Human versus Machine Performance

Alice J. O'Toole The University of Texas at Dallas

Acknowledgements

- In collaboration with
 - P. J. Phillips *NIST*
 - Fang Jiang *Univ. of Texas at Dallas (UTD)*
 - Nils Pénard UTD
 - Janet Ayyad UTD
 - Hervé Abdi *UTD*
- Work supported by TSWG

Overview

- rationale
- Face Recognition Grand Challenge
- human-machine comparison

Problem

- Are face recognition algorithms *ready* for security applications?
 - enormous improvements over last decade
 - accuracy of algorithms tested intensively
- How accurate do they have to be to be useful?
 - meet or exceed human performance

Why?

- humans are the competition!
 - human-machine comparisons *virtually* never done

- putting algorithms in the field
 - security improved or put at greater risk?

How accurate are algorithms?

U.S. Government-sponsored Competitions

- standardize comparisons
 - test multiple algorithms
 - identical, LARGE sets of face image data
 - Face Recognition Grand Challenge
 - (2004-ongoing)

Present work

- purpose
 - extend standardization of FRGC to compare humans and algorithms on a challenging face recognition task

 matching face identity across changes in illumination (FRGC Exp. 4)

Why Illumination Change?

- recognized to be difficult for:
 - humans (e.g., Braje et al., 2000; Troje & Bülthoff, 1998)
 - algorithms (e.g., Phillips et al. 2005; Gross et al. 2005)

Most Challenging FRGC Experiment

- controlled illumination experiment (Exp. 1)
 - match images with controlled illumination
 - 20 participating algorithms
 - median performance of
 - .91 verification rate
 - .001 false acceptance rate

- uncontrolled illumination (Exp. 4)
 - match images with controlled and uncontrolled illumination
 - 7 participating algorithms
 - median performance
 - .42 verification rate
 - .001 false acceptance rate

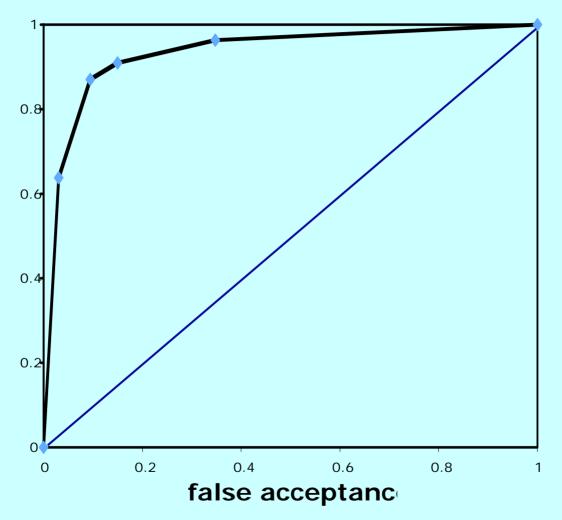
FRGC Uncontrolled Illumination Test

- Match identity in target and probe faces
 - target controlled illumination
 - probes uncontrolled illumination

Specifics

- similarity matrix
 - target (n = 8014)
 - probe (n = 16028)

- $-s(i,j) = \text{similarity between the } i^{th} \text{ and } j^{th} \text{ faces}$
 - 128,041,040 similarity scores
 - 407,352 of same people
 - remainder of different people


Results

- ROC
 - verification rate
 - false acceptance rate

Algorithm Performar

Comparing Humans and Algorithms

- problem
 - 128 million face pairs?

- solution
 - sample face pairs
 - most difficult
 - easiest

Sampling

- homogeneous
 - caucasian males/females 20-30 yrs
 - comparisons made on identity not
 - age, race, sex

caution on the FRGC results

Easy and Difficult

- PCA Baseline Algorithm
 - scaled and aligned images (SAIC)
 - available and widely used since the 90's
 - but not state-of-the-art

Match Pairs

- "easy" match pairs
 - 2 "similar" images of same person
 - similarity scores > 2 sd *above* mean similarity of match pairs
- "difficult" match pairs
 - 2 "dissimilar" images of same person
 - similarity scores < 2 sd *below* mean similarity of match pairs

No-Match Pairs

- "easy" no-match pairs
 - 2 "dissimilar" images of different people
 - similarity scores < 2 sd *below* mean similarity of no-match pairs
- "difficult" no-match pairs
 - 2 "similar" images of different person
 - similarity scores < 2 sd *above* mean similarity of no-match pairs

