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ABSTRACT 
This paper proposes a framework for balancing competing user 
(i.e., application) level requirements by resolving the 
corresponding trade-offs in a distributed system with limited 
resources. Assuming that each user’s preferences can be 
characterized by some utility function, the goal of balancing 
competing requirements for each user as well as across different 
users is to maximize the aggregate utility. The framework 
assumes a presence of Intelligent Plane, which isolates users from 
details of the network properties and mechanisms of 
implementation of the user level requirements. The Intelligent 
Plane performs the following tasks: (a) maps the user level 
requirements into the network resource requirements, (b) maps 
the resource congestion prices into prices of the user level 
requirements, and (c) maps the user willingness to pay for the 
user level requirements into payments for the specific sets of 
resources. Once payments for the specific sets of resources are 
identified, the resources are allocated to the users by a “TCP-
friendly” algorithm. The paper discusses this framework for a 
particular case of balancing user requirements for throughput and 
survivability in an unreliable network, where survivability is 
achieved through redundancy, e.g., using multipath routing. 
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routing, throughput, reliability trade-offs, pricing, intelligent 
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1. INTRODUCTION 
Since network resources are shared by multiple users 

(i.e., applications) and performance of each user is 
typically characterized by multiple competing criteria, 
network management includes the following two major 
tasks: (a) making the best use of the allocated resources for 
each user by resolving the trade-offs among competing 
user criteria, and (b) sharing resources among different 
users.  Framing the goal of network management as the 
aggregate utility maximization subject to the capacity 
constraints, where the aggregate utility is the sum of the 
individual user utilities, has been proposed in [1].  This 
framework is based on the concept of elastic users, capable 
of adjusting their behavior in response to congestion 
pricing signals.  Papers [2]-[3] have developed a distributed 
scheme for aggregate utility maximization in a case when 
user utilities are expressed in terms of the link bandwidths.  

This scheme interprets Lagrange multipliers associated 
with capacity constraints as congestion costs of the 
corresponding resources.  These costs are communicated to 
the elastic users, who adjust their resource requirements or 
willingness to pay for the resources by maximizing the 
individual net utilities.  Figure 1 illustrates this scheme. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Users directly responding to resource pricing 
 

However, assumption [2]-[3] that user utilities are 
expressed in terms of the network resources may be too 
restrictive.  Typically, users more naturally can express 
their preferences in terms of the user level requirements, 
such as rates and Quality of Service (QoS) parameters, 
rather than network level parameters, such as required 
bandwidth.  Mapping user level requirements into network 
level resource requirements as well as mapping congestion 
resource pricing signals into pricing of the user level 
requirements depend on the specific network properties as 
well as specific implementation of the user level 
requirements.  In the Internet with a dumb core and 
intelligent applications concentrated at the network edges 
this mapping can be performed by intelligent applications 
through probing. 
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Several recent proposals, starting with [4], argued in favor 
of relieving users from the burden of such probing by 
moving some intelligence to a separate “Intelligent Plane” 
(IntPlane).  The IntPlane sits between the users and the 
network and hides the details of the network properties and 
user level requirements implementation mechanisms from 
the users.  The advantages of such enhanced architecture 
include user convenience, possibility of optimization of the 
resource allocation and security considerations [4].  This 
paper proposes the functionality for the IntPlane as a 
mapping mechanism, which is shown on Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Intelligent Plane as a mapping mechanism 
 

Each elastic user attempting to maximize its individual net 
utility informs the IntPlane on its relative marginal utilities 
and “willingness to pay” for the network resource.  The 
IntPlane performs the following tasks: (a) given the amount 
of the network resources allocated to each user, the 
IntPlane optimizes the balance among competing user level 
requirements for each user, (b) maps user willingness to 
pay into payments for specific sets of the network 
resources, and (c) communicates to the user the aggregate 
congestion cost of the resources allocated to the user.  Once 
the willingness to pay for the specific sets of resources is 
identified, the resources are allocated to users by a TCP-
type algorithm.  The “payments“ may either represent real 
funds, or be simply a parameter in the TCP-type protocol 
[5].  To ensure capability of this scheme to operate in a 
competitive (non-cooperative) environment, the resource 

allocation should be proportionally fair, meaning that 
resources are allocated to the users proportionally to the 
payments [2]-[3].  Proportional fairness ensures that both 
schemes, based on the direct user payments for the 
resources and user payments for the QoS, result in the same 
resource allocation and user payments [6]. 

This paper discusses possible implementation and 
benefits of the proposed enhanced architecture in a case of 
providing reliable services in an unreliable network.  The 
reliability is achieved through redundancy by reserving 
extra bandwidth to protect against link capacity variability 
due to fading and mobility, and using multipath routing to 
protect against link failures.  The packet level 
implementation of the redundancy scheme can be based on 
the route diversity coding [7].  Benefits of multipath 
routing for load balancing and protection against network 
element failures have been known for a long time [8].  
However, research on load balancing, protection and 
restoration for wire-line and wireless networks has been 
mostly concentrated on evaluation of various performance 
and survivability metrics of certain multipath routing 
schemes [6].  While providing quantification of improving 
survivability with increase in redundancy through 
consuming more network resources, this research leaves 
aside the problem of balancing survivability and economic 
efficiency for each user as well as across different users.  
Conventional practical solutions, which offer users a 
limited set of choices with respect to survivability, attempt 
to resolve these trade-offs within a centralized framework 
by assigning the corresponding service classes.  A price 
based market framework shifts choices regarding requested 
services, including survivability levels, to the users, 
assuming that users are aware of the available services and 
their prices [10]-[11]. 

