

The USTC_NELSLIP System for OpenASR21 Challenge

Guolong Zhong, Hongyu Song, Ruoyu Wang, Chang Wang, Jun

Du and Lirong Dai

National Engineering Laboratory for Speech and Language

Information Processing (NEL-SLIP)

University of Science and Technology of China,

Hefei, Anhui, P. R. China

cndragon@mail.ustc.edu.cn

Lei Sun, Diyuan Liu, Genshun Wan, Kai Han, Haitao Tang, Li

Chai, Li Yan, Jingxuan Zhang, Minghui Wu, Dan Liu, Jia Pan, Xin

Fang, Junhua Liu and Jianqing Gao

Research & Development Group

IFLYTEK CO.LTD.

Hefei, Anhui, P. R. China

leisun8@iflytek.com

Abstract—This paper describes our system participating in the

IARPA Open Automatic Speech Recognition Challenge

(OpenASR21). Our submissions cover both the constrained

condition (all fifteen languages) and unconstrained condition

(seven languages). For the constrained condition, we adopt the

hybrid ASR system for acoustic modeling. Importantly, we train

text-to-speech (TTS) models in order to increase the size of

training data. As for unconstrained condition, we choose the end-

to-end (E2E) ASR architecture which can benefit more from

adequate training data than hybrid ASR systems. We also train

several candidate models which have different encoders. Finally,

model fusion is used to further improve the overall performance.

According to the results on the evaluation sets, there are still a lot

of room for improvement in the field of low-resource ASR.

Keywords—low-resource languages, end-to-end ASR, data

augmentation, TTS, system fusion

I. INTRODUCTION

Deep learning based automatic speech recognition (ASR)
system requires a large amount of annotated data to work
reasonably well, but most of the languages in the world have
very limited training data. The goal of the OpenASR (Open
Automatic Speech Recognition) Challenge, organized by NIST,
is to assess the state of the art of ASR technologies for low-
resource languages [1].

The challenge offers three different training conditions:
constrained, constrained-plus, and unconstrained. In the
evaluation stage, we participated in all the 15 languages in the
constrained condition and 7 languages in the unconstrained
condition. All of our submissions were scored case-insensitively.

For the constrained condition, the training dataset in each
language contains only 10-hour speech. Additional text data
from publicly available resources are permissible during training.
For language model (LM), we use additional text data from
IARPA BABEL [2] and other public text collected from
websites. Our system was built based on hybrid DNN-HMM
approach using Kaldi toolkit. We used ResNet-TDNNF as our
baseline acoustic model which was used to explore different
strategies. In order to increase the amount and diversity of
training data, we explored some conventional data augmentation
methods such as speed perturbation, volume perturbation, and
Spec-Augment. Specially, we trained text-to-speech (TTS)
models for all languages to generate more acoustic features for
training. Our experiments suggest that TTS data can effectively
improve the performance of low-resource ASR system. Based

on the diversity of training data and model structures, we built
different systems from different combinations among them. LM
rescoring was also applied after the first pass decoding. Using
lattice fusion, recognition results of various models were
combined.

For the unconstrained condition, participants are allowed to
use additional publicly available speech and text data from any
languages. In our system, we relied primarily on the IARPA
BABEL corpora and conducted data augmentation based on
them. Additionally, we collected many other data for each
language. Unlike using the hybrid ASR system in the
constrained condition, end-to-end (E2E) based models were
adopted as the main strategy. Different designs of the encoder
architecture were also explored. LM rescoring was applied to the
final fusion systems.

Finally, we participated all fifteen language in the
constrained condition and seven languages in the unconstrained
condition. In this paper, we will share our experience about the
system details.

II. CONSTRAINED SYSTEM

In this section, we will describe main components of our
submitted systems under constrained condition.

A. Training Data

For the constrained condition, the speech dataset which is
permissible for training is only a 10-hour subset of the Build
dataset provided by NIST for each language. For text data, we
also use transcriptions from IARPA BABEL language packs
which lack Somali and Farsi (see Table I). To further optimize
the language model, we crawled public texts of most languages
from websites. The crawled texts were filtered and then added
to the training corpus.

TABLE I. IARPA BABEL LANGUAGE PACKS USED FOR ADDITIONAL

TEXT TRAINING DATA

Language LDC ID Language Package

Cantonese LDC2016S02 IARPA-babel101b-v0.4c-build

Pashto LDC2016S09 IARPA-babel104b-v0.bY-build

Tagalog LDC2016S13 IARPA-babel106-v0.2g-build

Vietnamese LDC2017S01 IARPA-babel107b-v0.7-build

Swahili LDC2017S05 IARPA-babel202b-v1.0d-build

mailto:cndragon@mail.ustc.edu.cn
https://catalog.ldc.upenn.edu/LDC2016S02
https://catalog.ldc.upenn.edu/LDC2016S09
https://catalog.ldc.upenn.edu/LDC2016S13
https://catalog.ldc.upenn.edu/LDC2017S01
https://catalog.ldc.upenn.edu/LDC2017S05

Language LDC ID Language Package

Tamil LDC2017S13 IARPA-babel204b-v1.1b-build

Kurmanji-
Kurdish

LDC2017S22 IARPA-babel205b-v1.0a-build

Kazakh LDC2018S13 IARPA-babel302b-v1.0a-build

Guarani LDC2019S08 IARPA-babel305b-v1.0c-build

Amharic LDC2019S22 IARPA-babel307b-v1.0b-build

Mongolian LDC2020S10 IARPA-babel401b-v2.0b-build

Javanese LDC2020S07 IARPA-babel402b-v1.0b-build

Georgian LDC2016S12 IARPA-babel404b-v1.0a-build

B. Overall System Diagram

The overall framework of the constrained system is shown
in Fig. 1. It contains several main parts such as data processing,
GMM modeling, chain-model training, TTS system, language
modeling. Details of each part will be described in the following
sections.

Fig. 1. Framework of the Constrained System.

C. Data Processing

The dataset consists of conversations between two persons
and the audios are distributed for each channel separately. The
length of each audio is about 10 minutes so we segmented the
training data according to the time stamps provided in the
training transcripts.

