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Abstract—This paper describes our system participating in the 

IARPA Open Automatic Speech Recognition Challenge 

(OpenASR21). Our submissions cover both the constrained 

condition (all fifteen languages) and unconstrained condition 

(seven languages). For the constrained condition, we adopt the 

hybrid ASR system for acoustic modeling. Importantly, we train 

text-to-speech (TTS) models in order to increase the size of 

training data. As for unconstrained condition, we choose the end-

to-end (E2E) ASR architecture which can benefit more from 

adequate training data than hybrid ASR systems. We also train 

several candidate models which have different encoders. Finally, 

model fusion is used to further improve the overall performance. 

According to the results on the evaluation sets, there are still a lot 

of room for improvement in the field of low-resource ASR. 

Keywords—low-resource languages, end-to-end ASR, data 

augmentation, TTS, system fusion 

I. INTRODUCTION  

Deep learning based automatic speech recognition (ASR) 
system requires a large amount of annotated data to work 
reasonably well, but most of the languages in the world have 
very limited training data. The goal of the OpenASR (Open 
Automatic Speech Recognition) Challenge, organized by NIST, 
is to assess the state of the art of ASR technologies for low-
resource languages [1]. 

The challenge offers three different training conditions: 
constrained, constrained-plus, and unconstrained. In the 
evaluation stage, we participated in all the 15 languages in the 
constrained condition and 7 languages in the unconstrained 
condition. All of our submissions were scored case-insensitively. 

For the constrained condition, the training dataset in each 
language contains only 10-hour speech. Additional text data 
from publicly available resources are permissible during training. 
For language model (LM), we use additional text data from 
IARPA BABEL [2] and other public text collected from 
websites. Our system was built based on hybrid DNN-HMM 
approach using Kaldi toolkit. We used ResNet-TDNNF as our 
baseline acoustic model which was used to explore different 
strategies. In order to increase the amount and diversity of 
training data, we explored some conventional data augmentation 
methods such as speed perturbation, volume perturbation, and 
Spec-Augment. Specially, we trained text-to-speech (TTS) 
models for all languages to generate more acoustic features for 
training. Our experiments suggest that TTS data can effectively 
improve the performance of low-resource ASR system. Based 

on the diversity of training data and model structures, we built 
different systems from different combinations among them. LM 
rescoring was also applied after the first pass decoding. Using 
lattice fusion, recognition results of various models were 
combined. 

For the unconstrained condition, participants are allowed to 
use additional publicly available speech and text data from any 
languages. In our system, we relied primarily on the IARPA 
BABEL corpora and conducted data augmentation based on 
them. Additionally, we collected many other data for each 
language. Unlike using the hybrid ASR system in the 
constrained condition, end-to-end (E2E) based models were 
adopted as the main strategy. Different designs of the encoder 
architecture were also explored. LM rescoring was applied to the 
final fusion systems. 

Finally, we participated all fifteen language in the 
constrained condition and seven languages in the unconstrained 
condition. In this paper, we will share our experience about the 
system details.  

II. CONSTRAINED SYSTEM 

In this section, we will describe main components of our 
submitted systems under constrained condition. 

A. Training Data 

For the constrained condition, the speech dataset which is 
permissible for training is only a 10-hour subset of the Build 
dataset provided by NIST for each language. For text data, we 
also use transcriptions from IARPA BABEL language packs 
which lack Somali and Farsi (see Table I). To further optimize 
the language model, we crawled public texts of most languages 
from websites. The crawled texts were filtered and then added 
to the training corpus. 

TABLE I.  IARPA BABEL LANGUAGE PACKS USED FOR ADDITIONAL 

TEXT TRAINING DATA 

Language LDC ID Language Package 

Cantonese LDC2016S02 IARPA-babel101b-v0.4c-build 

Pashto LDC2016S09 IARPA-babel104b-v0.bY-build 

Tagalog LDC2016S13 IARPA-babel106-v0.2g-build 

Vietnamese LDC2017S01 IARPA-babel107b-v0.7-build 

Swahili LDC2017S05 IARPA-babel202b-v1.0d-build 

mailto:cndragon@mail.ustc.edu.cn
https://catalog.ldc.upenn.edu/LDC2016S02
https://catalog.ldc.upenn.edu/LDC2016S09
https://catalog.ldc.upenn.edu/LDC2016S13
https://catalog.ldc.upenn.edu/LDC2017S01
https://catalog.ldc.upenn.edu/LDC2017S05


