Volume I, Section 4
Table of Contents

4-14
Software Standards

4.1
Scope

4-1
4.1.1
Software Sources
4-2
4.1.2
Location and Control of Software and Hardware on Which it Operates
4-2
4.1.3
Exclusions
4-3
4.2
Software Design and Coding Standards
4-3
4.2.1
Selection of Programming Languages
4-3
4.2.2
Software Integrity
4-4
4.2.3
Software Modularity and Programming
4-5
4.2.4
Control Constructs
4-6
4.2.5
Naming Conventions
4-6
4.2.6
Coding Conventions
4-6
4.2.7
Comment Conventions
4-7
4.3
Data and Document Retention
4-8
4.4
Audit Record Data
4-8
4.4.1
Pre-election Audit Records
4-8
4.4.2
System Readiness Audit Records
4-9
4.4.3
In-Process Audit Records
4-9
4.4.4
Vote Tally Data
4-10
4.5
Vote Secrecy (DRE Systems)
4-11

4 Software Standards

4.1 Scope

This section describes essential design and performance characteristics of the software used in voting systems, addressing both system-level software, such as operating systems, and voting system application software, including firmware. The requirements of this section are intended to ensure that voting system software is reliable, robust, testable, and maintainable. The standards in this section also support system accuracy, logical correctness, privacy, security and integrity.

The general requirements of this section apply to software used to support the entire range of voting system activities described in Section 2. More specific requirements are defined for ballot counting, vote processing, creating an audit trail, and generating output reports and files. Although this section emphasizes software, the standards described also influence hardware design considerations.

This section recognizes that there is no best way to design software. Many programming languages are available for which modern programming practices are applicable, such as the use of rigorous program and data structures, data typing, and naming conventions. Other programming languages exist for which such practices are not easily applied.

The Standards are intended to guide the design of software written in any of the programming languages commonly used for mainframe, mini-computer, and microprocessor systems. They are not intended to preclude the use of other languages or environments, such as those that exhibit “declarative” structure, “object-oriented” languages, “functional” programming languages, or any other combination of language and implementation that provides appropriate levels of performance, testability, reliability, and security. The vendor makes specific software selections. However, the use of widely recognized and proven software design methods will facilitate the analysis and testing of voting system software in the qualification process.

4.1.1 Software Sources

The requirements of this section apply generally to all software used in voting systems, including:

· Software provided by the voting system vendor and its component suppliers;

· Software furnished by an external provider (for example, providers of COTS operating systems and web browsers) where the software may be used in any way during voting system operation; and

· Software developed by the voting jurisdiction.

Compliance with the requirements of the software standards is assessed by several formal tests, including code examination. Unmodified software is not subject to code examination; however, source code generated by a package and embedded in software modules for compilation or interpretation shall be provided in human readable form to the VSTL. The VSTL may inspect source code units to determine testing requirements or to verify that the code is unmodified and that the default configuration options have not been changed.

Configuration of software, both operating systems and applications, is critical to proper system functioning. Correct test design and sufficient test execution must account for the intended and proper configuration of all system components. Therefore, the vendors shall submit to the VSTL, in the TDP, a record of all user selections made during software installation. The vendor shall also submit a record of all configuration changes made to the software following its installation. The VSTL shall confirm the propriety and correctness of these user selections and configuration changes.

4.1.2 Location and Control of Software and Hardware on Which it Operates

The requirements of this section apply to all software used in any manner to support any voting-related activities, regardless of the ownership of the software or the ownership and location of the hardware on which the software is installed or operates. These requirements apply to:

· Software that operates on voting devices and vote counting devices installed at polling places under the control of the voting jurisdiction;

· Software that operates on ballot printers, vote counting devices, and other hardware typically installed at central or precinct locations (including contractor facilities); and

· Election management software.

However, some requirements apply only in specific situations indicated in this section. In addition to the requirements of this section, all software used in any manner to support any voting-related activities shall meet the requirements for security described in Section 6 of the Standards.

4.1.3 Exclusions

Some voting systems use equipment, such as personal computers, that may be used for other purposes and have resident on the equipment general purpose software such as operating systems, programming language compilers, database management systems, and Web browsers. Such software is governed by the Standards unless:

· The software provides no support of voting system capabilities;

· The software is removable, disconnectable, or switchable such that it cannot function while voting system functions are enabled; and

· Procedures are provided that confirm that the software has been removed, disconnected, or switched.