- Experiment 1
 - unlimited exposure time
 - male face pairs
- Experiment 2
 - 2 sec. exposure time
 - male and female face pairs
- Experiment 3
 - 500 msecs. exposure time
 - male and female face pairs

Methods

- Stimuli
 - 240 pairs of faces
 - 120 male pairs
 - 60 easy
 - 60 difficult
 - 120 female pairs
 - 60 easy
 - 60 difficult

Subjects

- 91 volunteers from UTD
 - Expt. 1

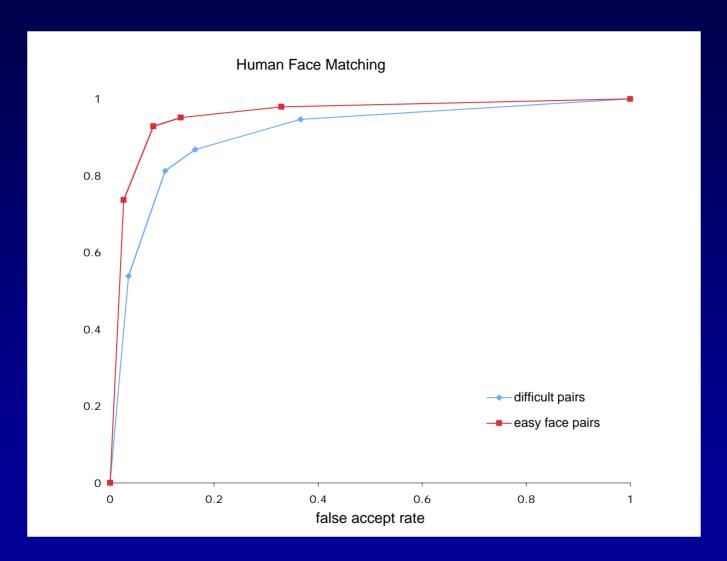
$$- n = 22$$
 (12 males; 10 females)

- Expt. 2
 - n = 49 (24 males; 25 females)
- Expt. 3
 - n = 20 (10 males; 10 females)

Procedure

• 2 faces appear side by side

- Human subject raters respond...
 - 1. sure they are the same person
 - -2. think they are the same person
 - 3. not sure
 - 4. think they are not the same person
 - 5. sure they are not the same person


Results

- PCA predicts difficulty (d' analysis)
 - Experiment 1
 - F(1,20) = 19.78, p < .002
 - Experiment 2
 - F(1,48) = 96.53, p < .0001
 - Experiment 3
 - F(1,18) = 62.65, p < .0001

Experiment 2

Experiment comparison

• Humans no more accurate with unlimited time than with 2 secs. presentations

$$- F(1,176) = 2.01$$
, ns.

• Human accuracy declined with exposure times of 500 msecs.