Language LDC ID Language Package 

Tamil LDC2017S13 IARPA-babel204b-v1.1b-build 

Kurmanji-
Kurdish 

LDC2017S22 IARPA-babel205b-v1.0a-build 

Kazakh LDC2018S13 IARPA-babel302b-v1.0a-build 

Guarani LDC2019S08 IARPA-babel305b-v1.0c-build 

Amharic LDC2019S22 IARPA-babel307b-v1.0b-build 

Mongolian LDC2020S10 IARPA-babel401b-v2.0b-build 

Javanese LDC2020S07 IARPA-babel402b-v1.0b-build 

Georgian LDC2016S12 IARPA-babel404b-v1.0a-build 

B. Overall System Diagram 

The overall framework of the constrained system is shown 
in Fig. 1. It contains several main parts such as data processing, 
GMM modeling, chain-model training, TTS system, language 
modeling. Details of each part will be described in the following 
sections. 

 

Fig. 1. Framework of the Constrained System. 

C. Data Processing 

The dataset consists of conversations between two persons 
and the audios are distributed for each channel separately. The 
length of each audio is about 10 minutes so we segmented the 
training data according to the time stamps provided in the 
training transcripts. 

1) Data cleaning 
Data cleaning was first applied which followed frequently-

used recipes in Kaldi [3]. It aims to remove corrupted portions 
that are not accurate enough. The basic idea is to decode the 
training speech with an existing in-domain GMM acoustic 
model, and a biased language model built from the reference 
transcripts, and then generate the revised segmentation 
information [4]. 

2) Speed and volume perturbation 
Speed and volume perturbations [5] are effective data 

augmentation methods for low-resource tasks, which can 

alleviate overfitting problems and improve the model robustness. 
We found that perturbating the speed of speech with 3 factors 
(i.e., 0.9,1.0,1.1) achieved the best performance. For volume 
perturbation, scale factors were randomly selected from 0.125 to 
2.0.  

3) SpecAugment 

SpecAugment [6] is a simple data augmentation method for 

ASR which is applied directly to the feature inputs of a neural 

network. We applied SpecAugment to the filterbank features, 

more details can be referred to [6]. 

D. Acoustic Model Training 

1) Training procedures 
For low-resource condition, building a pure E2E ASR 

system is not an appropriate choice since the overfitting problem 
lies in anywhere. Thus, we chose the classic hybrid DNN-HMM 
based structure which was built using Kaldi [3] toolkit. Before 
training, all the audio files in the training sets were resampled to 
8 kHz. 

In OpenASR21, most languages have corresponding IARPA 
BABEL language packs, except for Somali and Farsi. Thus, 
most pronunciation lexicons were directly built based on 
BABEL. For Somali and Farsi, we built the pronunciation 
lexicons using the lexicons provided by the 10-hour Build 
dataset provided in the challenge. Special non-speech tags in the 
reference transcripts were clustered into four categories (<v-
noise>, <noise>, <silence>, <oov>). Additionally, characters ‘-’ 
were removed.  

A monophone GMM-HMM model was first trained with 
inputs of 13-dim mel-frequency cepstral coefficients (MFCCs) 
features (with 3 pitch features). Then, a context-dependent 
triphone model was trained, followed by Linear Discriminant 
Analysis (LDA) and Maximum Likelihood Linear Transform 
(MLLT) estimation. Finally, a speaker adaptive training (SAT) 
[7] model was trained with FMLLR [8]. We also estimated the 
probability of silence [9] from aligned training data during the 
training process. 

For neural network training, alignments and numerator 
lattices were generated from the GMM-HMM model. We chose 
the ResNet-TDNNF network as our baseline acoustic model, 
which was trained using LF-MMI criterion [4] with cross-
entropy (CE) regularization. Such pipeline is the so-called 
‘chain model’ training in Kaldi. 

2) Baseline: ResNet-TDNNF model 
Our baseline acoustic model consists of stacks of Residual 

Network (ResNet) and Factorized Time Delay Neural Network 
(TDNNF). The Residual Network (ResNet) consists of 
convolutional layers, Batch Normalization (BN) and Rectified 
Linear Unit (ReLu) [10].  

