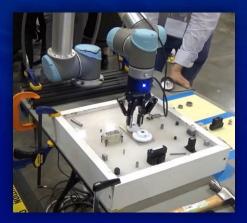
engineering laboratory

Replicable Tests and Benchmarking for Robotic Assembly Operations

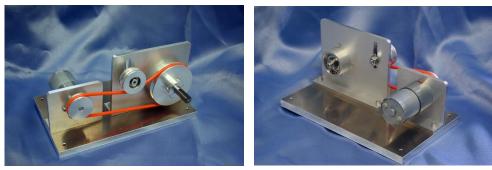
Karl Van Wyk

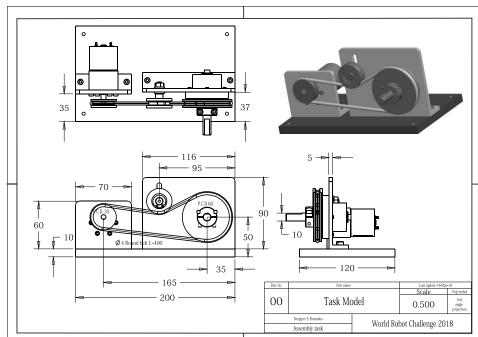
Intelligent Systems Division National Institute of Standards and Technology


- Performance assessment and benchmarking
- Feedback for researchers
- Future technical specifications

Community Interest

• Workshops


- IEEE ICRA 2015 Benchmarking in Manipulation Research: The YCB Object and Model Set
- IEEE ICRA 2015 Robotic Hands, Grasping, and Manipulation
- IEEE CASE 2016 Robotic Hand Technologies and Performance
- IEEE IROS 2017 Development of Benchmarking Protocols for Robot Manipulation
- IEEE ICRA 2017 Reproducible Research in Robotics: Current Status and Road Ahead
- Competitions
 - Amazon Picking Challenge
 - DARPA Robotics Challenge
 - IEEE IROS 2016 Grasping and Manipulation Competition
 - IEEE IROS 2017 Grasping and Manipulation Competition
 - World Robot Summit (WRS) 2018/2020 Industrial Robotics Competition



Assembly Task

- Assembly of belt-drive units
 - Day 3: 3 normal sets
 - Day 4: 2 normal set + 1 set incl. surprise parts
- Competition time:
 - Day 3: 45min. × 2 trials
 - Day 4: 60min. × 1 trial
- Surprise parts
 - CAD model is given 60 min. prior to the competition
 - Real parts are given 10 min. prior to the competition

Community Interest

Technical Committees

- IEEE RAS Technical Committee on Performance Evaluation and Benchmarking of Robotics and Autonomous Systems
- IEEE RAS Technical Committee on Robotic Hand Grasping and Manipulation

Existing Efforts

- YCB object and model set
- UC Berkeley Open Discussion
- Advanced Robotics for Manufacturing (ARM) Institute
- Publications
 - IEEE RAM R-Article
- Testing Facilities
 - New England Robotics Validation and Experimentation (NERVE) Center

University of Massachusetts Lowell New England Robotics Validation and Experimentation (NERVE) Center

- Manipulator testbeds for evaluating grasping, assembly, and human-robot collaboration performance with a suite of robotic arms, hands, and sensors of varying capabilities and characteristics
- · Test methods and benchmarks from NIST, YCB Object and Model Set, new methods in development
- Developing metrics and evaluation methods for the Advanced Robotics for Manufacturing (ARM) Institute

UMASS LOWELL

Soft Robotics

Wonik Robotics

Rethink Robotics

Contact:

Rethink Robotic Sawyer with Robotiq 2-finger manipulating NIST assembly task board Adam Norton, Assistant Director

Universal Robots UR5 with Robotiq 3-finger manipulating NIST grasping test artifact

