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Focus of FR Research

1. Currently focus on 3D FR algorithm
2. A novel family of geometrical invariants 

based on the method of moving frame
3. Extract summation invariants from local 

profiles on multi-regions
4. LDA-based fusion method
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– Summation Invariants
– Feature Extraction on 3D surface

3. MSI Algorithm and Results
4. Conclusion



UW Face Recognition Group

Method of Moving Frame

• A power tool for finding invariants 
under group actions (É. Cartan, 1935).

• Definition: a moving framemoving frame is a G-
equivariant mapping ρ : M → G, i.e.

)()( xgxg ρρ =o
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Summation Invariants

• Procedures
1. Given a transformation over points of a curve, surface, etc.
2. Define jet space.
3. Solve the moving frame from the normalization 

equations.
4. Invariants can be derived by applying moving frame on jet 

space.

• A systematical way to derive geometrical 
invariants for pattern recognition
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Example
STEP 1 : A point (x,y) under rotation
STEP 2 : Define jet space as 
STEP 3 : Normalization equation 

STEP 4 :Apply moving frame to jet space
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Example : Euclidean Summation 
Invariants for Curves

STEP 1 : Given a curve (x[n], y[n]) under Euclidean 
transformation

STEP 2 : Jet space is defined as
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Example : Euclidean Summation 
Invariants of Curves
STEP 3 : We can find a moving framemoving frame by solving the 

normalization equations

STEP 4 : Invariants can be obtained by applying 
moving frame

where and 
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Example : Euclidean Summation 
Invariants of Curves

• The first-order summation invariants are 
explicitly shown below

where 
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Feature extraction on 3D surface

Local profile
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Feature extraction on 3D surface
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Block diagram
Image Preprocessing

Subsimilarity Generation

Similarity Normalization

Analysis

Modified BioBox
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Single Region Algorithm 

SI PCA
similarity

score

Lin et. al.,“Fusion of Summation Invariants in 3D Human Face Recognition”, 
accepted to appear in CVPR’06
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on cropped region

baseline on whole face

baseline on cropped region
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Multi-Region Summation Invariants (MSI) 
Algorithm
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Region 5
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Optimal Fusion with LDA

Similarity matrices
from 10 regions

+

w1

wn

W = S-1 (m2 – m1)

Final similarity matrix
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# of 
regions

#1 #2 #3

Weight on each region

#4 #5 #6 #7 #8 #9 #10

V.R. @ FAR = .001

ROC ROC ROC I
II III

9 regions .3586 .3222 .2665 .3661 .4849 .4008 .2396 .2749 .1831 .9185 .9120 .9045

8 regions .3630 .3162 .2675 .3784 .4958 .4067 .2564 .2763 .9065 .8992 .8910

7 regions .3708 .3125 .2709 .3759 .6225 .2881 .2819 .8867 .8751 .8614

6 regions .3922 .2400 .3906 .6289 .2994 .3044 .9046 .8984 .8918

5 regions .3980 .3736 .3923 .6679 .3192 .9086 .9034 .8983

4 regions .4052 .3754 .3950 .7339 .8863 .8771 .8663

3 regions .4692 .4374 .7671 .8450 .8302 .8133

2 regions .5367 .8437 .8630 .8536 .8414

1 regions 1.0 .7591 .7429 .7242

LDA Fusion Results and Feature Selection
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Conclusion and Future Works
• Summation invariants 

– A systematical way to derive geometric invariants 
for pattern recognition

– extract useful shape information

• Fusion of multiple regions
– LDA can improve performance

• Future work
– Apply SI on non-normalized shapes

Lin et. al.,“Fusion of Summation Invariants in 3D Human 
Face Recognition”, accepted to appear in CVPR’06
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