With the presence of residual connections, the ResNet can 
improve the convergence in training and tackle the vanishing 
gradient problem so that we can train a deeper network. 

The popular TDNNF network is another basic component of 
our acoustic model which has achieved great success in hybrid 
systems [11]. TDNNF is structurally similar to TDNN whose 
layers have been compressed via SVD, but are trained from a 

https://catalog.ldc.upenn.edu/LDC2017S13
https://catalog.ldc.upenn.edu/LDC2017S22
https://catalog.ldc.upenn.edu/LDC2018S13
https://catalog.ldc.upenn.edu/LDC2019S08
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https://catalog.ldc.upenn.edu/LDC2020S10
https://catalog.ldc.upenn.edu/LDC2020S07
https://catalog.ldc.upenn.edu/LDC2016S12


random start with one of the two factors of each matrix 
constrained to be semi-orthogonal in order to prevent instability 
in back-propagation [12]. Thus, it can greatly reduce the number 
of model parameters. A regular TDNN-F block consists of a 
linear layer, an affine component, an ReLU nonlinearity 
component, and batch normalization operation followed by 
dropout. 

 

Fig. 2. The ResNet-TDNNF architecture. 

Fig.2 shows the architecture of ResNet-TDNNF. The 
network has two inputs: 40-dimensional Mel-filter bank 
coefficients (filter bank) features and 100-dimensional online i-
vector features. In our systems, we trained an i-vector extractor 
based on a diagonal UBM for speaker adaptation [13]. When 
dumping i-vectors for training, we split speakers up into 
multiple copies by limiting the number of utterances per speaker 
to be 5 at most. In order to adapt to the CNN structure, the 100-
dim i-vectors are mapped to 200-dim by LDA transformation 
before concatenating with filterbank features. 

We applied batch normalization to both i-vector and 
filterbank features. SpecAugment was used in training. Two 
inputs were transformed into spatial 40-dimensional planes (five 
for i-vector features, one for filterbank features) and combined 
with each other. The batch size was 128 or 64 with 6 epochs 
training in total. The initial learning rate was 0.001 and decayed 
during training, with the final learning rate 0.00005.  

In our experiments, we used the baseline acoustic model to 
evaluate different strategies and search for hyper-parameters. 
Note that the results are only comparable with each other within 
the same table. 

3) Other architectures 
Besides, we also trained other model architectures such as 

CNN-TDNNF, ResNet-Multistream-TDNNF [14], ResNet-
TDNNF-Attention [15], and ResNet-TDNNF-RBiLSTM [15]. 
Their details are listed as follows: 

• CNN-TDNNF: 6-layer CNN blocks + 12-layer 

TDNNF 

• ResNet-TDNNF-Attention: 7-layer ResBlock + 12-

layer TDNNF + 1-layer Self-attention 

• ResNet-TDNNF-RBiLSTM: 7-layer ResBlock + 3-

layer TDNNF-RBiLSTM 

• ResNet-Multistream-TDNNF: 7-layer ResBlock + 12-

layer TDNNF (x3) 
They were all built with LF-MMI training criterion using the 

Kaldi toolkit. Lattice fusion [16] followed by Minimum Bayes 
Risk (MBR) decoding was performed to combine recognition 
results from different models using different architectures. 

E. Increasing the Diversity of Training Data 

Though using traditional data augmentation methods 
described in Section II.C, we found that the model was still easy 
to overfit. The main reason can be attributed to the fact that only 
10 hours of original training data are available.  

In this part, we make several attempts by training models 
with different types of acoustic data. Moreover, the diversity of 
systems is of great benefit to the final fusion. 

1) TTS synthesized data 
In our system, Flow-TTS [17], a non-autoregressive E2E 

neural TTS model based on generative flow, was adopted. Flow-
TTS can achieve high-quality spectrogram generation by using 
a simple feed-forward network, which is trained by learning the 
relationship between the alignments and spectrograms. To 
prepare the essential materials needed in TTS training, we 
needed to perform force alignment on the cleaned data using the 
GMM model. In the inference stage, the TTS model was used to 
synthesize acoustic features which correspond to the collected 
text. 