The paper is organized as follows.  Section II describes 
a model of the unreliable network and implementation of 
the reliable throughput.  Section III introduces user utility 
of obtaining certain QoS and formulates the corresponding 
aggregate utility maximization framework.  Section IV 
briefly extends decentralized aggregate utility 
maximization framework [2]-[3] to a case when each user 
is aware of mapping its QoS requirements into the 
requirements for the network resources.  The 
decentralization is based on congestion pricing of the 
resources and elastic users responding to these pricing 
signals by maximizing their individual net utilities 
expressed in terms of the requested network resources.  
Section V develops a decentralized aggregate utility 
maximization framework assuming that users are unaware 
of the network properties and implementation of the user 
level requirements.  The decentralization is based on 
proportionally fair pricing of the user level requirements 
and elastic users responding to these pricing signals by 
maximizing their individual net utilities expressed in terms 
of the user level parameters.  The mapping between user 
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and network level parameters is done by the IntPlane.  
Section VI considers some examples and discusses the 
implication.  Finally, conclusion briefly summarizes the 
proposed framework and proposes directions for future 
research. 
. 
 

2. MODEL 
Subsection A defines two user Ss ∈  QoS 

parameters: the reliable throughput sµ  and the 

corresponding reliability exponent sγ .  Subsection B 
introduces a “fair” bandwidth sharing with controlled 
portions of link bandwidths allocated to different users.  
This bandwidth sharing allows for implementation of the 
reliable throughput by creating a “safety margin” for the 
fluctuating instantaneous user throughput.  Subsection C 
describes an approximation for the reliability exponent 
used in the remainder of the paper. 
 

2.1 User level parameters 
Consider a network with link capacities lc  being subject 

to variability due to fading, mobility, node and link 
reliability, etc.  Each network user Ss ∈  is uniquely 
identified by its origin-destination and user level Quality of 
Service (QoS) requirements.  Presence of several users 
with the same origin-destination models different types of 
applications with the same origin-destination, e.g., voice 
and video.  We assume that link capacity fluctuations occur 
on such fast timescale that they cannot be completely 
absorbed by the network management actions.  Due to 
these fluctuations, link capacities lc  are in effect random 
variables and thus it may be difficult or even impossible to 
guarantee a fixed bandwidth (throughput) to a user.  
Instead it may be more natural to view the instantaneous 
aggregate throughput sx  for a user Ss ∈  as a random 
variable.  Due to possible large fluctuations in the 
instantaneous aggregate throughput sx  users may prefer to 
characterize their requirements in terms of the pair 

),( ss γµ  of the “reliable” aggregate throughput sµ  and 

the corresponding reliability exponent sγ  quantifying the 

confidence level that the instantaneous throughput sx  does 

not deteriorate below sµ , where 
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and the average aggregate bandwidth reserved for  user s  
is sx~ .  Figure 3 illustrates that creating a “safety margin” 

sss x µ−=∆ ~  increases confidence that the instantaneous 

throughput sx  would not deteriorate below sµ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Reliable aggregate throughput 
 
Note that besides reserved average aggregate throughput 

sx~  and reliable throughput sµ , reliability exponent sγ  
also depends on: (a) probability distribution of the random 
link capacities lc , (b) mechanism for sharing of the 
instantaneous link bandwidth among different users, (c) 
implementation of the reliable throughput sµ , given 
resources allocated to user s , and (d) bandwidths reserved 
on specific routes.  This paper assumes that random link 
capacities lc  are jointly statistically independent for all 

links Ll ∈ .  Assumptions (b)-(d) are described in the next 
two subsections. 

This paper assumes that each user s  instantaneous 
aggregate throughput sx  can be approximated by a 

normally distributed random variable with average sx~  and 

standard deviation sσ , and thus reliability exponent (1) is 
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Note that approximation (2)-(3) neglects small probability 
event that the bandwidth is negative.  In a case of high 
reliability requirements: ∞→sγ , reliability exponent (2) 
can be asymptotically approximated as follows: 
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2.2 Reliable Throughput 
We assume that each user s  is allocated a certain 

controlled portion lsφ  of the link l  bandwidth lc~ , or 

equivalently, the average bandwidth lslls cx φ~~ = , where 

average capacity of a link l  is ][~
ll cEc = , and 

1≤= ∑
∈

Σ
Ss

ls

def

l φφ .  The instantaneous bandwidth allocated 

to a user s  on a link l  is a random variable 
( ) lslllslls xcccx ~~== φ .  In a case of small variability in 

the link capacities it is convenient to introduce “small” 
random variables lll cc ~1−=ξ  with zero averages 

0][ =lE ξ , so that the instantaneous bandwidth allocated 

to a user s  on a link l  is 
                              lslls xx ~)1( ξ−=                                (5) 