1) Data cleaning
Data cleaning was first applied which followed frequently-

used recipes in Kaldi [3]. It aims to remove corrupted portions
that are not accurate enough. The basic idea is to decode the
training speech with an existing in-domain GMM acoustic
model, and a biased language model built from the reference
transcripts, and then generate the revised segmentation
information [4].

2) Speed and volume perturbation
Speed and volume perturbations [5] are effective data

augmentation methods for low-resource tasks, which can

alleviate overfitting problems and improve the model robustness.
We found that perturbating the speed of speech with 3 factors
(i.e., 0.9,1.0,1.1) achieved the best performance. For volume
perturbation, scale factors were randomly selected from 0.125 to
2.0.

3) SpecAugment

SpecAugment [6] is a simple data augmentation method for

ASR which is applied directly to the feature inputs of a neural

network. We applied SpecAugment to the filterbank features,

more details can be referred to [6].

D. Acoustic Model Training

1) Training procedures
For low-resource condition, building a pure E2E ASR

system is not an appropriate choice since the overfitting problem
lies in anywhere. Thus, we chose the classic hybrid DNN-HMM
based structure which was built using Kaldi [3] toolkit. Before
training, all the audio files in the training sets were resampled to
8 kHz.

In OpenASR21, most languages have corresponding IARPA
BABEL language packs, except for Somali and Farsi. Thus,
most pronunciation lexicons were directly built based on
BABEL. For Somali and Farsi, we built the pronunciation
lexicons using the lexicons provided by the 10-hour Build
dataset provided in the challenge. Special non-speech tags in the
reference transcripts were clustered into four categories (<v-
noise>, <noise>, <silence>, <oov>). Additionally, characters ‘-’
were removed.

A monophone GMM-HMM model was first trained with
inputs of 13-dim mel-frequency cepstral coefficients (MFCCs)
features (with 3 pitch features). Then, a context-dependent
triphone model was trained, followed by Linear Discriminant
Analysis (LDA) and Maximum Likelihood Linear Transform
(MLLT) estimation. Finally, a speaker adaptive training (SAT)
[7] model was trained with FMLLR [8]. We also estimated the
probability of silence [9] from aligned training data during the
training process.

For neural network training, alignments and numerator
lattices were generated from the GMM-HMM model. We chose
the ResNet-TDNNF network as our baseline acoustic model,
which was trained using LF-MMI criterion [4] with cross-
entropy (CE) regularization. Such pipeline is the so-called
‘chain model’ training in Kaldi.

2) Baseline: ResNet-TDNNF model
Our baseline acoustic model consists of stacks of Residual

Network (ResNet) and Factorized Time Delay Neural Network
(TDNNF). The Residual Network (ResNet) consists of
convolutional layers, Batch Normalization (BN) and Rectified
Linear Unit (ReLu) [10].

With the presence of residual connections, the ResNet can
improve the convergence in training and tackle the vanishing
gradient problem so that we can train a deeper network.

The popular TDNNF network is another basic component of
our acoustic model which has achieved great success in hybrid
systems [11]. TDNNF is structurally similar to TDNN whose
layers have been compressed via SVD, but are trained from a

https://catalog.ldc.upenn.edu/LDC2017S13
https://catalog.ldc.upenn.edu/LDC2017S22
https://catalog.ldc.upenn.edu/LDC2018S13
https://catalog.ldc.upenn.edu/LDC2019S08
https://catalog.ldc.upenn.edu/LDC2019S22
https://catalog.ldc.upenn.edu/LDC2020S10
https://catalog.ldc.upenn.edu/LDC2020S07
https://catalog.ldc.upenn.edu/LDC2016S12

random start with one of the two factors of each matrix
constrained to be semi-orthogonal in order to prevent instability
in back-propagation [12]. Thus, it can greatly reduce the number
of model parameters. A regular TDNN-F block consists of a
linear layer, an affine component, an ReLU nonlinearity
component, and batch normalization operation followed by
dropout.

Fig. 2. The ResNet-TDNNF architecture.

Fig.2 shows the architecture of ResNet-TDNNF. The
network has two inputs: 40-dimensional Mel-filter bank
coefficients (filter bank) features and 100-dimensional online i-
vector features. In our systems, we trained an i-vector extractor
based on a diagonal UBM for speaker adaptation [13]. When
dumping i-vectors for training, we split speakers up into
multiple copies by limiting the number of utterances per speaker
to be 5 at most. In order to adapt to the CNN structure, the 100-
dim i-vectors are mapped to 200-dim by LDA transformation
before concatenating with filterbank features.

We applied batch normalization to both i-vector and
filterbank features. SpecAugment was used in training. Two
inputs were transformed into spatial 40-dimensional planes (five
for i-vector features, one for filterbank features) and combined
with each other. The batch size was 128 or 64 with 6 epochs
training in total. The initial learning rate was 0.001 and decayed
during training, with the final learning rate 0.00005.

In our experiments, we used the baseline acoustic model to
evaluate different strategies and search for hyper-parameters.
Note that the results are only comparable with each other within
the same table.

3) Other architectures
Besides, we also trained other model architectures such as

CNN-TDNNF, ResNet-Multistream-TDNNF [14], ResNet-
TDNNF-Attention [15], and ResNet-TDNNF-RBiLSTM [15].
Their details are listed as follows:

• CNN-TDNNF: 6-layer CNN blocks + 12-layer

TDNNF

• ResNet-TDNNF-Attention: 7-layer ResBlock + 12-

layer TDNNF + 1-layer Self-attention

• ResNet-TDNNF-RBiLSTM: 7-layer ResBlock + 3-

layer TDNNF-RBiLSTM

• ResNet-Multistream-TDNNF: 7-layer ResBlock + 12-

layer TDNNF (x3)
They were all built with LF-MMI training criterion using the

Kaldi toolkit. Lattice fusion [16] followed by Minimum Bayes
Risk (MBR) decoding was performed to combine recognition
results from different models using different architectures.

E. Increasing the Diversity of Training Data

Though using traditional data augmentation methods
described in Section II.C, we found that the model was still easy
to overfit. The main reason can be attributed to the fact that only
10 hours of original training data are available.