There are still some out-of-vocabulary (OOV) words in the 
external text. Therefore, we used the training lexicon provided 
by BABEL for training a grapheme-to-phoneme (G2P) model 
[18] which can predict pronunciations for OOV words. But most 
of the time, we just used sentences where all the words are in the 
provided dictionary. During inference, we converted the text 
into phoneme sequences.   

According to our experiments, larger amounts of TTS data 
do not necessarily guarantee better performance of the ASR 
model. The ratio of real data to TTS data is crucial. We 
performed a series of experiments with different data ratios, and 
the results indicated the optimal ratio was about 1:1.5. 

Table II shows the results on the Cantonese development set. 
By utilizing synthesized data, we found the performance of 
different models was consistently improved. Also, it’s observed 
that adding TTS data yields more performance improvements 
for models which have a wider receptive field, such as ResNet-
Multistream-TDNNF, from 47.1% to 45.4%.  

TABLE II.  THE RESULTS OF DIFFERENT MODELS TRAINED WITHOUT 

TTS DATA AND WITH TTS DATA ON THE CANTONESE DEV SET 

Model 
WER (%) 

Without  

TTS data 

With  

TTS data 

CNN-TDNNF 47.3 45.6 

ResNet-TDNNF 46.9 45.3 

ResNet-Multistream-TDNNF 47.1 45.4 

 



 

Fig. 3. The log-probability vs iterations of without-TTS model. 

 

Fig. 4. The log-probability vs iterations of with-TTS model. 

Fig.3 and Fig. 4 presents log-probabilities during training. 
The dashed line represents the log-probability of training 
diagnostic set and the solid line represents the log-probability of 
validation subset. Comparing Fig. 3 with Fig. 4, it can be seen 
that the overfitting problem of model training was alleviated. 

2) Adaptive speed perturbation 
The default process of perturbations was conducted on one 

whole raw audio. However, the speed and volume of the 
speaker’s speech will change frequently in the conversational 
scenario. Therefore, we performed speed and volume 
perturbation at the utterance level. We perturbed speeds of 
utterances to force their lengths to some allowed lengths spaced 
by a factor of 1.15. We calculated a series of allowed lengths 
based on the length of utterances and the perturbation factors. 
Utterances that were too short (or too long) were kept unchanged. 
The quantity of training data was also increased by 3 times. 

TABLE III.  THE COMPARISION OF DIFFERENT SPEED PERTURBATION 

METHODS ON THE CANTONESE DEV SET  

Method WER (%) 

Baseline (3x speed perturbation) 46.9 

Adaptive-speed 46.3 

Adaptive-speed-volumn 46.1 

This method is called as adaptive speed perturbation. As for 
utterance-level volume perturbation, we used scale factors 
randomly selected from 0.5 to 1.5.  The system trained in the 
way of adaptive speed perturbation is better than that trained by 
simply doing 3x speed perturbation, as shown in Table III. 
However, this procedure was time-consuming so we only 
applied it to a unique model for final model fusion. 

3) Transformer based Encoder representation 
As suggested in [19], the features extracted from the 

encoders have shown great representation ability in several tasks. 
Hence, we trained an encoder-decoder (ED) model based on the 
VGG-transformer [20]. To satisfy the great data demand in 
training an E2E ASR model, we applied speed perturbation and 
Flow-TTS to augment training data. We produced 12 times of 
the original training data with speed factors uniformly sampled 
from 0.8 to 1.2 at 0.25 intervals. SpecAugment and dropout were 
used for training. The encoder was used as a feature extractor. 
Finally, 512-dim latent representations learned in the encoder 
can be concatenated with the 40-dim filterbanks as the fused 
feature. Models trained with such fused features were seen as a 
unique category, which was prepared for final model fusion. 

F. Language Model 

We firstly used transcriptions from the "training" part of the 
IARPA BABEL program. We also obtained a large amount of 
publicly available text data collected from the web for most 
languages. However, these data are quite different from BABEL 
data styles. So we performed careful data cleaning and filtering 
on the web-obtained data. 

Taking Cantonese as an example, we first performed data 
cleaning. Chars that were not belonging to the language being 
processed were removed. Sentences that were repeated, or 
containing more than 70% of repeated words, 70% of numbers 
as well as 20% of out-of-vocabulary words, were removed with 
a probability of 0.8. Secondly, a domain classifier was trained 
for selecting data that have similar genres with BABEL from the 
public data. The positive samples were BABEL data and the 
negative ones were randomly selected from the public data. 
These two types of samples had equal amount when combining 
them as the training dataset [21]. For convenience, the selected 
web-obtained data are denoted as ‘public’ data. 