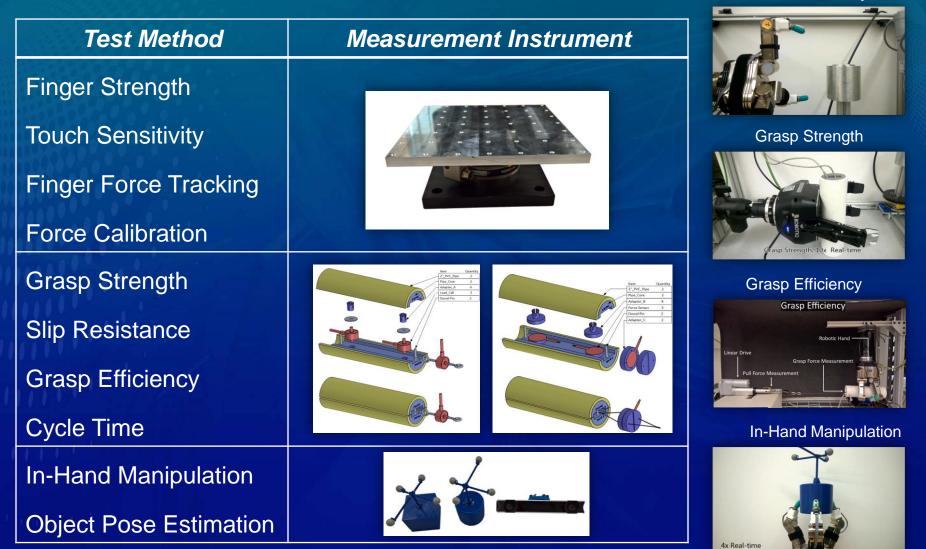
adam_norton@uml.edu

National Institute of Standards and Technology U.S. Department of Commerce

Problem Scope

Performance assessment and benchmarking

- Arms
- Grippers/hands
- Sensors
- Algorithms
- Implementation/integration
- Objects
- Tasks/tests
- Metrics
- Performance comparisons


Hand/Gripper

- Enhancing end-effector adaptability
- Unify R&D performance measurement
- Unify technical specifications
- Rollout of enhanced behaviors

Hand/Gripper Tests

Touch Sensitivity

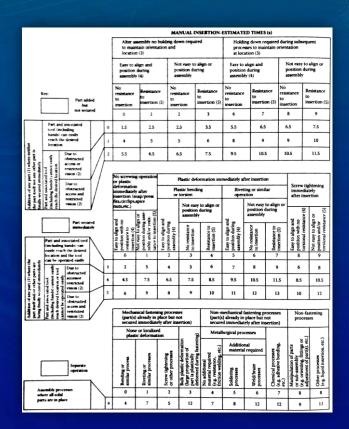
Documentation

- NIST SP: Proposed Standard Terminology for Robotic Hands and Associated Performance Metrics
- NIST SP: Performance Metrics and Test Methods for Robotic Hands
- J. Falco, K. Van Wyk, S. Liu, S. Carpin, "Grasping the performance: facilitating replicable performance measures via benchmarking and standardized methodologies", *IEEE Robotics and Automation Magazine*, 2015.

https://www.nist.gov/el/intelligent-systems-division-73500/robotic-grasping-and-manipulation-assembly

Assembly Performance Tests

- Quantify performance of a robotic system completing a task
- Tests target assembly operations: pick-place, insertion, fastening, meshing, wire harnessing, pulley belt routing
- Whole system-system testing
- Component testing



Test Design

- Assembly Operations
- Design for Assembly (DFA)
 - Human performance factor analysis
 - Parameterizes objects
 - Handling times
 - Insertion times
 - Guide design space
 - Direct human comparison

Geoffrey Boothroyd, Peter Dewhurst, and Winston Knight. *Product Design for Manufacture and Assembly. CRC press, 1994.*

