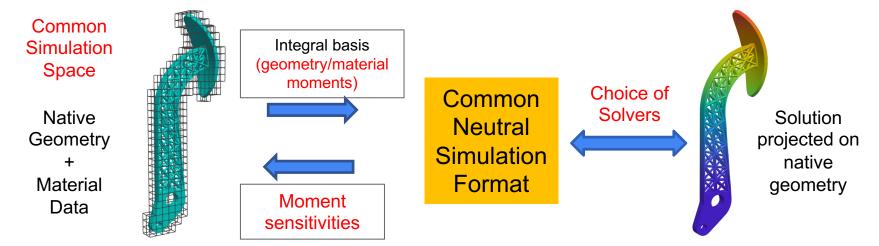

Leveraging Design, Process, and Physical Data in Simulation-First Workflows

Vadim Shapiro Intact Solutions



Plug and play simulation examples: fully automated, no preprocessing, solver of choice

Comprehensive Solution to Simulation Interoperabilty Problem

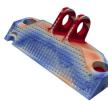
Plug-and-play: any Geometry, any Material, any Solver

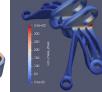
- Standard semantics based on rigorous principles
- Native models and data
- > No manual preprocessing, simplification, or meshing
- Full automation
- > Native design/optimization space
- Huge productivity gains!

Intact Solutions

Spinoff from UW-Madison (offices in Madison and Berkeley)

- Component simulation technology (Plug-and-Play)
 - Intact.Simulation
 - Intact.Generative
 - Intact.Additive
- Advanced R&D projects & Partnerships
 - o DARPA (TRADES, Plug and Play Simulation)
 - NIST (AM Part Performance Qualification, AM Process Simulation)
 - NASA (thermal control systems, tow-steered composites)
 - Multiple industrial collaboration and partnerships
- Examples of the products that embed our simulation technology
 - Live Parts and Live Sinter from Desktop Metal
 - Scan and Solve (SnS) For Rhino
 - o Intact.Design for simulation of Onshape assemblies
 - Intact.Simulation with Grasshopper (in Beta)

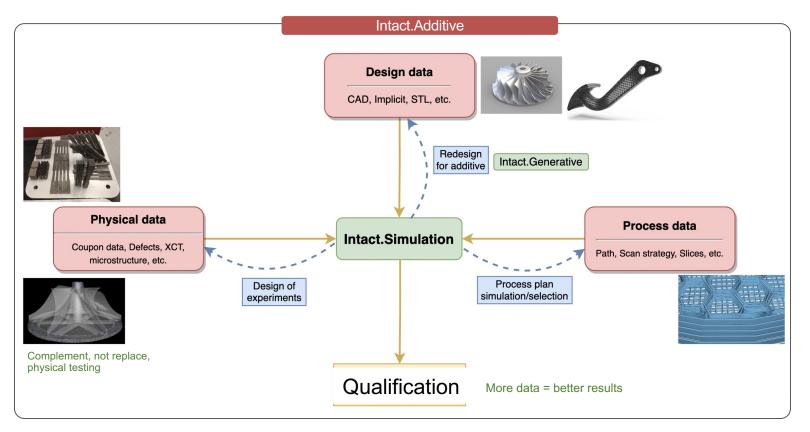

Cive Sinter


Live Sinter

Live

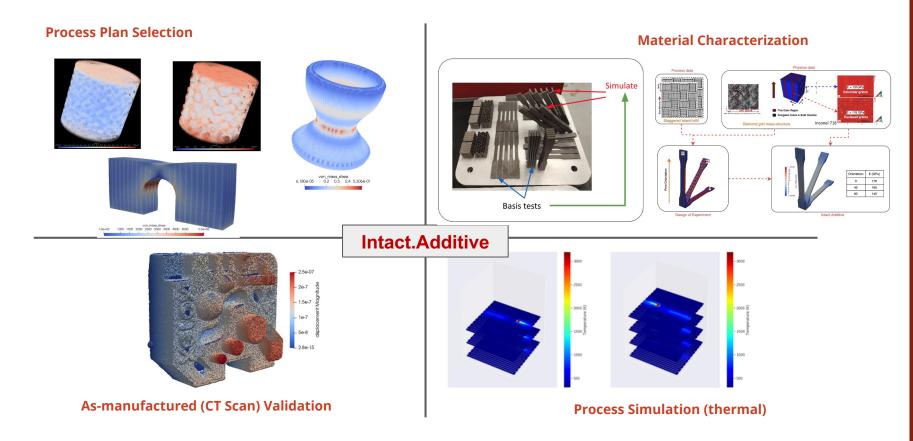
SnS for Rhino

The district of the property o



Intact.Simulation

Intact.Generative


Intact.Additive

- High complexity Heterogeneous data Complex workflows
- √ Application- and process-specific
- √ Combine experiments and simulation

Intact.Additive Examples (emerging tech)

• High complexity • Heterogeneous data • Complex workflows that are Application Specific

Pain points (technical) - with emerging solutions!

For OEM and SME

- Diversity data / models / simulation tools
 - Interoperability
 - Trust
 - Validation
- Availability and cost of simulation-based qualification tools
 - As designed, As planned, As Built
 - Material characterization
 - Process
- Complexity (application and process dependent)
 - Modeling
 - Data (experimental and simulation)
 - Computational
 - Separation of concerns (e.g. design vs analysis)
 - Localization (in space & time)
 - Multiple scales

Non-technical challenges require solving technical challenges

For OEM and SME

- Standardization is a double-edge sword
 - Focus on semantics, NOT formats
 - Standardize What, NOT how
- Accessibility to data challenges
 - Competitive advantage
 - IP (what vs how)
 - Security
 - Liability
- Hardware/Physical vs Software bias
 - Software is still a necessary evil

"The wonderful thing about standards is that there are so many of them to choose from."

— Grace Murray Hopper

Opportunities - are we asking the right questions?

For OEM and SME

Meltpool prediction from simulated thermal history via ML

- Modeled + measured
- Simulated + measured
- Modeled + simulated + measured

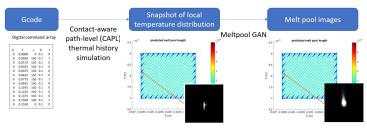
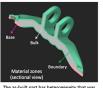
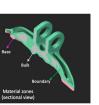
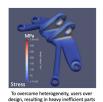
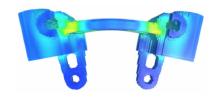




Figure 2. MeltpoolGAN predicting the melt pool shapes based on CAPL thermal history.


- Heterogeneity as design freedom
 - Mechanical properties
 - Physical properties (deformations, stresses)

The as-built part has heterogeneity that was not accounted for during design



Our method accounts for and (leverages!) heterogeneity

to satisfy safety factor requirements

As a results, designed part satisfies safety factors and are significantly lighter

Intact.Simulation can leverage your data!

Vadim Shapiro vshapiro@intact-solutions.com