In a particular case of a link failure model, when 
operational link l  has capacity ll cc ˆ=  and failed link has 

capacity 0=lc  it is convenient to introduce binary 

random variables 0=lδ  if link l  is operational and 

1=lδ  otherwise, so that the instantaneous link l  

bandwidth is lll cc ˆ)1( δ−= , and lll δδξ −= , where 

][ ll E δδ = .  In this particular case the instantaneous 

bandwidth (5) is lslls xx ˆ)1( δ−= , where lslls cx φˆˆ = . 
The rest of this subsection discusses implementation of 

the reliable throughput sµ , given the instantaneous link 

bandwidths slx  allocated to user s .  Given vector 

),( LlxX sls ∈= , the maximum achievable user s  

instantaneous aggregate throughput is ∑
∈

=
)(*

ss XMl
sls xx , 

where )(*
ss XM  is the corresponding min-cut.  This paper 

assumes a suboptimal implementation of the reliable 
throughput, based on the route diversity coding [4] and 
shown on Figure 4. 
 
 
 
 
 
 
 
 
Fig. 4.  Route diversity coding 
 

In this implementation, after adding redundant bits and 
coding, user Ss ∈  data stream of rate sµ  is transformed 

into stream of higher rate ssx µ≥~ .  This resulting stream 

is split into flows srx~  over feasible routes sRr ∈  with the 
same origin-destination: 
                              ∑

∈

=
sRr

srs xx ~~ .                                     (6) 

User s  instantaneous throughput, i.e., rate of the user 
stream received at the destination, is 
                              ∑

∈

=
sRr

srs xx ,                                     (7) 

where the instantaneous throughput over route sRr ∈  is 

                            srrsr xx ~)1( ξ−=                                 (8) 
and the normalized variability of a route r  capacity is 
characterized by random variable 
                       ∏

∈

−−=
rl

lr )1(1 ξξ .                              (9) 

The reliability exponent (1) quantifies the possibility of 
reconstructing user s  data stream at the destination [4].  
Note that formula (9) is based on the assumption that link 
capacities fluctuate at much faster time scale than time 
needed for a packet to reach its destination.  In the opposite 
extreme case the normalized variability of a route r  
capacity is characterized by random variable 

rllr ∈−−= ),1max(1 ξξ .  Our analysis can be 

easily carried out for this case also. 
Calculation of the reliability exponent (1) is 

comparatively simple in a case when routes sRr ∈  do not 
have overlapping links.  In this case the aggregate 
instantaneous throughput (7) is a sum of jointly statistically 
independent random variables since rξ  are jointly 

statistically independent random variables for sRr ∈ .  

When routes sRr ∈  do have overlapping links, 
calculation of the reliability exponent (1) is generally a 
difficult problem [9]. 

 

2.3 Approximation for Reliability Exponent 
We approximate the reliability exponent (1) by the 

leading term in the asymptotic expansion (4): 
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where user s  average aggregate throughput is 
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the variance of the aggregate throughput is 
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the “normalized correlation” between route sRrr ∈21 ,  
capacities is characterized by 
                        ∑

∈

=
I 21

21

22

rrl
lrr θθ                                      (13) 

and the normalized variance of the link l  capacity is 

[ ]22
ll E ξθ = .  Note that matrix ( )

sRrrrrs ∈
=Θ

2121 ,
2θ  is 

symmetric and positive: 22
1221 rrrr θθ =  and 

( )222
2121

,min0 rrrr θθθ ≤≤ , 21 , rr∀ .  Also note that 

expression (10) can be obtained from a Gaussian link 
model in a large deviation regime of high reliability [12].  
For a particular model of link failures the normalized 
variance of the link l  capacity is ( )lll δδθ −= 12 , where 

the probability of link l  failure is ]1,0[∈lδ . 
 Reliability exponent (10) can be expressed as 
follows: 
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in terms of the user s  redundancy factor, i.e., the number 
of bits transmitted per a bit of the “payload” [7], 

                        ∑
∈
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sr
s
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s x~1
µ
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and portions of load routed on feasible paths sRr ∈  are 

                        srss

def

sr x~)( 1−= µωα                               (16) 
where 
                                1≥sω                                            (17) 

                           1=∑
∈ sRr

srα .                                        (18) 

Given load allocation vector ),( ssrs Rr ∈= αα , the 
upper limit on reliability exponent (14), achieved as 

∞→sω , is 
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Given upper limit (19), the minimum redundancy (15) 
required to achieve reliability exponent γ  for user s  is 
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ˆ1

−
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If routes sRr ∈  do not have overlapping links, formula 
(12) takes the following form 

                      ( )∑
∈

=
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srrs x 22 ~θσ                                  (21) 

and thus, formula (14) simplifies as follows: 
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where we simplified notations as follows: 22
rrr θθ = . 

Given redundancy factor sω , one may attempt to 
maximize the reliability exponent (14): 
                            ss

sr

γγ
α 0

* max
≥

=                                     (23) 

subject to constraints (18). 
Theorem 1.  Given redundancy factor sω  and network 

properties represented by matrix sΘ , solution to 
optimization problem (22)-(23), (18) is 
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and is achieved for load allocation  
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where symmetric and positive matrix ( )
sRrrrrs tT

∈
=

2121 ,
2  is the 

inverse to sΘ : 1−Θ= ssT . 
Proof.  The optimal load allocation is determined by 

solution to the following optimization problem: 
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subject to constraints (18).  The Lagrangian for (25), (18) is 
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and, due to convexity, the corresponding necessary and 
sufficient Kuhn-Tucker conditions form the following 
linear system [13]: 
        02 =−=∂ ∑

∈′
′′ λαθα

sRr
rsrrsrL                            (27) 

where Lagrange multiplier λ  is determined by (18).  This 
ends the proof. 