In this part, we make several attempts by training models
with different types of acoustic data. Moreover, the diversity of
systems is of great benefit to the final fusion.

1) TTS synthesized data
In our system, Flow-TTS [17], a non-autoregressive E2E

neural TTS model based on generative flow, was adopted. Flow-
TTS can achieve high-quality spectrogram generation by using
a simple feed-forward network, which is trained by learning the
relationship between the alignments and spectrograms. To
prepare the essential materials needed in TTS training, we
needed to perform force alignment on the cleaned data using the
GMM model. In the inference stage, the TTS model was used to
synthesize acoustic features which correspond to the collected
text.

There are still some out-of-vocabulary (OOV) words in the
external text. Therefore, we used the training lexicon provided
by BABEL for training a grapheme-to-phoneme (G2P) model
[18] which can predict pronunciations for OOV words. But most
of the time, we just used sentences where all the words are in the
provided dictionary. During inference, we converted the text
into phoneme sequences.

According to our experiments, larger amounts of TTS data
do not necessarily guarantee better performance of the ASR
model. The ratio of real data to TTS data is crucial. We
performed a series of experiments with different data ratios, and
the results indicated the optimal ratio was about 1:1.5.

Table II shows the results on the Cantonese development set.
By utilizing synthesized data, we found the performance of
different models was consistently improved. Also, it’s observed
that adding TTS data yields more performance improvements
for models which have a wider receptive field, such as ResNet-
Multistream-TDNNF, from 47.1% to 45.4%.

TABLE II. THE RESULTS OF DIFFERENT MODELS TRAINED WITHOUT

TTS DATA AND WITH TTS DATA ON THE CANTONESE DEV SET

Model
WER (%)

Without

TTS data

With

TTS data

CNN-TDNNF 47.3 45.6

ResNet-TDNNF 46.9 45.3

ResNet-Multistream-TDNNF 47.1 45.4

Fig. 3. The log-probability vs iterations of without-TTS model.

Fig. 4. The log-probability vs iterations of with-TTS model.

Fig.3 and Fig. 4 presents log-probabilities during training.
The dashed line represents the log-probability of training
diagnostic set and the solid line represents the log-probability of
validation subset. Comparing Fig. 3 with Fig. 4, it can be seen
that the overfitting problem of model training was alleviated.

2) Adaptive speed perturbation
The default process of perturbations was conducted on one

whole raw audio. However, the speed and volume of the
speaker’s speech will change frequently in the conversational
scenario. Therefore, we performed speed and volume
perturbation at the utterance level. We perturbed speeds of
utterances to force their lengths to some allowed lengths spaced
by a factor of 1.15. We calculated a series of allowed lengths
based on the length of utterances and the perturbation factors.
Utterances that were too short (or too long) were kept unchanged.
The quantity of training data was also increased by 3 times.

TABLE III. THE COMPARISION OF DIFFERENT SPEED PERTURBATION

METHODS ON THE CANTONESE DEV SET

Method WER (%)

Baseline (3x speed perturbation) 46.9

Adaptive-speed 46.3

Adaptive-speed-volumn 46.1

This method is called as adaptive speed perturbation. As for
utterance-level volume perturbation, we used scale factors
randomly selected from 0.5 to 1.5. The system trained in the
way of adaptive speed perturbation is better than that trained by
simply doing 3x speed perturbation, as shown in Table III.
However, this procedure was time-consuming so we only
applied it to a unique model for final model fusion.

3) Transformer based Encoder representation
As suggested in [19], the features extracted from the

encoders have shown great representation ability in several tasks.
Hence, we trained an encoder-decoder (ED) model based on the
VGG-transformer [20]. To satisfy the great data demand in
training an E2E ASR model, we applied speed perturbation and
Flow-TTS to augment training data. We produced 12 times of
the original training data with speed factors uniformly sampled
from 0.8 to 1.2 at 0.25 intervals. SpecAugment and dropout were
used for training. The encoder was used as a feature extractor.
Finally, 512-dim latent representations learned in the encoder
can be concatenated with the 40-dim filterbanks as the fused
feature. Models trained with such fused features were seen as a
unique category, which was prepared for final model fusion.

F. Language Model

We firstly used transcriptions from the "training" part of the
IARPA BABEL program. We also obtained a large amount of
publicly available text data collected from the web for most
languages. However, these data are quite different from BABEL
data styles. So we performed careful data cleaning and filtering
on the web-obtained data.

Taking Cantonese as an example, we first performed data
cleaning. Chars that were not belonging to the language being
processed were removed. Sentences that were repeated, or
containing more than 70% of repeated words, 70% of numbers
as well as 20% of out-of-vocabulary words, were removed with
a probability of 0.8. Secondly, a domain classifier was trained
for selecting data that have similar genres with BABEL from the
public data. The positive samples were BABEL data and the
negative ones were randomly selected from the public data.
These two types of samples had equal amount when combining
them as the training dataset [21]. For convenience, the selected
web-obtained data are denoted as ‘public’ data.

For Cantonese, the domain classifier was fine-tuned from the
pre-training model Chinese-BERT-wwm [22]. For the other
languages, the domain classifiers were adapted from the
multilingual pre-trained model XLM-R [23].

Finally, we added colloquial noise to the public text since the
data genre in the constrained condition is conversational
telephone speech. Specifically, modal particles were inserted at
the beginning, the middle and the end of the sentence with a
probability of 0.2, 0.1 and 0.2; reduplicated words (no more than
3) were inserted with a probability of 0.1; and low-information
words with small inverse document frequency (IDF) were
removed with a probability of 0.1.

We did some experiments with the baseline acoustic model.
Table IV shows the PPL of the N-gram language models trained
with different types of data. We can see that a reasonable data
processing strategy has a large impact on the model effect.