Performance Metrics

Modes

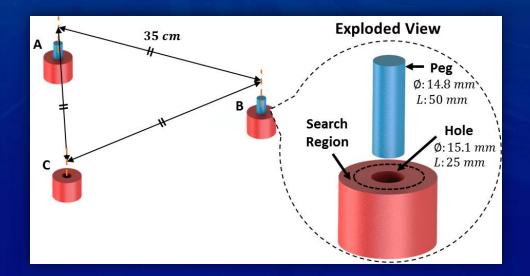
- Disassembly
- Assembly
- Primary metrics
 - Speed \rightarrow completion time
 - Reliability \rightarrow probability of success
 - Granularity
 - Per-part/operation
 - Whole

Data Analytics

Ordinal or Attribute Data

- Primary measure probability of success
- Discontinuous distribution Kolmogorov-Conover

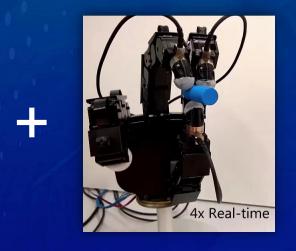
Continuous Data


- Primary measure time
- Distribution Kolmogorov-Smirnov
- ANOVA Levene, Brown-Forsythe
- Means Snedecor-Cochran

Matlab, R

engineering laboratory

Peg-in-Hole Test


- Functional test method to measure the performance of robot systems at basic insertions
- Triangular design facilitates cyclical testing
- Peg-hole parameters, spacing based on human data

System 1

 K) is the K

engineering laboratory

Peg-in-Hole Testing

System 1

System 2 Spiral

Comparative Results

Offsets ~ $N(0,\sigma_2)$, $\sigma_2 = 2 mm$

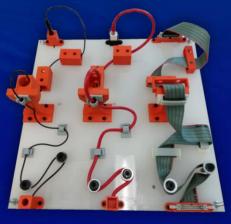
Robotic System	Correlation	KS	μ (s)	σ² (s²)	PS (%)
System 1	0.01		18.31	107.3	87.6
System 2 Spiral	0.07	*	37.13*	399.6*	95.2
System 2 Random	-0.01	*	15.62	417.72*	95.2
System 2 Quasi- Random	-0.11	*	8.2*	50.25*	95.2

*Indicates statistical significance in comparison with System 1 after 60 trials.

K. Van Wyk, M. Culleton, J. Falco, K. Kelley, "Comparative Peg-in-Hole Testing of a Force-based Manipulation Controlled Robotic Hand", *IEEE Transactions on Robotics*, 2018.

Assembly Task Boards

- Series of themed boards
- Each instance focuses on particular assembly facets
- Design with reference to DFA
- Low-cost, internationally replicable
- Realistic components


Task Board #1

Task Board #2

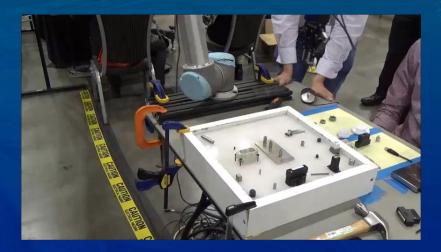
Task Board #3



Test Method

- Setup per trial
 - Option 1: randomly place task board and predesigned kit
 - Option 2: randomly place task board and parts (box shake)
- Execution
 - Disassembly: move-grasp-disassembletransport components to target kit/bin
 - Assembly: move-grasp-transport-assemble components to target task board
 - Considerations
 - Task board, bin, kit not fixed
 - Several trials per desired confidence, resolution
 - No restriction on order of solution

Test Metrics


- Operation- and object-centric
 - Completion time and pass/fail
 - Move-grasp-transport sequence
 - Assembly sequence
 - Move-disassemble sequence
 - Transport-place sequence
- Mode- and board-centric
 - Completion time
 - Percent complete

Thoughts

Overfitting

- Part variations
- Operation variations
- Variable initial conditions
- Variety of task boards
- Difficulty
 - IROS 2017 GMC

Questions/Feedback

https://www.nist.gov/el/intelligent-systems-division-73500/robotic-graspingand-manipulation-assembly

- Datasets
- Gripper/hand test methods
- Assembly test methods
- Replication documentation
- IEEE RHGM TC meeting notes and presentations