The following statements directly follow from Theorem 
1. 

Corollary 1. Given the network properties represented 
by matrix sΘ , the upper limit on the reliability exponent 

(10), achieved as redundancy factor ∞→sω , is 
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Corollary 2.  If routes sRr ∈  do not have overlapping 
links, the maximal reliability exponents (24) is 
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the optimal load allocation (25) is 
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and the upper limit (28) is 
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3. GOAL OF NETWORK MANAGEMENT 
Subsection A introduces individual user utility of 

obtaining service parameters ),( ss γµ .  Subsection B 
formulates the aggregate utility maximization framework 
[1] for a particular case of balancing competing 
requirements for reliable throughput and the corresponding 
reliability for each user as well as across different users. 

3.1 User Utilities 
Let ),( µxhs  be a function, monotonously increasing in 

both arguments ∞<≤≤ xµ0 .  Consider elastic user s  
whose satisfaction of obtaining service with parameters 

),( γµ  is characterized by a utility function 

               )()(),( γµγµ sss vuU = ,                            (32) 

where function )(µsu  is a conditional average over the 

aggregate rate sx : 

            [ ]µµµ >= ssxs xxhEu
s

),()( ,                    (33) 

and function )(γsv  is monotonously increasing for 

∞<≤ γ0 .  Note that under large deviation regime of 
high reliability, conditional average in (32) can be 
approximated by the corresponding unconditional average.  
Figures 5 and 6 sketch typical utility functions )(µsu  and 

)(γsv  respectively. 
Definition (32)-(33) is quite flexible, covering a wide 

range of possibilities.  Consider some particular cases.  
User s  having “hard” requirements on the reliability 

parameter min
ss γγ ≥  is characterized by utility function 

(32)-(33), where 
                         )()( min

ssv γγχγ −= ,                            
(34) 
and step-wise function is 1)( =γχ  if 0>γ , and 

0)( =γχ  if 0≤γ .   
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Typical user utility of the reliable throughput  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Typical user utility of the reliability exponent  
 
User s , elastic with respect to the reliable throughput µ , 
is characterized by utility (32)-(33), where function 

)(),( µµ ss uxh ≡  does not depend on the actual random 

aggregate throughput ),[ ∞∈ µx  and depends only on the 
reliable aggregate throughput ),0[ ∞∈µ .  A particular 

case (32)-(34) with 0min =sγ  describes an elastic user 

concerned with the average throughput: ( )][ sss xEuU = .  

A particular case of (32)-(34) with 0min =sγ  and function 

)(),( xuxh ss ≡µ  independent of the reliable throughput 

),0[ ∞∈µ  describes an elastic user whose satisfaction is 
characterized by the average utility of the instantaneous 
aggregate throughput: )]([ sss xuEU = . 
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3.2 Aggregate Utility Maximization Problem 
S. Shenker has proposed [1] aggregate utility 

maximization to be the objective of network management.  
In our particular case the aggregate utility maximization 
framework takes the following form: 
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s
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over user level requirements ),,(),( Ssss ∈= γµγµ  

and vector ),:~(~
ssr RrSsxX ∈∈=  subject to 

constraints (10), link capacity constraints  

                                    ll cy ~~ ≤ ,                                              
(36) 

flow non-negativity constraints: 0~ ≥srx  and constraints 

on the reliable throughput Ssxss ∈≤≤ ,~0 µ , where 

the link l  load is 
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Optimization problem (35) is equivalent to the following 
optimization problem 
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subject to the same constraints except (37), where the 
“social welfare” is 
            ( ) ( )∑∑ −=

l
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s
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and appropriately selected penalty functions )(yfl  may 
quantify the congestion penalty in terms of delays or packet 
loss as link utilization approaches link capacities [3].  For 
packet networks it is often assumed [14]  

                      )~()( ycyyf ll −= .                             (40) 

A particular case of optimization problem (38)-(39), 
when each user s  specifies its service requirements 

),( ss γµ  correspond to the following traffic engineering 
problem: 
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4. USERS ALLOCATE BANDWIDTH  
This section assumes that each Ss ∈  (a) is aware of the 

network properties quantified by matrix sΘ , and (b) 

capable of finding the optimal balance ),( **
ss γµ  between 

competing requirements for the reliable throughput sµ  and the 

corresponding reliability exponent sγ  by maximizing the 
individual utility, given allocated bandwidths 

),~(~
ssrs RrxX ∈= : 

        { })()2~(maxarg
0

* γγσγ
γ sssss vxu −=

≥
           (43) 

                    ** 2~
ssss x γσµ −=                                (44) 

Once optimization (43)-(44) is performed and thus 
individual utilities with respect to the bandwidth 

       )()2~()~(~ **
ssssssss vxuXU γγσ−=                (45) 

are identified,  the aggregate utility maximization problem 
(38)-(39)becomes 
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Note that under hard constraints on the reliability (34) the 
optimal operating point (43)-(44) is 