TABLE IV. THE PPL OF THE N-GRAM LANGUAGE MODELS TRAINED

WITH DIFFERENT TYPES OF DATA

Training Data PPL

BABEL 108

L1: public cleaned 657

L2: L1 + domain classifier 545

L3: L1 + domain classifier + add

noise
353

BABEL + L3 N-gram LM

interpolation
102

TABLE V. THE NUM OF UTTERANCES OF THE PUBLIC DATA

Training Data Number of Utterances (k)

Cantonese 10,000

Kazakh 6,000

Pashto 4,000

Javanese 180

Mongolian 1,670

Farsi 4,000

Amharic 260

Georgian 630

Somali 30

Swahili 60

Tagalog 30

Tamil 620

Table V shows the number of utterances of the public data
after data cleaning and filtering.

For the first pass decoding, the language model was
generated by interpolating an N-gram model trained on public
data and another N-gram model trained on BABEL data. This
was conducted using the SRILM [24]. Due to the large gap in
style between public data and BABEL data, the weight of the
BABEL language model was set to 0.8 to ensure the model
effect. The interpolated language model was applied to
Cantonese, Mongolian, Farsi, and Kazakh, and shows no
improvement on other languages. Table VI shows the
performance of the first pass interpolated language model for
Cantonese, Mongolian, Farsi, and Kazakh.

TABLE VI. THE PERFORMANCE OF THE FIRST PASS INTERPOLATED

LANGUAGE MODEL FOR CANTONESE, MONGOLIAN, FARSI, AND KAZAKH

Language
WER (%)

BABEL

N-gram LM

BABEL + Public

N-gram LM
Improvement

Cantonese 46.7 46.3 0.4

Kazakh 52.0 51.7 0.3

Mongolian 58.1 57.7 0.4

Farsi 58.3 57.6 0.7

For LM rescoring, we adopted Transformer model [25] for
Cantonese and bidirectional RNN model [26] for the rest
languages.

For Cantonese, Chinese-BERT-wwm was continued to be
trained for several iterations using Cantonese public data and
then fine-tuned using Cantonese BABEL data. Then the model
was transferred to the domain of conversational style. We
masked the whole word to make the model learn the inter-phrase
relationship better. Compared to the first pass decoding, the
BERT-based pretrained language model brought absolute 0.5%
WER improvement after rescoring on Cantonese as table VII
shows.

For other languages, the models were initialized using the
public data and fine-tuned using the BABEL training data
corresponding to the language being processed. The RNNLM
rescoring was effective in most language, except Tamil,
Vietnamese and Kurmanji-Kurdish. However, the Transformer
structure has no advantage over bidirectional RNN structure for
all languages. Table VIII shows the performance of RNNLM
rescoring in the rest language.

In addition, we found that the WER is much higher than CER
because our word segmentation was inconsistent with that in
reference transcripts. Taking Cantonese as an example, the

reference text is “系 唔系 边度 睇 下”, while the

hypothesis is “系唔系 边 度 睇下”. So, we used all

BABEL data to train a word segmentation model based on the
BERT pretrained model [27], and then re-segment the
recognized words, making it much closer to the reference
transcripts. The word segmentation model can also be applied to
the result in the unconstrained condition. After word
segmentation, about an absolute 0.3% WER reduction can be
achieved on the development set while the CER remains
unchanged. However, due to the time limit, we didn’t apply the
word segmentation model to the evaluation set.

TABLE VII. THE PERFORMANCE OF RESCORING WITH BERT LANGUAGE

MODEL FOR CANTONESE ON DEV SET

Language
WER (%)

Baseline + Bert Rescore Improvement

Cantonese 46.9 46.4 0.5

TABLE VIII. THE PERFORMANCE OF RESCORING WITH BI-RNN LANGUAGE

MODEL ON DEV SET

Language
WER (%)

Baseline + Bi-RNN Rescore Improvement

Kazakh 52 51.6 0.4

Pashto 47.9 46.9 1.0

Javanese 61.4 60.9 0.5

Mongolian 58.1 57.8 0.3

Farsi 58.3 56.9 1.4

Amharic 37.2 36.7 0.5

Georgian 39.5 39.0 0.5

Somali 57.2 57.0 0.2

Language
WER (%)

Baseline + Bi-RNN Rescore Improvement

Swahili 33.5 32.8 0.7

Tagalog 45.1 44.0 1.1

Guarani 41.4 40.0 1.4

TABLE IX. THE PERFORMANCE OF VAD FOR CANTONESE AND PASHTO

ON DEV SET

Language
WER (%)

Manual VAD

Cantonese 46.4 46.4

Pashto 49.6 47.9

G. Voice Activity Detection (VAD)

Since the audios in OpenASR21 are recorded from telephone
conversations, most recordings are without any environmental
noises. We first trained a TDNN-LSTM [28] based VAD model
for each language, using the implementations in Kaldi. However,
according to our experiments, the data-driven based model
trained on the limited 10-hour data is not very stable for some
recordings. We found lots of strange missed errors where the
speech was very clear. Thus, we lowered the requirements for
the VAD module and used an energy-based VAD method as a
complement. The final detection result takes the combination of
the two methods. Additionally, we extended the time regions in
the front and back of each detected segment to prevent missing
any speech. Each expanded duration is about 0.5 seconds.

Table IX shows our VAD experiments on Cantonese and
Pashto. The 'manual' represents using the time stamps provided
in the transcripts of the development set. The manual time
stamps only segment the entire audio without detecting speech
regions, so false alarm error in recognition results is easy to
appear. As we can see in the table, the performance of VAD on
Cantonese is similar to manual time stamps. For Pashto, the
VAD helps to reduce the WER from 49.6% to 47.9%, which is
mainly due to the reduction of false alarm errors in recognition
results. In the evaluation stage, we directly migrated the
strategies tuned on the development set for all languages.

H. Decoding

In our systems, we used a WFST-based method for decoding
in KALDI. For the first pass decoding, we used N-gram
language model. The decoding beam was set to 16, while the
beam used in lattice generation was 8.5. The LM weight was
chosen from 7 to 17. We found that language model weightings
(lmwt) and word insertion penalties (wip) had great impacts on
recognition results. We set lmwt to be 11 and wip to be 0 by
experience.