4.2 Software Design and Coding Standards

The software used by voting systems is selected by the vendor and not prescribed by the Standards. This section provides standards for voting system software with regard to:

· Selection of programming languages;

· Software integrity;

· Software modularity and programming;

· Control constructs;

·
· Coding conventions; and

· Comment conventions.

4.2.1 Selection of Programming Languages

Software associated with the logical and numerical operations of vote data shall use a high-level programming language with support for structured exception handling,
such as Java, C++, C#, Visual Basic .NET, or Ada. The requirement for the use of high-level language for logical operations does not preclude the use of assembly language for hardware-related segments, such as device controllers and handler programs. Also, operating system software may be designed in assembly language.

4.2.2 Software Integrity

Self-modifying or remotely loaded code shall not be used. Dynamically loaded code other than dynamically linked libraries that are a standard part of the platform shall not be used. Interpreted code shall not be used unless it is created by an industry standard COTS compiler and runtime interpreter (e.g. Java) and the version used is identified. This prohibition is to ensure that the software tested and approved during the qualification process remains unchanged and retains its integrity.
External modification of code during execution shall be prevented.
Where the development environment (programming language and development tools) includes the following features, the software shall provide controls on at least the following functions to prevent accidental or deliberate attempts to replace or modify executable code, vote data, or other sensitive targets:

a) Arrays or strings with unenforced bounds (includes buffers used to move data);

b) Pointer variable errors;

c) Dynamic memory allocation and management errors;

d) Stack overflow errors;

e) Run-time exception handling errors;

f) Variables that are not appropriately handled when out of expected boundaries;

g) Known programming language specific vulnerabilities.
TO DO: Determine whether existing coding conventions for high-integrity software can subsume the following.

If the software uses arrays or any analogous data structure and the programming language does not provide automatic run-time range checking of the indices, all accesses to these data structures shall occur via accessor modules that range-check the indices. These range checks shall comply with the general range checking requirements below.
All scalar or enumerated type parameters whose valid range as used in a module does not cover the entire range of their declared data type shall be range-checked on entry to the module. This applies to parameters of character types, temporal types, and any other types for which the concept of range is well-defined.
The failure to meet a range check condition shall be treated as a complete failure of the module containing the range check. An appropriate error and/or exception shall be generated and control shall pass out of the module forthwith.

As range violations are incompatible with voting integrity, these checks shall remain active in qualified production code, and the resulting errors or exceptions shall require intervention by election officials.

The software shall provide controls to prevent any vote counter from overflowing. Assuming that the counter size is large enough such that the value will never be reached is not adequate. When the system can no longer accept another ballot without compromising the integrity of the counts, it shall emit appropriate warnings and audit events and cease to enable or accept new ballots.
Requirements for ensuring that installed code on a target system is the same as the tested and approved code are defined in Section XYZ.

·
·
·
4.2.3 Software Modularity and Programming

Voting system application software, including COTS software, shall be designed in a modular fashion. However, COTS software is not required to be inspected for compliance with this requirement.. For the purpose of this requirement
, “modules” may be compiled or interpreted independently. Modules may also be nested. The modularity rules described here apply to the component sub modules of a library. The principle concept is that the module contains all the elements to compile or interpret successfully and has limited access to data in other modules. The design concept is simple replacement with another module whose interfaces match the original module. A module is designed in accordance with the following rules:

a. Each module shall have a specific function that can be tested and verified independently of the remainder of the code. In practice, some additional modules (such as library modules) may be needed to compile the module under test, but the modular construction allows the supporting modules to be replaced by special test versions that support test objectives.
b. Modules shall be small, easily identifiable, and
c.
d. constructed to be grouped according to functionality. No more than 50% of all modules should exceed 60 lines of code (excluding comments) in length, no more than 5% of all modules should exceed 120 lines in length, and no modules should exceed 240 lines in length. “Lines,” in this context, are defined as executable statements or flow control statements with suitable formatting. The reviewer should consider the functional organization of the module and the use of formatting, such as blocking into readable units, which supports the intent of this requirement where the module itself, excluding comments, exceeds the limits. The vendor shall justify, to the satisfaction of the VSTL, any module lengths exceeding this objective.

e. Initializations of read-only lookup tables shall be exempt from length limitations. However, tables longer than 25 lines should be placed in separate files from other source code if the programming language permits it.
f.
g.
h.
4.2.4 Control Constructs

Neither GoTo nor any semantically equivalent construct shall be used.

a.
b.
c.

Unstructured exception handling (e.g., On Error GoTo, setjmp/longjmp) shall not be used.