      ( )minmin** ,2~),( ssssss x γγσγµ −= Σ                  (47) 

and thus individual utility (45) is 

   )()2~()~(~ minmin
ssssssss vxuXU γγσ−=             (48) 

This section describes distributed algorithms to aggregate 
utility maximization (46), assuming that user Ss ∈  utility 

function sU~  is known only to this user.  The algorithms are the 
straightforward extension of algorithms proposed in [2]-[3] for a 

case ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

∈ sRr
srss xUU ~~~

, and assume that elastic users 

respond to congestion price of the bandwidth.  Subsection A 
describes algorithm based on users adjusting bandwidth 
requirements in response to bandwidth prices.  Subsection B 
describes algorithms based on users adjusting their willingness to 
pay for bandwidth in response to rates charged for the bandwidth. 

 

4.1 Users Adjusting Bandwidth Requests 
Consider the following individual optimization problem 

for a user s  attempting to maximize its individual net 
utility: 
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⎬
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s
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where the route r  price is: 
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∈

′=
rl

llr yfd )~(                                 (50) 

the link l  price )~( ll yf ′  is a derivative of the congestion 

penalty function for this link )~( ll yf , and the link load ly~  
is given by (37).  Solving individual optimization problem 
(49)-(50) by each user Ss ∈  also maximizes the 
aggregate utility (46) if the link prices are “right”, meaning 
that derivatives )~( ll yf ′  are calculated at the optimal link 

l  load lyy opt
ll ∀= ,~~ . 

Kuhn-Tucker necessary conditions for a vector 
),~(~

ssrs RrxX ∈=  to solve (49) are as follows [13]: 
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                    udifx rsr ′>= 0~                                   (52) 

where µµµ dduu ss )()( =′  is the derivative of the user  
s  utility at the point of this user reliable throughput 

sµµ =  and sσ  is given by (12).  If user utilities 

)~(~
ss XU  are concave, (51)-(52) are also the 

corresponding sufficient conditions [13].  In this case, user 
s  optimal response to the pricing signals rd  is requesting 

bandwidth vector ),~(~
ssrs RrxX ∈= , which solves 

system (51)-(52) and thus maximizes its individual net 
utility (49)-(50). 

Generally, optima in (46) and (49) are achieved when 
some flows are zero: 0~ =srx  for some SsRr s ∈∈ , .  

In fact, this situation is typical in presence of “high cost”, 
e.g., highly congested or very “long” routes, when optimal 
solution is not to use these “expensive” routes.  For 
example, conventional shortest path routing uses only one, 
“optimal” route.  Given 0≥µ , define a subset of feasible 
routes participating in user Ss ∈  transmission: 
          },)(:{)( srss RrdurR ∈>′= µµ                  (53) 

Consider two routes )(, 21 µsRrr ∈ , which do not have 
overlapping link with each other or with any other route 

)(µsRr ∈∀ : ∅=I rri , 2,1=i .  In this case we 

have from (51): 
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It follows from (54) that if two routes )(, 21 µsRrr ∈  

have the same cost: 
21 rr dd = , then the user transmission 

rate on these routes should be inversely proportional to the 

variances of the fluctuating bandwidths of the 
corresponding routes: 
                   ( )2

1221

~~
rrsrsr xx θθ=                               (55) 

This conclusion that load allocation among several routes 
of the same cost should send more traffic on the better 
quality routes while preserving routing diversity is 
intuitively plausible. 

 In a case of hard reliability constraints (34) when 
feasible routes sRr ∈  do not have overlapping links, the 

optimal flow vector ),~(~
ssrs RrxX ∈=  can be identified 

explicitly.  Indeed, in this case Kuhn-Tucker equations (51) 
take the following form: 
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Summarizing (56) over sRr ∈  we obtain: 
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Substituting (57) into (44) we obtain the following 
expression for sσ : 
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Substituting sσ  into (56) we obtain the following 

expression for the flows )(,~ µssr Rrx ∈ : 
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Substituting (59) into right-hand side of the following 
necessary condition for optimality in (49) 
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we obtain a quadratic algebraic equation for the derivative 

su′ , yielding the reliable throughput sµµ = .  After that, 
flows are determined by (59). 
 

4.2 Uses Adjusting Willingness to Pay 
Solving individual optimization problem (49) by each 

user results in a decentralized maximization of the 
aggregate utility assuming convexity and “right” link 
prices.  Formula (50) can be used as a basis for finding the 
right prices by a distributed algorithm [2], when users 
declare their requirements for bandwidth )~(~

srs xX = , 
then “the network” informs users on the route costs (50), 



then users adjust their bandwidth requirements, etc.  This 
subsection describes a distributed algorithm for finding the 
“right” prices, based on the user willingness-to-pay.  This 
algorithm, being a straightforward extension of the 
corresponding algorithm [3], probably better fits into 
existing Internet architecture. 