For Cantonese, the domain classifier was fine-tuned from the 
pre-training model Chinese-BERT-wwm [22]. For the other 
languages, the domain classifiers were adapted from the 
multilingual pre-trained model XLM-R [23]. 

Finally, we added colloquial noise to the public text since the 
data genre in the constrained condition is conversational 
telephone speech. Specifically, modal particles were inserted at 
the beginning, the middle and the end of the sentence with a 
probability of 0.2, 0.1 and 0.2; reduplicated words (no more than 
3) were inserted with a probability of 0.1; and low-information 
words with small inverse document frequency (IDF) were 
removed with a probability of 0.1. 

We did some experiments with the baseline acoustic model. 
Table IV shows the PPL of the N-gram language models trained 
with different types of data. We can see that a reasonable data 
processing strategy has a large impact on the model effect. 



TABLE IV.  THE PPL OF THE N-GRAM LANGUAGE MODELS TRAINED 

WITH DIFFERENT TYPES OF DATA 

Training Data PPL 

BABEL 108 

L1: public cleaned 657 

L2: L1 + domain classifier 545 

L3: L1 + domain classifier + add 

noise 
353 

BABEL + L3 N-gram LM 

interpolation 
102 

TABLE V.  THE NUM OF UTTERANCES OF THE PUBLIC DATA 

Training Data Number of Utterances (k) 

Cantonese 10,000 

Kazakh 6,000 

Pashto 4,000 

Javanese 180 

Mongolian 1,670 

Farsi 4,000 

Amharic 260 

Georgian 630 

Somali 30 

Swahili 60 

Tagalog 30 

Tamil 620 

 

Table V shows the number of utterances of the public data 
after data cleaning and filtering. 

For the first pass decoding, the language model was 
generated by interpolating an N-gram model trained on public 
data and another N-gram model trained on BABEL data. This 
was conducted using the SRILM [24]. Due to the large gap in 
style between public data and BABEL data, the weight of the 
BABEL language model was set to 0.8 to ensure the model 
effect. The interpolated language model was applied to 
Cantonese, Mongolian, Farsi, and Kazakh, and shows no 
improvement on other languages. Table VI shows the 
performance of the first pass interpolated language model for 
Cantonese, Mongolian, Farsi, and Kazakh. 

TABLE VI.  THE PERFORMANCE OF THE FIRST PASS INTERPOLATED 

LANGUAGE MODEL FOR CANTONESE, MONGOLIAN, FARSI, AND KAZAKH 

Language 
WER (%) 

BABEL 

N-gram LM 

BABEL + Public 

N-gram LM 
Improvement 

Cantonese 46.7 46.3 0.4 

Kazakh 52.0 51.7 0.3 

Mongolian 58.1 57.7 0.4 

Farsi 58.3 57.6 0.7 

 

For LM rescoring, we adopted Transformer model [25] for 
Cantonese and bidirectional RNN model [26] for the rest 
languages. 

For Cantonese, Chinese-BERT-wwm was continued to be 
trained for several iterations using Cantonese public data and 
then fine-tuned using Cantonese BABEL data. Then the model 
was transferred to the domain of conversational style. We 
masked the whole word to make the model learn the inter-phrase 
relationship better. Compared to the first pass decoding, the 
BERT-based pretrained language model brought absolute 0.5% 
WER improvement after rescoring on Cantonese as table VII 
shows. 

For other languages, the models were initialized using the 
public data and fine-tuned using the BABEL training data 
corresponding to the language being processed. The RNNLM 
rescoring was effective in most language, except Tamil, 
Vietnamese and Kurmanji-Kurdish. However, the Transformer 
structure has no advantage over bidirectional RNN structure for 
all languages. Table VIII shows the performance of RNNLM 
rescoring in the rest language. 

In addition, we found that the WER is much higher than CER 
because our word segmentation was inconsistent with that in 
reference transcripts. Taking Cantonese as an example, the 

reference text is “系    唔系    边度     睇     下”, while the 

hypothesis is “系唔系    边     度     睇下”. So, we used all 

BABEL data to train a word segmentation model based on the 
BERT pretrained model [27], and then re-segment the 
recognized words, making it much closer to the reference 
transcripts. The word segmentation model can also be applied to 
the result in the unconstrained condition. After word 
segmentation, about an absolute 0.3% WER reduction can be 
achieved on the development set while the CER remains 
unchanged. However, due to the time limit, we didn’t apply the 
word segmentation model to the evaluation set. 