I. System Fusion

We used Lattice fusion followed by MBR decoding [16] to
combine the recognition results of acoustic models trained with
different architectures as well as different types of data. Table X
shows the fusion results of different systems and their respective
results after the first pass decoding for Cantonese on the Dev set.

TABLE X. THE PERFORMANCE OF DIFFERENT SYSTEMS FOR

CANTONESE ON DEV SET

Model

WER (%)

Without

TTS data

With

TTS data

Concatenated

Encoder

representations

CNN-TDNNF 45.9 43.5 --

ResNet-TDNNF 45.1 42.6 46.8

ResNet-TDNNF-Attention 46.7 45.6 46.3

ResNet-Multistream-TDNNF 45.9 42.8 --

ResNet-TDNNF-RBiLSTM 46.8 44.2 48.1

ResNet-TDNNF

(Adaptive-speed-volumn)
46.1 -- --

Fusion 39.6

Due to the time limit, we didn’t train systems with all kinds
of data augmentation methods. We fused all the systems in table
X because we found such a fusion strategy can bring the best
result. Note that the results in table X are directly obtained by
the first pass decoding (with VAD, interpolated language model
and hyper-parameters adjustment), but without LM rescoring or
post processing which we have applied to the evaluation set.

We can see that system fusion can greatly enhance the
performance, benefiting from the effective compensation of
different systems.

J. Post Processing

1) Confidence filtering
We applied confidence filtering to the ASR results obtained

from lattice. Words were filtered according to their confidence
scores [27]. The threshold was set within the range from 0 to 0.5,
which means the recognition results with confidence scores
below the threshold would be discarded. If the deletion errors
were high, a small threshold would be used. The higher the
threshold was, the fewer substitution and insertion errors the
recognition result had. We found that confidence filtering with
appropriate threshold brought about at least an absolute 0.2%
improvement in WER for most languages and an absolute 0.5%
improvement for some languages such as Kurmanji-Kurdish,
Tamil, Amharic.

2) Removing underline
The lexicon provided in the references materials contains

some words with underlines, and we modeled the whole words,
resulting in the recognition results also with underlines. Then,
we split the words with underlines in the recognition results into
multiple words. For example, 'I_B_M' was split into 'I B M',
which brought improvement in Javanese, Kurmanji-Kurdish and
Swahili.

K. Final Results

In the evaluation period, the lattices of the first pass decoding
were rescored and then fused with the rescored lattices. We
found that the fusion result of rescored lattices is not always
better than the fusion result of the first pass decoding, but
combining both two fusion results can further improve the

performance. The final system output was generated by fusing
nearly 15 systems and post processing. Note that the fusion
strategies were tailored for each language during the evaluation.

TABLE XI. THE RESULTS ON BOTH DEV AND EVAL SET

Language
WER (%)

Dev Eval

Amharic 32.0 39.9

Cantonese 38.2 37.6

Guarani 36.4 42.6

Javanese 47.8 48.1

Kurmanji-Kurdish 61.4 61.7

Mongolian 41.3 41.0

Pashto 41.4 43.2

Somali 52.7 55.6

Tamil 57.7 62.3

Vietnamese 40.9 40.3

Swahili 29.5 32.4

Tagalog 39.3 40.4

Georgian 34.9 39.2

Kazakh 40.1 50.0

Farsi 49.5 68.0

Table XI shows the final results of our fusion system. The
results on Dev set were obtained by Sclite [29] with Reference
File Format (STM) generated by ourselves. The results on Eval
set were released by the OpenASR21 scoring server. As we can
see, after LM rescoring and post processing, the lattice fusion
achieved 1.4% absolute reduction of WER for Cantonese (from
39.6% to 38.2%).

III. UNCONSTRAINED SYSTEM

In the unconstrained condition, we are allowed to use
additional speech and text training data from any language that
can be publicly accessed. Because of the large amount of data,
we used the encoder-decoder based E2E models as our
unconstrained systems. In OpenASR21, we only participated in
Cantonese, Kazakh, Mongolian, Pashto, Tamil, Javanese, and
Farsi.

We will describe our system in several sections, including:
1) Data Pre-processing, 2) Modeling Unit, 3) Pre-training, 4)
Model Training, 5) Language Model Rescoring, 6) Voice
Activity Detection, 7) Force Alignment, and 8) Final Results.

A. Data Pre-processing

We used some external, publicly available data that were
bought from many corporations. Besides, we also conducted a
series of data crawling to collect more speech-text data. Public
videos which have subtitles can be seen as the target of data
crawling, then pairs of audio and text are extracted. Due to time
constraints, we only did data crawling for speech in Cantonese.

For Cantonese, the final training dataset consists of three
main types: 140-hour data provided in IARPA BABEL package,
1,000-hour data from HUITING Tech Inc [30] and 3,000-hour
crawled data. For the other six languages, their training data
contain two main sources: from IARPA BABEL, and bought
from WILLTECH [31-36] (Kazakh: 362 hours, Mongolian: 454
hours, Pashto: 315 hours, Tamil: 244 hours, Javanese: 332 hours,
and Farsi: 324 hours). Development sets for all languages keep
the same with original OpenASR21 datasets. In BABEL dataset,
the sampling rate is 8 KHz. However, most of additional speech
data are sampled at 16 KHz. As a result, we uniformly set the
sampling rate to 16 KHz.

Based on the original audios, we took a series of operations
to further enhance the diversity of training data. Firstly, we used
a method called as long-term audio splicing. For example, the
non-speech segments were taken as the separator to extract
separate speech segments in BABEL, then different speech
segments were stitched together. Considering the efficiency of
data loading and model training, we set the maximum length of
audio to be no more than 20 seconds. Secondly, we applied
speed perturbation to both the original and long-term spliced
data with the speed factors of 0.8, 1.0 and 1.2. Thirdly, we
conducted noise augmentation on all audios. Finally, the overall
data of every language reached more than 1,000 hours.

More importantly, we used the Flow-TTS based method to
generate more acoustic data for training. To achieve it, we first
sampled 100 hours data from original speech data to train TTS
models. Then, we collected a large amount of publicly available
text from websites. Using them, we can easily synthesize large
amounts of filterbank features. During training, we randomly
mixed real acoustic features and TTS features.

