

3D Face Recognition Using Multi-Region Summation Invariants

Wei-Yang Lin, Kin-Chung Wong, Nigel Boston, Yu Hen Hu

Dept. of Electrical & Computer Engineering University of Wisconsin-Madison

This research is partially supported by the NSF under Grant No. CCF-0434355

Agenda

1. Introduction

- Focus of FR research
- 2. Invariant Theory
- 3. MSI Algorithm and Results
- 4. Conclusion

Focus of FR Research

- 1. Currently focus on 3D FR algorithm
- 2. A novel family of geometrical invariants based on the method of moving frame
- 3. Extract summation invariants from local profiles on multi-regions
- 4. LDA-based fusion method

Agenda

1. Introduction

2. Invariant Theory

- Method of Moving Frame
- Summation Invariants
- Feature Extraction on 3D surface
- 3. MSI Algorithm and Results
- 4. Conclusion

Method of Moving Frame

- A power tool for finding invariants under group actions (É. Cartan, 1935).
- Definition: a **moving frame** is a G-equivariant mapping ρ : M \rightarrow G, i.e.

$$\rho(g \circ x) = g\rho(x)$$

Summation Invariants

- Procedures
 - 1. Given a transformation over points of a curve, surface, etc.
 - 2. Define *jet space*.
 - 3. Solve the moving frame from the *normalization equations*.
 - 4. Invariants can be derived by applying moving frame on jet space.
- A systematical way to derive geometrical invariants for pattern recognition

Example

STEP 1 : A point (x,y) under rotation

STEP 2 : Define jet space as $(\overline{x}, \overline{y})$

STEP 3 : Normalization equation

$$\overline{y} = x \sin \theta + y \cos \theta = 0 \rightarrow \theta = \arctan(\frac{-y}{x})$$

STEP 4 : Apply moving frame to jet space

$$\overline{x} = x\cos\theta - y\sin\theta = \sqrt{x^2 + y^2}$$

Example : Euclidean Summation Invariants for Curves

STEP 1 : Given a curve (x[n], y[n]) under Euclidean transformation

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x[n] \\ y[n] \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \overline{x}[n] \\ \overline{y}[n] \end{bmatrix}$$

STEP 2 : Jet space is defined as $(\overline{x}[1], \overline{y}[1], \overline{y}[N], P_{1,0}, P_{0,1}, ...)$ $P_{i,j} = \sum_{n=1}^{N} x^{i}[n] \cdot y^{j}[n]$ UW Face Recognition Group

Example : Euclidean Summation Invariants of Curves

STEP 3 : We can find a **moving frame** by solving the normalization equations

 $(\overline{x}[1], \overline{y}[1], \overline{y}[N]) = (0,0,0)$

STEP 4 : Invariants can be obtained by applying moving frame

$$\eta_{i,j} = \sum_{n=1}^{N} \overline{x}^{i}[n] \cdot \overline{y}^{j}[n]$$

where $\overline{x} = \rho^{-1} \circ x$ and $\overline{y} = \rho^{-1} \circ y$
UW Face Recognition Group

Example : Euclidean Summation Invariants of Curves

• The first-order summation invariants are explicitly shown below

$$\eta_{1,0} = P_{1,0}(x_1 - x_0) + P_{0,1}(y_1 - y_0) + Nx_0(x_0 - x_1) + Ny_0(y_0 - y_1)$$

$$\eta_{0,1} = P_{1,0}(y_1 - y_0) + P_{0,1}(x_0 - x_1) + N(x_1y_0 - x_0y_1)$$

where

$$x_0 = x[1], x_1 = x[N], y_0 = y[1], y_1 = y[N]$$
$$P_{i,j} = \sum_{n=1}^{N} x^i[n] \cdot y^j[n]$$

Feature extraction on 3D surface

Feature extraction on 3D surface

Agenda

- 1. Introduction
- 2. Invariant Theory
- 3. MSI Algorithm and Results
- 4. Conclusion

Block diagram

Image Preprocessing

Modified BioBox

Subsimilarity Generation

Similarity Normalization

Analysis

Single Region Algorithm

Lin *et. al.*, "Fusion of Summation Invariants in 3D Human Face Recognition", accepted to appear in CVPR'06

FRGC 1.0 Experiment 3s

)

FRGC 1.0 Experiment 3s : Comparison with baseline

)

Multi-Region Summation Invariants (MSI) Algorithm

Region 1

Region 6

Region 2

Region 7

Region 3

Region 8

Region 4

Region 9

Region 5

Region 10

FRGC 2.0 Experiment 3s : Single Region

FRGC 2.0 Experiment 3s : Multi-Regions

FRGC 2.0 Experiment 3s : Multi-Regions vs. Single Region

Optimal Fusion with LDA

LDA Fusion Results and Feature Selection

# of regions	Weight on each region										V.R. @ FAR = .001		
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	ROC I	ROC II	ROC 111
9 regions	.3586	.3222	.2665	.3661	.4849	.4008	.2396	.2749	.1831	(.9185	.9120	.9045
8 regions	.3630	.3162	.2675	.3784	.4958	.4067	.2564	.2763			.9065	.8992	.8910
7 regions	.3708	.3125	.2709	.3759	.6225		.2881	.2819			.8867	.8751	.8614
6 regions	.3922	.2400		.3906	.6289		.2994	.3044			.9046	.8984	.8918
5 regions	.3980	.3736		.3923	.6679			.3192			.9086	.9034	.8983
4 regions	.4052	.3754		.3950	.7339						.8863	.8771	.8663
3 regions	.4692			.4374	.7671						.8450	.8302	.8133
2 regions	.5367				.8437						.8630	.8536	.8414
1 regions	1.0									V Face	.7591 Recogn	.7429 ition Gr	.7242 oup

Conclusion and Future Works

- Summation invariants
 - A systematical way to derive geometric invariants for pattern recognition
 - extract useful shape information
- Fusion of multiple regions
 - LDA can improve performance
- Future work
 - Apply SI on non-normalized shapes

Lin *et. al.*, "Fusion of Summation Invariants in 3D Human Face Recognition", accepted to appear in CVPR'06