Consider a situation when, given bandwidth vector 
),~(~

ssrs RrxX ∈= , each user s  determines its 

willingness to pay srw  for bandwidth on each route 

sRr ∈  by maximizing its individual net utility: 
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where srp  is the rate charged by the network for a unit of 

bandwidth on route sRr ∈ .  After user s  informs the 

network on the vector ),( ssr Rrw ∈ , the network, 
running Transmission Control Protocol – Active Queue 
Management (TCP-AQM) protocol [5], adjusts bandwidth 
vector ),~(~

ssrs RrxX ∈=  according to the following 
system of differential equations: 

                    ( )rsrsrsr dxwkx ~~~ −=&                              (62) 

Assuming that each user s  monitors its rates rx~  on 

routes sRr ∈  and instantaneously adjusts parameters srw  
by solving optimization problem (61) the user willingness-
to-pay is 
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Consider rate of change of the social welfare (39) with 
time: 
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Substituting (62)-(63) into right-hand side of (64) we 
obtain 
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Thus social welfare (39) is a Lyapunov function for the 
dynamic system (62)-(63).  Note that since social welfare 
(39) may have multiple local maxima for streaming 

applications [1], inequality (65) only implies that the 
bandwidth adjustment process (62)-(63) converges to the 
local maximum of the social welfare (39). 
  

5. QOS PRICING 
This section proposes algorithms for aggregate utility 

maximization (35) assuming that users are unaware of the 
network layer parameters.  These algorithms assume 
presence of the IntPlane, which isolates users from the 
network properties and QoS implementation mechanisms.  
Subsection A considers implementation and pricing of the 
service parameters ),( ss γµ  by the IntPlane, given price 

of the bandwidth ),( sr Rrd ∈ .  This setting may describe 
a case of “fat” links carrying traffic from a large number of 
users, so that the link costs can be considered fairly stable.  
Subsection B describes a cross-layer, distributed algorithm 
for aggregate utility maximization,.  The algorithm is based 
on user willingness to pay for service parameters ),( ss γµ  
and results in proportionally fair pricing.  Subsection B 
also demonstrates that under certain, rather restrictive, 
conditions this algorithm maximizes the aggregate utility. 
 

5.1  Users Requesting QoS  
Consider a user Ss ∈  individual optimization problem 
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where the price of a unit of reliable throughput for user s  
is 
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the price of a unit of the average throughput for user s  is 
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the upper limit on the reliability exponent sγ̂  is given by 

(19), cost of a route r  is rd  and vector 

),( ssrs Rr ∈= αα  characterizes implementation of user 
s  requirements. 

Given implementation of all user level requirements 
),( Sss ∈= αα , maximization individual net utility (66) 

by each user Ss ∈  also maximizes the aggregate utility: 
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over user level requirements ):,( Ssss ∈γµ  if the route 
costs are 
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The problem of joint maximization of the aggregate 
utility (69) over user level parameters ):,( Ssss ∈γµ  

and implementation ),,( SsRr ssr ∈∈α  can be 
decomposed into (a) maximization of individual net utility 
(66) by each user Ss ∈ , and (b) minimization of the cost 
of implementation of user Ss ∈  requirements by the 
IntPlane: 
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subject to constraints (18). 
Cost minimization (71) subject to constraint (18) can be 

carried out as follows.  Consider optimization problem: 
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subject to constraints  
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and constraints (18).  Note that this optimization problem 
intends to maximize the bound on the reliability exponent 
(19) subject to upper constraint on the average route cost, 
or, equivalently, to minimize the average route cost subject 
to lower bound on the reliability exponent (19).  The 
Largangian for this optimization problem is [13]: 
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where the corresponding Largange multipliers are 1λ  and 

2λ .  Optimization problem (72)-(73), (18) is convex and 
thus, the necessary and sufficient conditions for a vector 

),( ssrs Rr ∈= αα  to be a solution to this optimization 
problem are as follows [13]:  
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where Largange multipliers are 1λ  and 2λ  are determined 
from (18) and (73). 

It can be shown that 0, 21 ≥λλ , and thus the structure 
of the solution to (72)-(73), (18) is as follows.  Without 
loss of generality, assume that all sRK dim=  routes 

sRr ∈  are arranged in M  mutually exclusive groups 

MmGm ,..,1, =  so that all routes in the same group have 

the same cost md~  and cost increases as the group number 
increases: 
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Routes within each group are numbered arbitrarily.  To 
avoid trivialities we further in the paper assume that 

sr Rr ∈∀> ,0θ .  Since solution to system (75) is 
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where matrix ( ) mK

jimijm tT
1,

2
=

=  is inverse to the matrix 

( ) mK

jiijm 1,
2

=
=Θ θ , at the optimum the load is spread over 

feasible routes from groups miGi ,..,1, =  and m  is 

determined by conditions: 12112
~,~ λλλλ >≤ +mm dd .  

Substituting (76) into conditions (73) and (18) results in 
explicit, though elaborate, expressions for Lagrange 
multipliers 1λ  and 2λ .  Thus, the complexity of solving 
optimization problem (72)-(73), (18) lies in inverting 
matrices Mmm ,..,,1, =Θ . 

Once solution )~(dαα = , )~(~~ dθθ =  to optimization 
problem (72)-(73), (18) is found, solution to optimization 
problem (71), (18) is )~( optopt dαα = , where optd~  and 

opt
sD , solve the following optimization problem: 
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subject to constraint  
                          Mddd ~~~
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It can be shown that (76)-(77) is a convex optimization 
problem, which can be solved by fixed points as follows: 
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where 1λ  is the Lagrange multiplier in (74).  It is also 
possible to show existence of M  constants 
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such that if ),[ˆ 1
*

mms ηηγγ −∈  then 

mi Ki ,..,1,0* =>α  and KKi mi ,..,1,0* +==α .  