B. Modeling Unit

To determine proper modeling units, it’s necessary to do data
clean-up on the collected text data. Firstly, all abnormal
characters were removed. As a result, Kazakh had 43 characters,
Mongolian had 38 characters, Pashto had 50 characters, Tamil
had 50 characters, Javanese had 28 characters, and Farsi had 38
characters. Then, we tokenized the remaining texts using byte-
pair-encoding (BPE) [37] and obtained 8,000 BPEs for each
language except Cantonese. For Cantonese, we directly used
Chinese characters which are more than 3,000 kinds and 26
English letters. Finally, all modeling units were sorted according
to frequency of occurrence.

C. Pre-training

As we know, a good pretrained model can be transferred
quickly to other tasks. To accelerate our experiments in all seven
languages, we conducted the pre-training works using two main
types of datasets.

The first dataset is derived from IARPA BABEL corpora,
including 25 languages. The overlapping parts between BABEL
and OpenASR21 dataset were removed in advance. After speed
perturbation and noise augmentation, approximately 8,000
hours of data were obtained. Instead of using BPE, we directly
used single characters in 25 languages as the modeling units.
And all the characters in words were segmented with tag ‘<sep>’.

The second dataset consists mainly of Chinese and English,
which includes many publicly available corpora such as Aishell
[38], Aishell2 [39], Librispeech [40], TIMIT [41] and
Switchboard [42]. The modeling units include 8,000 Chinese
characters and 6,000 English BPEs.

For convenience, the model trained on the first dataset is
denoted as ‘Multi-lingual pretrained’, and the other is ‘Ch-En
pretrained’. When using them, we only used the encoder of the
pretrained models.

D. Model Training

During model training, we trained five different encoder-
decoder based models. The optimization process follows a
multi-task approach, one task is the final cross-entropy loss of
the ED model, and the other one is the CTC loss of the encoder.

We used the Adam optimizer and warmup strategy. The
initial learning rate was set to 0.0007. We also applied the
SpecAugment and Scheduled Sampling [43] to make the system
more robust. The E2E systems were trained using the open-
source toolkit Fairseq [44]. Table XII describes the training
setups about all five models which differ in the encoder design.
As to the decoder part, five models use the same structure which
contains six transformer layers. For each language, we trained
all five types of models.

In the inference stage, we first conducted parameter
averaging to each model and got five final models. When
decoding, the beam size was set to 15. The posterior
probabilities of all models were weighted and averaged.
Meanwhile, those probabilities were also divided by the
temperature constant for smoothing. The strategy was first
validated in some languages and then extended to others. In
Table XIII, the results of development set on both Mongolian
and Farsi are listed.

TABLE XII. THE TRAINING SETUPS OF DIFFERENT ED MODELS

Model Encoder
Training Data

Type

Pretrained

Model

Model 1

9-layer DenseNet +

12-layer conformer
block

Realistic Ch-En

Model 2

9-layer DenseNet +

12-layer conformer
block

Realistic + TTS Ch-En

Model 3
4-layer Vggblock + 12

conformer layers
Realistic + TTS Multi-lingual

Model 4
4-layer Vggblock + 12

transformer layers
Realistic + TTS Multi-lingual

Model 5
9-layer DenseNet + 12

conformer layers
Realistic + TTS Multi-lingual

TABLE XIII. THE RESULTS OF DIFFERENT MODELS AND MODEL FUSION

FOR MONGOLIAN AND FARSI

OpenASR21 Dev Set
WER (%)

Mongolian Farsi

Model 1 35.6 41.1

Model 2 33.6 39.5

Model 3 33.8 38.5

OpenASR21 Dev Set
WER (%)

Mongolian Farsi

Model 4 34.2 40.9

Model 5 33.2 37.5

Model 1 + Model 2 32.5 37.5

Model 1 + Model 2 + Model3 30.8 35.2

Model 1 + Model 2 + Model3 +

Model 4
29.5 34.8

Model 1 + Model 2 + Model 3 +
Model 4 + Model 5

28.4 33.7

As seen in Table XII and XIII, the comparison between
Model 1 and Model 2 shows that adding TTS synthesized data
in training can improve the overall performance. From the
results of Model 2 and Model 5, the Multi-lingual pretrained
model performs better than the Ch-En pretrained model, which
can be attributed to more language coverage in training. Among
all models, Model 5 yields the lowest WER. As the number of
models increases during fusion stage, the recognition results
consistently improve. The performance trend of the other five
languages is similar to Table XIII.

E. Language Model Rescoring

Since the one-best sequence in decoder output may not be
the optimal result, we used an additional language model to do
rescoring. We trained two language models which are based on
N-gram and BERT, respectively. The training data consist of
BABEL (training set) and the collected text data described
above. In Table XIV, results of development set of the two
language models in multi-model fusion on both Mongolian and
Farsi are listed.

It can be seen that the language model does not contribute
much in terms of final WERs. However, we still used BERT for
rescoring in the evaluation stage, especially for Cantonese where
the recognized characters are in great need of reordering.

F. Voice Activity Detection (VAD)

The VAD strategy in the unconstrained condition is similar
to the constrained condition. Since an ED ASR model itself can
also serve as a VAD module to some extent, we found that a
simple energy-based VAD with proper thresholds could yield
good and stable performance in unconstrained tasks. In the
development set, replacing manual segments with an energy-
based VAD strategy could yield similar WERs on an ED ASR
model. Finally, we migrated the same method to the evaluation
set.

TABLE XIV. THE RESULTS OF DIFFERENT LANGUAGE MODELS IN MODEL

FUSION FOR MONGOLIAN AND FARSI

OpenASR21

Dev Set

Language

Model

WER (%)

Mongolian Farsi

Model 1 + Model 2 +

Model 3 + Model 4 +

Model 5

N-gram 28.40 33.70

BERT 28.39 33.69

G. Force Alignment

As mentioned in the section of data pre-processing, we used
lots of long-term audios in training. During testing, it’s better to
match such conditions and conduct long-term splicing on VAD
segments. Segments spaced less than 1.5 seconds were spliced
together, and the maximum length was set to 20 seconds. In our
experiments, long-term testing can consistently get better results.