4.2.5

a.
b.
c.
d.
4.2.6 Coding Conventions

The software shall consistently adhere to a published, credible set of coding rules, conventions or standards (herein simply called “coding conventions”) intended to make source code more readable and maintainable.
Coding conventions shall be considered published if they appear in a publicly available book, magazine, or journal, or if they are publicly available on the Internet.
Coding conventions shall be considered credible if at least two different organizations with no ties to the creator of the rules or to the vendor seeking qualification independently decided to adopt them and made active use of them at some time within the three years before qualification was sought.

If a VSTL requests it, the vendor shall furnish proof that the selected coding conventions are published and credible.

Following are examples of coding conventions that are freely available on the Internet as of 2005-02-17. These are only examples and are not necessarily the best available for the purpose.

Java: “Code Conventions for the Java[TM] Programming Language,” Sun Microsystems. http://java.sun.com/docs/codeconv/

C++: “Programming in C++, Rules and Recommendations,” Mats Henricson and Erik Nyquist. http://www.chris-lott.org/resources/cstyle/Ellemtel-rules-mm.html (N.B., a revised and expanded version was published in Industrial Strength C++, Prentice-Hall, 1996)

C#: “Design Guidelines for Class Library Developers,” Microsoft. http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

a.
b.

4.2.7 Comment Conventions

All modules shall contain header comments. Header comments shall provide at least the following information:

1) The purpose of the unit and how it works (if not obvious);

2)
3) A description of input parameters, outputs, exceptions thrown, and side-effects;

4) File references by name and method of access (read, write, modify , append, etc.);

5) Global variables used;
6) Date of creation; and
7) Change log (revision record).
The use of comments elsewhere in the module shall conform to the selected coding conventions.
b.
c.
d.
e.
4.3 Data and Document Retention

All systems shall:

a. Maintain the integrity of voting and audit data during an election, and for at least 22 months thereafter, a time sufficient in which to resolve most contested elections and support other activities related to the reconstruction and investigation of a contested election; and

b. Protect against the failure of any data input or storage device at a location controlled by the jurisdiction or its contractors, and against any attempt at improper data entry or retrieval.

4.4 Audit Record Data

Audit trails are essential to ensure the integrity of a voting system. Operational requirements for audit trails are described in Section 2.2.5.2 of the Standards. Audit record data are generated by these procedures. The audit record data in the following subsections are essential to the complete recording of election operations and reporting of the vote tally. This list of audit records may not reflect the design constructs of some systems. Therefore, vendors shall supplement it with information relevant to the operation of their specific systems.

4.4.1 Pre-election Audit Records

During election definition and ballot preparation,, the system shall audit the preparation of the baseline ballot formats and modifications to them, a description of these modifications, and corresponding dates. The log shall include:

a. The allowable number of selections for an office or issue;

b. The combinations of voting patterns permitted or required by the jurisdiction;

c. The inclusion or exclusion of offices or issues as the result of multiple districting within the polling place;

d. Any other characteristics that may be peculiar to the jurisdiction, the election, or the polling place's location;

e. Manual data maintained by election personnel;

f. Samples of all final ballot formats; and

g. Ballot preparation edit listings.

4.4.2 System Readiness Audit Records

The following minimum requirements apply to system readiness audit records:
a. Prior to the start of ballot counting, a system process shall verify hardware and software status and generate a readiness audit record. This record shall include the identification of the software release, the identification of the election to be processed, and the results of software and hardware diagnostic tests;

b. In the case of systems used at the polling place, the record shall include the polling place's identification;

c. The ballot interpretation logic shall test and record the correct installation of ballot formats on voting devices;

d. The software shall check and record the status of all data paths and memory locations to be used in vote recording to protect against contamination of voting data;

e. Upon the conclusion of the tests, the software shall provide evidence in the audit record that the test data have been expunged;

f. If required and provided, the ballot reader and arithmetic-logic unit shall be evaluated for accuracy, and the system shall record the results. It shall allow the processing, or simulated processing, of sufficient test ballots to provide a statistical estimate of processing accuracy; and

g. For systems that use a public network, provide a report of test ballots that includes:

1) Number of ballots sent;

2) When each ballot was sent;

3) Machine from which each ballot was sent; and

4) Specific votes or selections contained in the ballot.

