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Overview

• rationale
• Face Recognition Grand Challenge
• human-machine comparison
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Problem

• Are face recognition algorithms ready for 
security applications?
– enormous improvements over last decade
– accuracy of algorithms tested intensively

• How accurate do they have to be to be useful?
– meet or exceed human performance 
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Why?
• humans are the competition!

– human-machine comparisons virtually never done

• putting algorithms in the field
– security improved or put at greater risk?
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How accurate are algorithms?
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U.S. Government-sponsored Competitions

• standardize comparisons
– test multiple algorithms
– identical, LARGE sets of face image data

– Face Recognition Grand Challenge 
• (2004-ongoing)  
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Present work
• purpose 

– extend standardization of FRGC to compare 
humans and algorithms on a challenging face 
recognition task

– matching face identity across changes in 
illumination (FRGC Exp. 4)
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Why Illumination Change?

• recognized to be difficult for:
– humans (e.g., Braje et al., 2000; Troje & Bülthoff, 1998)

– algorithms (e.g., Phillips et al. 2005; Gross et al. 2005)



March 22, 2006 Evaluating Algorithms with Human 
Benchmarks - supported by TSWG

Most Challenging FRGC Experiment

• controlled illumination experiment (Exp. 1)
– match images with controlled illumination
– 20 participating algorithms 
– median performance of

• .91 verification rate
• .001 false acceptance rate 
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• uncontrolled illumination (Exp. 4)
– match images with controlled and uncontrolled 

illumination 
– 7 participating algorithms
– median performance

• .42 verification rate
• .001 false acceptance rate 
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FRGC Uncontrolled Illumination Test

• Match identity in target and probe faces
– target - controlled illumination
– probes - uncontrolled illumination 
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Specifics

• similarity matrix
– target (n = 8014)
– probe (n =16028)

– s(i,j) = similarity between the ith and jth faces 
• 128,041,040 similarity scores
• 407,352 of same people
• remainder of different people
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Results

• ROC
– verification rate
– false acceptance rate
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Algorithm Performan
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Comparing Humans and Algorithms

• problem
– 128 million face pairs?

• solution
– sample face pairs

• most difficult
• easiest 
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Sampling

• homogeneous 
– caucasian males/females 20-30 yrs 
– comparisons made on identity not

• age, race, sex

• caution on the FRGC results
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Easy and Difficult

• PCA Baseline Algorithm
– scaled and aligned images (SAIC)
– available and widely used since the 90’s
– but not state-of-the-art 
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Match Pairs
• “easy” match pairs

– 2 “similar” images of same person 
• similarity scores > 2 sd above mean similarity of match pairs

• “difficult” match pairs
– 2 “dissimilar” images of same person 

• similarity scores < 2 sd below mean similarity of match pairs
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No-Match Pairs

• “easy” no-match pairs
– 2 “dissimilar” images of different people

• similarity scores < 2 sd below mean similarity of no-match 
pairs

• “difficult” no-match pairs
– 2 “similar” images of different person

• similarity scores < 2 sd above mean similarity of no-match 
pairs
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• Experiment 1 
– unlimited exposure time
– male face pairs

• Experiment 2 
– 2 sec. exposure time
– male and female face pairs 

• Experiment 3 
– 500 msecs. exposure time
– male and female face pairs 
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Methods

• Stimuli
– 240 pairs of faces 

• 120 male pairs
– 60 easy
– 60 difficult

• 120 female pairs
– 60 easy
– 60 difficult
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• Subjects

– 91 volunteers from UTD
• Expt. 1 

– n = 22 (12 males; 10 females)

• Expt. 2
– n = 49 (24 males; 25 females)

• Expt. 3
– n = 20 (10 males; 10 females)
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Procedure

• 2 faces appear side by side

• Human subject raters respond…
– 1. sure they are the same person
– 2. think they are the same person
– 3. not sure
– 4. think they are not the same person
– 5. sure they are not the same person
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Results

• PCA predicts difficulty (d’ analysis)
– Experiment 1 

• F(1,20) = 19.78, p < .002

– Experiment 2 
• F(1,48) = 96.53, p < .0001

– Experiment 3  
• F(1,18) = 62.65, p < .0001
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Experiment 2 

Human Face Matching 
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Experiment comparison

• Humans no more accurate with unlimited 
time than with 2 secs. presentations
– F(1,176)= 2.01, ns.

• Human accuracy declined with exposure times of 
500 msecs.
– F(1,176)= 26.97, p < .0001
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Stability of human performance

• supports use of these data for benchmark 
comparisons with machines
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Human-Machine Comparisons

• Seven state-of-the-art algorithms
– 4 from industry
– 3 from academic institutions

• Comparisons
– 120 difficult face pairs
– 120 easy face pairs 
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Results
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Identity Matching for Difficult Face Pairs
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Results Summary
Difficult Face Pairs

• 3 algorithms surpass humans
– NJIT (Liu, IEEE: PAMI, in press)
– CMU (Xie et al., 2005)
– Viisage (Husken et al., 2005)

• 4 less accurate than humans
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Identity Matching for Easy Face Pairs
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Results Summary
Easy Face Pairs

• 6 algorithms surpass humans!

• 7th less accurate than humans at high false 
acceptance rates
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Human Attention

• Did attention waver during experiment?
– no correlation between accuracy and trial

• verification (r = .07, ns)
• false acceptance rate (r = -.04, ns.)
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Are human skills overrated?

• “familiar” versus “unfamiliar” 
• unfamiliar matching

– correct task for comparing “human” and 
machine security systems

• evidence that human expertise for faces 
may be limited to recognizing “familiar 
faces (Hancock et al., 2001; O’Toole et al., 2003)
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Familiarization

• Can we improve human performance?
• Experiment 4

• select face pairs that generated errors in Exp. 2
• familiarize subjects with people in pairs

– 5 exposures to one face in pair

• n = 77 subjects
• results

– improvement, but not significant (F(1,76)=1.3, p < .25)
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Conclusions

• Algorithms compete favorably with humans on the 
difficult task of matching faces across changes in 
illumination 

– some algorithms are better than humans on “difficult” 
face pairs

– nearly all are better than humans on “easy” face pairs
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Implications

• Algorithms may improve security in some 
situations 
– even if they perform poorly in absolute terms 
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Implications
• We accept on “face” value the need to test 

any algorithm that we put in the field for an 
important security application 

• Tools available for testing humans 

– We rarely do!?
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What next?

• Why?
– Analysis of the variability of algorithms
– Which face pairs separate algorithms?

• Hybrid strengths & weaknesses 
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