However, the final evaluation requires that system results
should follow the CTM format. Though an ED based system can
give more precise output sequences than the traditional hybrid
ASR system, it lacks fine-grained time information for every
recognized word.

To solve this problem, for unconstrained tasks we also
trained a hybrid DNN-HMM system using Kaldi. The model
architecture is the same with our constrained works. This hybrid
system was only used to do force alignment on the recognized
sequences generated by the ED system. As the Fig. 5 shown, we
got the duration of each word and made final CTM files.
Another way to do force alignment is to take the usage of the
CTC output. The non-empty characters output of all CTC branch
from all five models were voted frame by frame. An optimal
frame sequence was selected and aligned with the recognition
results.

In the development set, the performance of hybrid-system
based force alignment was stable, while the CTC-branch based
method is unstable. Finally, we used CTC-branch based force
alignment only on Kazakh and Tamil, and other languages use
hybrid-system based results. In evaluation stage, we migrated
the same strategies.

Fig. 5. Force alignment used on the recognized sequences of ED system.

H. Final Result

The final results of both the development set and evaluation
set are listed in Table XV. As we can see, the WER of the
evaluation set is higher than that of the development set. Among
them, Farsi is the most anomalous one, with a gap of nearly 20.

TABLE XV. THE RESULTS ON BOTH DEV AND EVAL SET

Language
WER (%)

Dev Eval

Cantonese 22.0

Kazakh 29.5

Mongolian 28.4

Language
WER (%)

Dev Eval

Pashto 30.7

Tamil 51.2

Javanese 37.8

Farsi 33.7

HARDWARE AND TIME REQUIREMENT

The hardware description of a single server is shown in
Table XVI. In constrained condition, we performed all training
experiments on a single server. For each language, the elapsed
wall-clock time is approximately 20 hours for a single whole
system. It takes 40 minutes for GMM training, 5 hours for TTS
model training on 1 GPU and 4 hours for chain model training
on 1 GPU. With TTS synthesized data, it takes 6 hours for
GMM training, 7 hours for chain model training on 4 GPU in
parallel. GPU resources were only used for NN acoustic model
training. Running decoding pipeline using GPU on the
evaluation set takes about 30 minutes. And the maximum
memory consumption in decoding was around 12 GB.

In unconstrained condition, using 24 GPUs, the processing
time of pre-training on 25 languages is about 40 hours. For each
language, it takes 40 hours for a single ED model training on 12
GPUs. The total processing time required is about 80 hours.

TABLE XVI. THE HARDWARE DESCRIPTION OF A SINGLE SERVER

OS CentOS 7.2 64-bit

CPU num 48

CPU description
Intel(R) Xeon(R) CPU E5-

2650 v3 @ 2.30GHz

GPU num 4

GPU description Tesla V100-PCIE 32GB

RAM 128 GB

Disk storage 10 TB

REFERENCES

[1] (2021) OpenASR21 Challenge. [Online]. Available:
https://www.nist.gov/itl/iad/mig/openasr-challenge

[2] (2011) Babel program. [Online]. Available:
https://www.iarpa.gov/index.php/research-programs/babel

[3] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M.
Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi speech
recognition toolkit,” in IEEE 2011 workshop on automatic speech
recognition and understanding, no. CONF.IEEE Signal Processing
Society, 2011.

[4] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na,
and S. Wang, Y.and Khudanpur, “Purely sequence-trained neural
networks for ASR based on lattice-free MMI,” in Proc. of
INTERSPEECH, 2016, pp. 2751–2755.

[5] Ko T., Peddinti V., Povey D., & Khudanpur S., “Audio augmentation for
speech recognition,” in Proc. INTERSPEECH, Dresden, Germany, Sep.
2015, pp. 3586–3589.

[6] D. S. Park, W. Chan, Y. Zhang, Y. Chiu, C. C. Zoph, B. Cubuk et al.,
“SpecAugment: A simple data augmentation method for automatic speech

26.6

37.4

31.5

33.9

55.9

39.5

52.0

https://www.iarpa.gov/index.php/research-programs/babel

recognition,” in Proc. INTERSPEECH, Graz, Austria, Sep. 2019, pp.
2613–2617.

[7] V. V. Digilakis, D. Rtischev and L. G. Neumeyer, “Speaker adaptation
using constrained estimation of Gaussian mixtures”, in IEEETransactions
on Speech and Audio Processing, vol. 3, pp. 357-366, 1995

[8] M.J.F Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Computer Speech and Language, vol. 12, pp.
75-98, 1998.

[9] "Pronunciation and Silence Probability Modeling for ASR", Guoguo
Chen, Hainan Xu, Minhua Wu, Daniel Povey and Sanjeev Khudanpur,
Interspeech 2015

[10] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image
Recognition," 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

[11] G. Hinton, L. Deng, V. Vanhoucke, P. Nguyen, T. N. Sainath, B.
Kingsbury, et al., "Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups," in
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012,
doi: 10.1109/MSP.2012.2205597.

[12] Povey, Daniel & Cheng, Gaofeng & Wang, Yiming & Li, Ke & Xu,
Hainan & Yarmohammadi, Mahsa & Khudanpur, Sanjeev. (2018). Semi-
Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks.
3743-3747. 10.21437/Interspeech.2018-1417.

[13] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adaptation of
neural network acoustic models using i-vectors,” in 2013 IEEE Workshop
on Automatic Speech Recognition and Understanding. IEEE, 2013, pp.
55–59.

[14] K. J. Han, J. Pan, V. K. N. Tadala, T. Ma and D. Povey, "Multistream
CNN for Robust Acoustic Modeling," ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 6873-6877.

[15] Chai, Li & Du, Jun & Liu, Di-Yuan & Yanhui, tu & Lee, Chin-Hui. (2021).
Acoustic Modeling for Multi-Array Conversational Speech Recognition
in the Chime-6 Challenge. 912-918. 10.1109/SLT48900.2021.9383628.

