

Power, Energy & Grid Of the Future

SCE Distributed Energy Resources
April 8, 2008

High-Megawatt Power Converter Technology Roadmap Workshop

Power, Energy & Grid Of the Future – Presentation Overview

SCE DER Activity

Inverter Interface – What Do I Want

Beyond DER Activity

SCE DER Activity

- Prime Mover MTG Generator Testing
- Grid Interface Interconnection Criteria, Advanced Inverter Development Input 'Utility Perspective'
- Advanced Operating Concepts Microgrids,
 DER as System Asset, Smart Grid

SCE DER Activity – Grid Interface

- IEEE Draft Std 1547.4, Intentional DG Islands
 - A KEY SCE PARTICIPATION DRIVER:
 Concepts Relevant to Accomplishing Feasible High Renewable Penetration
 - DoE OE RDSI Proposal 'Catalina Renewable DG':
 Demonstration of High Renewable Penetration
- 20% BY 2010 California's Renewable Portfolio Standard
 - 20% renewables with significant intermittent content will require more than 'business as usual'
 - 4,000 MW Wind
 - 1,000 MW Solar
 - Energy Storage <u>with Advanced PCS</u>, A Solution?

Inverter Interface – What Do I Want

Starting Point - Do No Harm. Safety first.
 Mission accomplished...but...

- Moving Toward System Support from DER.
 High renewable penetration, grid reliability support, grid-side power quality support
- Inverter Needs Magnitude, Grid Interactive, Reliable, Cost Competitive, Innovation Incentive Rate

Beyond DER Activity

- SCE's Circuit of the Future D-FACTS: "What and Why"
- Phasor Measurement Unit (PMU) Application
 Development: PMU Assisted System Restoration
- Advanced Energy Storage for Wind Integration
- SCE 250 MW PV Project: Interface Specification

SCE's Circuit of the Future

SCE's Circuit of the Future **D-FACTS**

D-SVC Performance Specification, Overview

WHAT DO WE WANT?

- Fast response and mitigation of temporary voltage sags
 - Respond and mitigate infrequent temporary deep sags -7 to -12%, (15/year recorded, EPRI DPQ Study)
 - Don't try to fix very infrequent serious events: block device if sag exceeds -12% (Rule 21-based limit)

INPUT FOR DEVELOPMENT OF SPECIFICATION:

- Emulate organization/headings from relevant sections of I
 - "Existing Power System Characteristics" (3.8)
 - "Electrical Performance Requirements" (3.9)
 - "SVC Operating Characteristics" (3.10)

But, much less detail needed. And, distribution vs. transmission t IEEE PQ Std vs. WECC T-Planning Criteria.

All stated quantities for proposed D-SVC spec refer to or are relevant to distribution:

- SCE CPUC Tariff Rule 2
- SCE Voltage Fluctuation Limit Criteria
- IEEE 1559 PQ Monitoring Standard
- IEEE 519 Harmonic Limits

D-SVC Operation Illustration, Cleared Fault Voltage & Time Thresholds

PMU Assisted System

Prestervation

Energy Storage System Impact

O.C

SCIT NOMOGRAM

- Dynamic Stability <u>and</u>
 Transient Voltage
 Constrained
- Constraint Based on Total MW-S Inertia in So Cal Load Center
- RELIABILITY, AND COMMERCIAL, IMPLICATIONS

East-of-River/Southern California Import Transmission Nomogram

Reduction in SCIT Import Limit
For Palo Verde Status:
3 units on Line
200 MW
1 unit on Line
400 MW
0 unit on Line
700 MW

Advanced Energy Storage for Wind Integration

Operating the CAISO system with 20% Renewables -6700 MW of wind presents significant challenges

Tehachapi - April 2005

Inverter Interface – Early Feature List for SCE's 250 MW PV Project

4/1/08 UPDATED INVERTER FEATURE LIST (GRID-INTERFACE FOCUS) FUNDAMENTAL AND RELEVANT NOW

- 1) UL 1741/IEEE 1547/Rule 21 Compliant
- 2) Better than 96% inverter efficiency
- 3) Control/Optimize PV Array Maximum Power Point

FEATURES TO ENABLE 15+% PENETRATION, GOING 'BEYOND UL/IEEE/Rule 21'

4) Active participation in voltage regulation

FEATURES TO IMPROVE POWER QUALITY, SERVICE RELIABILITY, 'ADDED VALUE' ANCILLARY-TYPE SERVICES FROM THE RESOURCE

- 5) Respond to voltage transients to actively mitigate voltage sag's via dynamic VAR injection/modulation (STATCOM)
- 6) Respond to stability transients to damp system-side power oscillations thru dynamic Q and P modulation (Storage & UPFC)
- 7) High voltage inverter switches/configuration for direct connect to $480\ \mathrm{V}$
- 8) User specified, location-specific, fault duty multiplier (1 to 'X' times full load current)
- 9) Participate in wide-area VAR/voltage control schemes
- 10) Literate in multiple communication protocols (DNP3, Modbus, IEC 68150)

COMMERCIAL

- 11) Inverter cost below 100\$/KVA
- 12) 'Commoditize' and 'modularize' commercial hi-power hi-functionality inverters

SCE's 250 MW PV Project

- Filed w/ CPUC, Ratebase 250 MW PV, \$875 Million
- 50 MW/year, 5 Years
- 2 MW Pilot Project, In Service August 2008
- 1-2 MW Increments
- 3.5 \$/Watt
- Connect on grid-side at 12 kV
- Non-utility roof space, equipment suppliers, installers, O&M services
- Support CA Solar Initiative targets. Of 805 MW available in SCE's service territory only about 50 MW deployed.
 Average CSI installed cost for residential over \$8/Watt