$$-F(1,176)=26.97, p < .0001$$

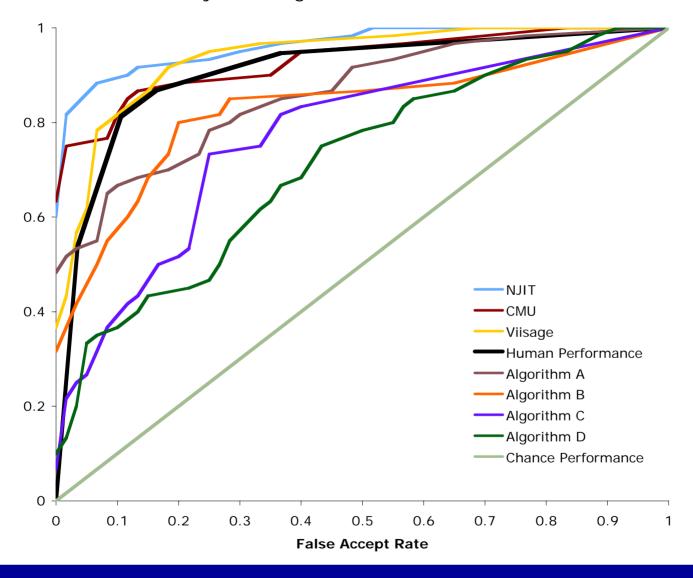
Stability of human performance

• supports use of these data for benchmark comparisons with machines

Human-Machine Comparisons

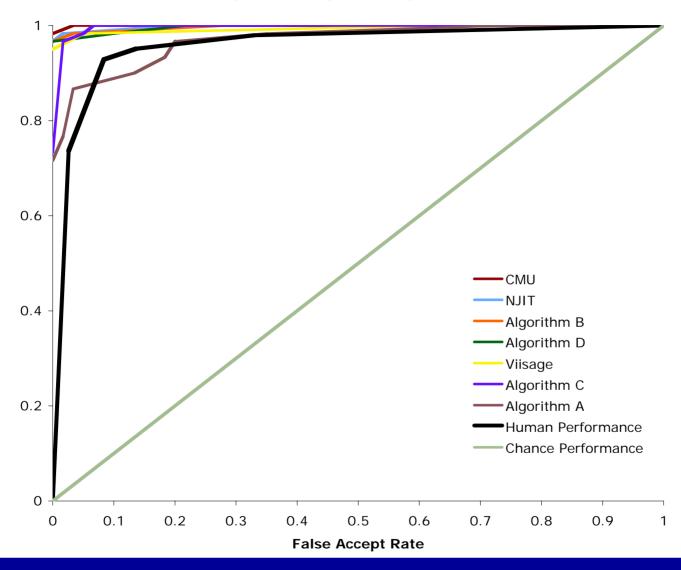
- Seven state-of-the-art algorithms
 - 4 from industry
 - 3 from academic institutions

- Comparisons
 - 120 difficult face pairs
 - 120 easy face pairs



Results

Identity Matching for Difficult Face Pairs


Results Summary Difficult Face Pairs

- 3 algorithms surpass humans
 - NJIT (Liu, *IEEE: PAMI*, in press)
 - CMU (Xie et al., 2005)
 - Viisage (Husken et al., 2005)
- 4 less accurate than humans

Identity Matching for Easy Face Pairs

Results Summary Easy Face Pairs

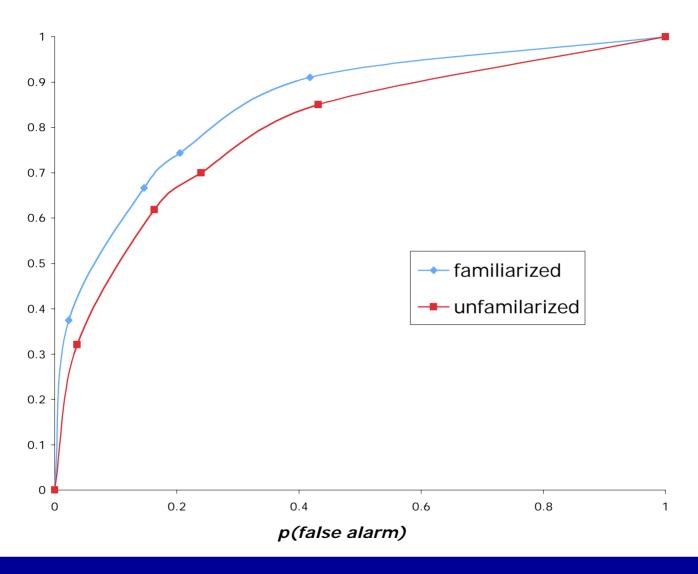
- 6 algorithms surpass humans!
- 7th less accurate than humans at high false acceptance rates

Human Attention

- Did attention waver during experiment?
 - no correlation between accuracy and trial
 - verification (r = .07, ns)
 - false acceptance rate (r = -.04, ns.)

Are human skills overrated?

- "familiar" versus "unfamiliar"
- unfamiliar matching
 - correct task for comparing "human" and machine security systems
- evidence that human expertise for faces may be limited to recognizing "familiar faces (Hancock et al., 2001; O'Toole et al., 2003)


Familiarization

- Can we improve human performance?
- Experiment 4
 - select face pairs that generated errors in Exp. 2
 - familiarize subjects with people in pairs
 - 5 exposures to one face in pair
 - n = 77 subjects
 - results
 - improvement, but not significant (F(1,76)=1.3, p < .25)

Human Performance with Familiarization

Conclusions

- Algorithms compete favorably with humans on the difficult task of matching faces across changes in illumination
 - some algorithms are better than humans on "difficult" face pairs
 - nearly all are better than humans on "easy" face pairs

Implications

- Algorithms may improve security in some situations
 - even if they perform poorly in absolute terms

Implications

• We accept on "face" value the need to test any algorithm that we put in the field for an important security application

Tools available for testing humans

- We rarely do!?

What next?

- Why?
 - Analysis of the variability of algorithms
 - Which face pairs separate algorithms?
 - Hybrid strengths & weaknesses