[16] H. Xu, D. Povey, L. Mangu, and J. Zhu, “Minimum bayes risk decoding
and system combination based on a recursion for edit distance[J].
Computer Speech & Language, 2011, 25(4):802-828.

[17] C. Miao, S. Liang, M. Chen, J. Ma, S. Wang and J. Xiao, "Flow-TTS: A
Non-Autoregressive Network for Text to Speech Based on Flow,"
ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 7209-7213, doi:
10.1109/ICASSP40776.2020.9054484.

[18] M. Bisani and H. Ney: "Joint-Sequence Models for Grapheme-to-
Phoneme Conversion". Speech Communication, Volume 50, Issue 5, May
2008, Pages 434-451

[19] Liu, Andy & Li, Shang-Wen & Lee, Hung-yi. (2020). TERA: Self-
Supervised Learning of Transformer Encoder Representation for Speech.

[20] Mohamed, Abdelrahman & Okhonko, Dmytro & Zettlemoyer, Luke.
(2019). Transformers with convolutional context for ASR.

[21] Zhao, J., Lv, Z., Han, A., Wang, G.-B., Shi, G., Kang, J., Yan, J., Hu, P.,
Huang, S., Zhang, W.-Q. (2021) The TNT Team System Descriptions of
Cantonese and Mongolian for IARPA OpenASR20. Proc. Interspeech
2021, 4344-4348, doi: 10.21437/Interspeech.2021-1063

[22] https://github.com/ymcui/Chinese-BERT-wwm

[23] https://github.com/facebookresearch/XLM

[24] A. Stolcke, “SRILM - an extensible language modeling toolkit,” in proc.
ICSLP - interspeech, Denver, Colorado, USA, Sep. 2002.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, et al. "Attention is all you need." Advances in
neural information processing systems. 2017.

[26] H. Xu, T. Chen, D. Gao, Y. Wang, K. Li, N. Goel, Y. Carmiel, D. Povey,
and S. Khudanpur, “A pruned rnnlm lattice-rescoring algorithm for
automatic speech recognition,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp.
5929–5933.

[27] Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova,
Kristina. "BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding." Proceedings of NAACL-HLT. 2019.

[28] Peddinti V, Wang Y, Povey D, et al. Low latency acoustic modeling using
temporal convolution and LSTMs[J]. IEEE Signal Processing Letters,
2017, 25(3): 373-377.

[29] (2018) SCTK, the NIST scoring toolkit. [Online]. Available:
https://github.com/usnistgov/SCTK

[30] http://www.huitingtech.com/en/dataInfo.action?id=1005

[31] https://www.futve.com/#/recommend/details/?id=738&classId=20

[32] https://www.futve.com/#/recommend/details/?id=732&classId=20

[33] https://www.futve.com/#/recommend/details/?id=742&classId=20

[34] https://www.futve.com/#/recommend/details/?id=735&classId=20

[35] https://www.futve.com/#/recommend/details/?id=744&classId=20

[36] https://www.futve.com/#/recommend/details/?id=746&classId=20

[37] Sennrich R , Haddow B , Birch A . Neural Machine Translation of Rare
Words with Subword Units[J]. Computer Science, 2015.

[38] Bu H, Du J, Na X, et al. Aishell-1: An open-source mandarin speech
corpus and a speech recognition baseline[C] 2017 20th Conference of the
Oriental Chapter of the International Coordinating Committee on Speech
Databases and Speech I/O Systems and Assessment (O-COCOSDA).
IEEE, 2017: 1-5.

[39] Du J , Na X , Liu X , et al. AISHELL-2: Transforming Mandarin ASR
Research Into Industrial Scale[J]. 2018.

[40] Panayotov V, Chen G, Povey D, et al. Librispeech: an asr corpus based
on public domain audio books[C] 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE, 2015: 5206-
5210.

[41] Victor Z , Seneff S , Glass J . TIMIT Acoustic-phonetic Continuous
Speech Corpus[C] Linguistic Data Consortium. 1993.

[42] Godfrey, J. J. , E. C. Holliman , and J. Mcdaniel . "SWITCHBOARD:
telephone speech corpus for research and development." Acoustics,
Speech, and Signal Processing, 1992. ICASSP-92. 1992 IEEE
International Conference on IEEE, 2002.

[43] Bengio, Samy, et al. "Scheduled sampling for sequence prediction with
recurrent Neural networks." Proceedings of the 28th International
Conference on Neural Information Processing Systems-Volume 1. 2015.

[44] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam
Gross, Nathan Ng, David Grangier, Michael Auli: fairseq: A Fast,
Extensible Toolkit for Sequence Modeling. NAACL-HLT
(Demonstrations) 2019: 48-53

https://github.com/ymcui/Chinese-BERT-wwm
https://github.com/facebookresearch/XLM
https://dblp.uni-trier.de/pid/26/9012.html
https://dblp.uni-trier.de/pid/15/8264.html
https://dblp.uni-trier.de/pid/202/2051.html
https://dblp.uni-trier.de/pid/87/4805.html
https://dblp.uni-trier.de/pid/184/3736.html
https://dblp.uni-trier.de/pid/184/3736.html
https://dblp.uni-trier.de/pid/202/2262.html
https://github.com/usnistgov/SCTK
http://www.huitingtech.com/en/dataInfo.action?id=1005
https://www.futve.com/#/recommend/details/?id=742&classId=20
https://www.futve.com/#/recommend/details/?id=746&classId=20
https://dblp.uni-trier.de/pid/92/9767.html
https://dblp.uni-trier.de/pid/166/8381.html
https://dblp.uni-trier.de/pid/227/3374.html
https://dblp.uni-trier.de/pid/192/1872.html
https://dblp.uni-trier.de/pid/177/8797.html
https://dblp.uni-trier.de/pid/177/8797.html
https://dblp.uni-trier.de/pid/195/5521.html
https://dblp.uni-trier.de/pid/57/1192.html
https://dblp.uni-trier.de/pid/11/9768.html
https://dblp.uni-trier.de/db/conf/naacl/naacl2019-4.html#OttEBFGNGA19
https://dblp.uni-trier.de/db/conf/naacl/naacl2019-4.html#OttEBFGNGA19