Once optimal load split is identified, the redundancy factor 
is given by (20) and the optimal reliable throughput is 
determined by solution to the corresponding individual 
optimization problem. 

In a case of a user s  concerned only with the average 
throughput: 0→sγ , solution to (71)-(18) sends entire 

traffic on minimum cost routes 1Gr ∈ .  If there are 

several minimum cost routes: 2dim 1 ≥G , a situation of 
minimum equal cost multipath arises.  The optimal load 
split among minimum cost routes 1Gr ∈  is 
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and the redundancy factor is 1=ω .  In another extreme case of 

very reliability sensitive user s : 0ˆ* −→ sγγ , the optimal 

load split among feasible routes sRr ∈  is given by (25), and 
redundancy factor is given by (20). 
 

5.2 Users Willingness to Pay for QoS 
We assume that user s  is charged for service ),( γµ  a 

price proportional to the reliable throughput µ  

                         µss pP =                                             (81) 

where rate sp  is some increasing functions of the 

reliability exponent γ .  Given service ),( γµ  and price 
structure (81), user s  (a) determines and communicates to 
the IntPlane its willingness to pay for the service sww = , 
where 
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and (b) estimates and communicates to the IntPlane the 
relative importance of its competing requirements for the 
reliable throughput µ  and reliability exponent γ  
quantified by its relative marginal utility 
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 Based on this information and being aware of the 
network properties quantified by matrix Θ , the IntPlane 

performs the following tasks: (a) maximizes user s  utility 

),( γµsU , given bandwidth vector sX~ , as follows: 
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where 0>k  is some constant, and (b) allocates portions 
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of user s  payment (82) to “pay” for the route sRr ∈  
bandwidths, where the reliable throughput is 
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Combining (85) with (86) we obtain 
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It is easy to verify that 
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and thus the proposed payment scheme is proportionally 
fair [2]-[3].  Once payments srssr ww π=  are identified, 

the flow vector )~(~
srxX =  is adjusted by a “TCP-type” 

load allocation algorithm (62). 
Consider a particular situation, when (a) relaxation of the 

user level parameters (84) is much faster than relaxation of 
the allocated bandwidths (62), i.e., kk ~>>  and thus: 
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(b) each user s  instantaneously adjusts and informs the 
IntPlane on its willingness to pay rw  (82): 
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(c) the IntPlane instantaneously allocates each user s  
payment (90) into payments srssr ww π=  for the 

bandwidths on specific routes sRr ∈ . 

Consider rate of change of the social welfare (39) with 
time: 
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Due to our assumptions 
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where 
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Substituting (86) and (93) into (92) we obtain that the 
proposed adaptation algorithm increases the social welfare: 
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and in a convex case maximizes the social welfare. 
Note that proportional fairness of this scheme is a result 

of property (88) of approximation (10).  For more general 
trade-offs than (10) property (88) may not hold, and thus 
ensuring of the proportional fairness may require more 
complicated pricing structure than (81). 
 

6. EXAMPLES 
This Subsection A looks at benefits of multi-path routing.  
Subsection B considers a case of feasible routes without 
overlapping links. 
 

6.1 Benefits of Multi-path Routing  
In a case of a single-path routing, when user traffic must be 

routed on a single path, the optimal route and the 
corresponding price of a unit of the reliable throughput 
under approximation (10) are determined by solution to the 
following optimization problem 
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where the price of a unit of the reliable throughput on a 
route r  is 

               )21()( γθγ rrr dD −=                           (96) 

Figure 7 sketches the price of a unit of the reliable 
throughput on a fixed route (96), the price of optimal 
single-route implementation (95) (fat curve), and the price 
of optimal implementation using multipath routing (71) as 
functions of the reliability parameter γ . 

Figure 7 assumes a typical situation, when higher quality 
routes are more congested due to higher demand: 

321 rrr ddd << , while 
321 rrr θθθ >> .  In a case of a 

single-path routing, when user reliability requirements for 
γ  are low, the least congested, low quality route 1r  should 
be used.  As user reliability requirements increase, the user 

traffic should be carried on more congested, higher quality 
route 2r .  As user reliability requirements keep increasing, 
the user traffic should be shifted to the most congested 
route 3r  having the highest quality.  Sufficiently high user 
reliability requirements cannot be met with a single-path 
routing.   
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Price of a unit of the reliable throughput 
 

Since, according to (95)-(96), maximal reliability 
exponent user s  can achieve with a single path routing is 
                  2* max)21( −

∈
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it follows from (31) that this user can increase its reliability 
exponent with multi-path routing without overlapping links 
up to 
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times.  Gain (98) increases with increase in the routing 
diversity.  Beneficial effect of multi-path routing on load 
balancing manifests itself in reduction of the average price 
of the unit of reliable throughput.  Generally, this beneficial 
effect increases with increase in the user reliability 
requirements.  Note that multi-path routing does not have 
beneficial effect for a user not concerned with reliability 

)0( =γ , since in this case optimal implementation is 
based on the minimum congestion cost routing. 
 
