quantitatively compared with 
those of molecular simulations

Relevant samples from 
industrial partners

300mm Wafer Coupon with back-
etched membrane

Variable angle 
transmission 
measurement

Reconstruct 
Qx-Qz map

Resonant Soft X-ray 
Scattering (RSoXS)

Fit to experiment



Governance

• Directors:  Leadership, funding allocation, strategy

• Executive Committee:  Monthly review, coordination, strategy

• Technical Advisory Board:  External review, industry view

• Use-Case Leads: Leadership, foster engagement, outcomes

• Cross-cut Leads: Leadership, coordination, outcomes

• Annual Meeting: High-level review, engagement, TAB

• Staff: Logistics, Support, communication, progress



Significant Engagement

• NIST leveraging investment in MGI, $13.5M per year, and NIST 
leadership in interagency coordination (Locascio, Warren)

• In Chicago, 35 PI’s, 27 Postdoctoral Fellows, 38 Graduate students

• At NIST, 37 staff, 20 Postdocs/Associates, 

• 4 CHiMaD Postdoctoral Fellows, 2 On-site at NIST

• Multiple visits between sites; 1 PI sabbatical at NIST; NIST postdocs in 
Chicago (this week; 3 CHiMaD events)

• Summer undergraduate research program

• Monthly Executive Committee Meetings

• Annual Meeting



Joint Activities

• ASM Action in Education Committee,  Materials Genome 
Toolset dissemination to materials UG programs 

• Integration in Northwestern ICME MS program

• Interactions with Fayetteville State University

• Workshops with the community:
• CALPHAD database development 
• Coarse graining in molecular systems
• Materials Design
• US-Japan: Materials Genome Initiative
• Phase field methods Workshops (2)
• Multivalent Interactions in Polyelectrolytes

• A MGI seminar series, jointly hosted by Northwestern 
University, University of Chicago, and Argonne National 
Laboratory



Benefits to NIST

• Close partnership and access to concentration of world-class 
expertise in materials science

• Expansion of NIST expertise and capabilities, e.g. broaden and 
deepen technical depth, data (Globus), APS beamline

• Visible focus on MGI and advanced materials design for 
stakeholders

• Significant critical mass to effect changes in materials design, 
materials data, and advanced manufacturing



Lessons Learned / Challenges

• Extremely exciting, many unexpected new ideas and 
opportunities

• Building strong relationships takes time

• Coordination and communication around a shared vision are 
essential

• Critical mass in multiple areas needed to effect changes in 
materials design, materials data, and advanced manufacturing



Future Plans

• Building upon a strong foundation and start

• Continue integration into national MGI effort

• Focus on building and expanding communities around use cases, 
especially with a focus on industry engagement

• Develop framework for refreshing use-case areas into the future

• Continue focus on materials data and informatics tools



THANK YOU
chimad.northwestern.edu
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