MADISON

3D Face Recognition Using Multi-Region Summation Invariants

Wei-Yang Lin, Kin-Chung Wong, Nigel Boston, Yu Hen Hu

Dept. of Electrical \& Computer Engineering University of Wisconsin-Madison

Agenda

1. I ntroduction

- Focus of FR research

2. Invariant Theory
3. MSI Algorithm and Results
4. Conclusion

Focus of FR Research

1. Currently focus on 3D FR algorithm
2. A novel family of geometrical invariants based on the method of moving frame
3. Extract summation invariants from local profiles on multi-regions
4. LDA-based fusion method

Agenda

1. Introduction
2. I nvariant Theory

- Method of Moving Frame
- Summation Invariants
- Feature Extraction on 3D surface

3. MSI Algorithm and Results
4. Conclusion

Method of Moving Frame

- A power tool for finding invariants under group actions (É. Cartan, 1935).
- Definition: a moving frame is a Gequivariant mapping $\rho: \mathrm{M} \rightarrow \mathrm{G}$, i.e.

$$
\rho(g \circ x)=g \rho(x)
$$

Summation Invariants

- Procedures

1. Given a transformation over points of a curve, surface, etc.
2. Define jet space.
3. Solve the moving frame from the normalization equations.
4. Invariants can be derived by applying moving frame on jet space.

- A systematical way to derive geometrical invariants for pattern recognition

Example

STEP 1 : A point (x, y) under rotation STEP 2 : Define jet space as (\bar{x}, \bar{y})
STEP 3 : Normalization equation

$$
\bar{y}=x \sin \theta+y \cos \theta=0 \rightarrow \theta=\arctan \left(\frac{-y}{x}\right)
$$

STEP 4 :Apply moving frame to jet space

$$
\bar{x}=x \cos \theta-y \sin \theta=\sqrt{\sqrt{x^{2}+y^{2}}}
$$

Example : Euclidean Summation Invariants for Curves

STEP 1 : Given a curve ($x[n], y[n]$) under Euclidean transformation

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x[n] \\
y[n]
\end{array}\right]+\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
\bar{x}[n] \\
\bar{y}[n]
\end{array}\right]
$$

STEP 2 : J et space is defined as

$$
(\underbrace{(\bar{x}[1], \bar{y}[1], \bar{y}[N]}, P_{1,0}, P_{0,1}, \ldots) \quad P_{i, j}=\sum_{\substack{n=1 \\ U W \text { Face Recognition Group }}}^{N} x^{i}[n] \cdot y^{j}[n]
$$

Example : Euclidean Summation Invariants of Curves

STEP 3 : We can find a moving frame by solving the normalization equations

$$
(\bar{x}[1], \bar{y}[1], \bar{y}[N])=(0,0,0)
$$

STEP 4 : Invariants can be obtained by applying moving frame

$$
\eta_{i, j}=\sum_{n=1}^{N} \bar{x}^{i}[n] \cdot \bar{y}^{j}[n]
$$

where

$$
\bar{x}=\rho^{-1} \circ x \quad \text { and } \quad \bar{y}=\rho^{-1} \circ y
$$

Example: Euclidean Summation Invariants of Curves

- The first-order summation invariants are explicitly shown below

$$
\begin{aligned}
& \eta_{1,0}=P_{1,0}\left(x_{1}-x_{0}\right)+P_{0,1}\left(y_{1}-y_{0}\right)+N x_{0}\left(x_{0}-x_{1}\right)+N y_{0}\left(y_{0}-y_{1}\right) \\
& \eta_{0,1}=P_{1,0}\left(y_{1}-y_{0}\right)+P_{0,1}\left(x_{0}-x_{1}\right)+N\left(x_{1} y_{0}-x_{0} y_{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& x_{0}=x[1], x_{1}=x[N], y_{0}=y[1], y_{1}=y[N] \\
& P_{i, j}=\sum_{n=1}^{N} x^{i}[n] \cdot y^{j}[n]
\end{aligned}
$$

Feature extraction on 3D surface

Feature extraction on 3D surface

UW Face Recognition Group

Agenda

1. Introduction

2. Invariant Theory 3. MSI Algorithm and Results
3. Conclusion

Block diagram

Image Preprocessing

Modified BioBox

Subsimilarity Generation

Similarity Normalization

Analysis
UW Face Recognition Group

Single Region Algorithm

FRGC 1.0 Experiment 3s

FRGC 1.0 Experiment 3 s : Comparison with baseline

False Accept Rate

Multi-Region Summation Invariants (MSI) Algorithm

Region 1

Region 6

Region 2

Region 7

Region 3

Region 8

Region 4

Region 9

Region 5

Region 10

FRGC 2.0 Experiment 3 s : Single Region

FRGC 2.0 Experiment 3s: Multi-Regions

FRGC 2.0 Experiment 3s : Multi-Regions vs. Single Region

Optimal Fusion with LDA

LDA Fusion Results and Feature Selection

\# of regions	Weight on each region										V.R. @ FAR = . 001		
	\#1	\#2	\#3	\#4	\#5	\#6	\#7	\#8	\#9	\#10	ROC I	ROC	ROC
9 regions	. 3586	. 3222	. 2665	. 3661	. 4849	. 4008	. 2396	. 2749	. 1831		. 9185	. 9120	. 9045
8 regions	. 3630	. 3162	. 2675	. 3784	. 4958	. 4067	. 2564	. 2763			. 9065	. 0302	. 8910
7 regions	. 3708	. 3125	. 2709	. 3759	. 6225		. 2881	. 2819			. 8867	. 8751	. 8614
6 regions	. 3922	. 2400		. 3906	. 6289		. 2994	. 3044			. 9046	. 8984	. 8918
5 regions	. 3980	. 3736		. 3923	. 6679			. 3192			. 9086	. 9034	. 8983
4 regions	. 4052	. 3754		. 3950	. 7339						. 8863	. 8771	. 8663
3 regions	. 4692			. 4374	. 7671						. 8450	. 8302	. 8133
2 regions	. 5367				. 8437						. 8630	. 8536	. 8414
1 regions	1.0									Face	$\begin{gathered} 7591 \\ \text { Reconor } \end{gathered}$	$\begin{aligned} & 7429 \\ & i+i{ }^{2} \end{aligned}$	$\text { . } 7242$

FRGC 2.0 Experiment 3s : Multi-Regions + LDA vs. Multi-Regions

Conclusion and Future Works

- Summation invariants
- A systematical way to derive geometric invariants for pattern recognition
- extract useful shape information
- Fusion of multiple regions
- LDA can improve performance
- Future work
- Apply SI on non-normalized shapes

Lin et. al.,"Fusion of Summation Invariants in 3D Human Face Recognition", accepted to appear in CVPR'06