 
 
 
 
 
 
 
 
Fig. 8.  Network topology 
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To get feeling of equal cost multi-path routing 

consider a network shown on Figure 8.  The network has 
three feasible routes )3,2,1(1 =r , )3,2,4,1(2 =r , and 

)3,5,1(3 =r  with the same congestion costs: 

dddd === 321 , and matrix 
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where parameter ]1,0[∈χ  characterizes overlapping 

between routes 1r  and 2r .  In this case the optimal load 

split (80) is as follows: 
χ

αα
+

==
3

1
21 , 

χ
χα

+
+=

3
1

3 .                    

If 0=χ , i.e., equal cost routes 1r , 2r  and 3r  do not 
overlap, the optimal allocation splits load equally among 
these three routes: 31321 === ααα .  If 1=χ , i.e., 
matrix (99) describes a network with just two equal cost 
routes 21 rrr ≡≡  and 3r , the optimal loads allocation 
splits load equally among these two routes: 

213 == αα r . 

6.2 Routes without Overlapping Links 
To illustrate our results, consider a case of K  feasible routes 

without overlapping links: ( )22
2

2
1 ,..,, Kdiag θθθ=Θ , where 

without loss of generality we assume that Kθθθ ≥≥ 21 , i.e., 

route 1r  has lower quality than route jr  if Kji ≤<≤1 .   

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Optimal route mixture, given route costs 
 

Figure 9 sketches the phase diagram, given the route costs kd , 

2,1=k  and reliability exponent γ  in a case of 2=K  
feasible routes.  This diagram shows three qualitatively 
different region with respect to the optimal route mixture 

),( 21 αα , where kα  is the portion of the user traffic to be 

routed on path kr , given route relative congestion costs 

21 dd  and user reliability requirements γ .  In the region 

0,1 21 == αα  entire user traffic should be sent over 

route 1r .  In the region 1,0 21 == αα  entire user 

traffic should be sent over route 2r .  In the region 

1,0 21 << αα  user traffic should be split between routes 

1r  and 2r .  Also note that the part of Figure 9, where 

121 ≤dd  represents a typical situation when lower 
quality route is less congested. 

It is instructive to analyze the optimal route mixture as 
user reliability requirements γ  or relative route congestion  

cost 21 dd  changes.  Not reliability conscious user 
should use the minimum cost route.  As user reliability 
requirements γ  increase, multi-path routing becomes 
preferable until upper bound (28) is reached.  Consider 
change in optimal connectivity as low quality route 1r  

becomes more congested, i.e., as 21 dd increases from 
zero to infinity.  In this case optimal connectivity for not 
reliability sensitive user should change from single route 1r  

to multi-path routing U 21 rr , and eventually to single 

high quality, less congested route 2r .  Connectivity for 
moderately reliability sensitive user should change from 
multi-path routing U 21 rr  to single route 2r  since low 

quality route 1r  alone cannot provide required transmission 
reliability.  Highly reliability sensitive user should be 
always connected over both routes: 1r  and 2r , since 
neither route alone can guarantee required transmission 
reliability.  Generalization to case of an arbitrary number of 
feasible routes without overlapping links is straightforward. 
Figures 10 sketches the phase diagram with respect to the 
optimal route mixture, given the average route capacities 

kc~ , Kk ,..,1=  and service parameters ),( γµ .  Figure 
10 assumes a typical situation when lower quality routes 
have higher capacity: Kcc ~..~

1 >> .  In the region 

}0..;0,..,:,( 11 ===>= + KkkkA ααααγµ  routes 

krr ,..,1  are utilized while routes Kk rr ,..,1+  are not.  As 

γ2
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service requirements ),( γµ  become more demanding, 
lower capacity, and thus more expensive, routes are 
utilized.  Upper-right border of the region kA  also 

represents service requirements ),( γµ  having the same 
congestion cost.  In a case of penalty function (40), the link 
l  cost is 2)~~(~

llll yccd −= , where the average link 

load is ly~ , and thus, the upper-right border of the region 

kA  represents service requirements ),( γµ  resulting in 

the same average delay on route 1+kr : 1
~1 += kcT  if 

1,..,1 −= Kk , and ∞=T  if Kk = . 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  Optimal route mixture, given route capacities. 
 

7. CONCLUSION 
This paper has proposed a framework for aggregate 

utility maximization in a distributed environment, where 
utilities are expressed in terms of application-level 
requirements.  The framework assumes presence of the 
Intelligent Plane, which isolates users from the network 
layer.  Numerous issues deserve further investigation, 
including the following:  (a) Stability in presence of delays 
in feedback loops. (b) Property (88) ensures that pricing 
structure (81) results in proportionally fair resource 
allocation.  Property (88) is a result of approximation (10) 
and may not hold in other situations, e.g., for a link failure 
model, when more sophisticated pricing schemes may be 
required to ensure proportional fairness [15]-[16].  (c) 
Possible generalization to a case when users are not only 
“buyers” but also “sellers” of the limited resources, such as 
in a case of a wireless multi-hop network, when 
intermediate nodes may expend their battery energy for 
relaying other users’ traffic [17]-[18]. 
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