4.4.3 In-Process Audit Records

In-process audit records document system operations during diagnostic routines and the casting and tallying of ballots. At a minimum, the in-process audit records shall contain:

a. Machine generated error and exception messages to demonstrate successful recovery. Examples include, but are not necessarily limited to:

1) The source and disposition of system interrupts resulting in entry into exception handling routines;

2) All messages generated by exception handlers;

3) The identification code and number of occurrences for each hardware and software error or failure;

4) Notification of system login or access errors, file access errors, and physical violations of security as they occur, and a summary record of these events after processing;

5) Other exception events such as power failures, failure of critical hardware components, data transmission errors, or other type of operating anomaly;

b. Critical system status messages other than informational messages displayed by the system during the course of normal operations. These items include, but are not limited to:

1) Diagnostic and status messages upon startup;

2) The “zero totals” check conducted before opening the polling place or counting a precinct centrally;

3) For paper-based systems, the initiation or termination of card reader and communications equipment operation; and

4) For DRE machines at controlled voting locations, the event (and time, if available) of activating and casting each ballot (i.e., each voter's transaction as an event). This data can be compared with the public counter for reconciliation purposes;

c. Non-critical status messages that are generated by the machine's data quality monitor or by software and hardware condition monitors; and

d. System generated log of all normal process activity and system events that require operator intervention, so that each operator access can be monitored and access sequence can be constructed.

4.4.4 Vote Tally Data

In addition to the audit requirements described above, other election-related data is essential for reporting results to interested parties, the press, and the voting public, and is vital to verifying an accurate count.

Voting systems shall meet these reporting requirements by providing software capable of obtaining data concerning various aspects of vote counting and producing reports of them on a printer. At a minimum, vote tally data shall include:

a. Number of ballots cast, using each ballot configuration, by tabulator, by precinct, and by political subdivision;

b. Candidate and measure vote totals for each contest, by tabulator;

c. The number of ballots read within each precinct and for additional jurisdictional levels, by configuration, including separate totals for each party in primary elections;

d. Separate accumulation of overvotes and undervotes for each contest, by tabulator, precinct and for additional jurisdictional levels (no overvotes would be indicated for DRE voting devices); and

e. For paper-based systems only, the total number of ballots both processed and unprocessable; and if there are multiple card ballots, the total number of cards read.

For systems that produce an electronic file containing vote tally data, the contents of the file shall include the same minimum data cited above for printed vote tally reports.

4.5 Vote Secrecy (DRE Systems)

All DRE systems shall ensure vote secrecy by:

a. Immediately after the voter chooses to cast his or her ballot, record the voter’s selections in the memory to be used for vote counting and audit data (including ballot images), and erase the selections from the display, memory, and all other storage, including all forms of temporary storage; and

b. Immediately after the voter chooses to cancel his or her ballot, erase the selections from the display and all other storage, including buffers and other temporary storage.

� Portions of this section are derived from Section 5.6.2.2 of DRAFT P1583/D5.3.2b, 2005-01-04.

� This material is from an unapproved draft of a proposed IEEE Standard, P1583. As such, the material is subject to change in the final standard. Because this material is from an unapproved draft, the IEEE recommends that it not be utilized for any conformance/compliance purposes. It is used at your own risk.

� Some software languages and development environments use a different definition of module but this principle still applies.

� Portions of this paragraph are derived from Section 6.6.4.2, Paragraph i of DRAFT P1583/D5.3.2b, 2005-01-04.

� This material is from an unapproved draft of a proposed IEEE Standard, P1583. As such, the material is subject to change in the final standard. Because this material is from an unapproved draft, the IEEE recommends that it not be utilized for any conformance/compliance purposes. It is used at your own risk.

�Naming conventions are part of coding conventions and do not need to be called out separately.

Tightened requirement to require structured exception handling.�

�Deleted the one about case statements with all cases not handled. That is an issue for the coding conventions – not necessarily a threat.

�Detailed range checking requirements are new.

�Moved from II.5.4.2.g and modified.

�The deleted blocks were redundant with coding conventions. The vague size limit with a reference to Vol. II was replaced with the actual requirement from Vol. II as modified by IEEE in D5.3.2b 6.6.4.2i, with modifications to comply with normative language. The rule on lookup tables is new.

� The definitions of high-level control constructs were redundant with the requirement to use a high-level language and coding conventions. Reduced to “GoTo considered harmful.”

�Come From and its equivalents are much nastier, but AFAIK the only implementations are in languages that don’t have structured exception handling, and thus are prohibited anyway.

�Deleted entire Naming Conventions section – redundant with Coding Conventions.

�Coding conventions: complete rewrite.

�The above was normative. From here on is informative.

�Comment conventions: heavily redacted on the grounds that the coding conventions should specify most of this (some are better than others).

i

Volume I – Section 4

Software Standards