TABLE VII.  THE PERFORMANCE OF RESCORING WITH BERT LANGUAGE 

MODEL FOR CANTONESE ON DEV SET 

Language 
WER (%) 

Baseline + Bert Rescore Improvement 

Cantonese 46.9 46.4 0.5 

TABLE VIII.  THE PERFORMANCE OF RESCORING WITH BI-RNN LANGUAGE 

MODEL ON DEV SET 

Language 
WER (%) 

Baseline + Bi-RNN Rescore Improvement 

Kazakh 52 51.6 0.4 

Pashto 47.9 46.9 1.0 

Javanese 61.4 60.9 0.5 

Mongolian 58.1 57.8 0.3 

Farsi 58.3 56.9 1.4 

Amharic 37.2 36.7 0.5 

Georgian 39.5 39.0 0.5 

Somali 57.2 57.0 0.2 



Language 
WER (%) 

Baseline + Bi-RNN Rescore Improvement 

Swahili 33.5 32.8 0.7 

Tagalog 45.1 44.0 1.1 

Guarani 41.4 40.0 1.4 

TABLE IX.  THE PERFORMANCE OF VAD FOR CANTONESE AND PASHTO 

ON DEV SET 

Language 
WER (%) 

Manual VAD 

Cantonese 46.4 46.4 

Pashto 49.6 47.9 

 

G. Voice Activity Detection (VAD)  

Since the audios in OpenASR21 are recorded from telephone 
conversations, most recordings are without any environmental 
noises. We first trained a TDNN-LSTM [28] based VAD model 
for each language, using the implementations in Kaldi. However, 
according to our experiments, the data-driven based model 
trained on the limited 10-hour data is not very stable for some 
recordings. We found lots of strange missed errors where the 
speech was very clear. Thus, we lowered the requirements for 
the VAD module and used an energy-based VAD method as a 
complement. The final detection result takes the combination of 
the two methods. Additionally, we extended the time regions in 
the front and back of each detected segment to prevent missing 
any speech. Each expanded duration is about 0.5 seconds.  

Table IX shows our VAD experiments on Cantonese and 
Pashto. The 'manual' represents using the time stamps provided 
in the transcripts of the development set. The manual time 
stamps only segment the entire audio without detecting speech 
regions, so false alarm error in recognition results is easy to 
appear. As we can see in the table, the performance of VAD on 
Cantonese is similar to manual time stamps. For Pashto, the 
VAD helps to reduce the WER from 49.6% to 47.9%, which is 
mainly due to the reduction of false alarm errors in recognition 
results. In the evaluation stage, we directly migrated the 
strategies tuned on the development set for all languages.  

H. Decoding 

In our systems, we used a WFST-based method for decoding 
in KALDI. For the first pass decoding, we used N-gram 
language model. The decoding beam was set to 16, while the 
beam used in lattice generation was 8.5. The LM weight was 
chosen from 7 to 17. We found that language model weightings 
(lmwt) and word insertion penalties (wip) had great impacts on 
recognition results. We set lmwt to be 11 and wip to be 0 by 
experience. 

I. System Fusion 

We used Lattice fusion followed by MBR decoding [16] to 
combine the recognition results of acoustic models trained with 
different architectures as well as different types of data. Table X 
shows the fusion results of different systems and their respective 
results after the first pass decoding for Cantonese on the Dev set. 

TABLE X.  THE PERFORMANCE OF DIFFERENT SYSTEMS FOR 

CANTONESE ON DEV SET 

Model 

WER (%) 

Without  

TTS data 

With 

TTS data  

Concatenated 

Encoder 

representations 

CNN-TDNNF 45.9 43.5 -- 

ResNet-TDNNF 45.1 42.6 46.8 

ResNet-TDNNF-Attention 46.7 45.6 46.3 

ResNet-Multistream-TDNNF 45.9 42.8 -- 

ResNet-TDNNF-RBiLSTM 46.8 44.2 48.1 

ResNet-TDNNF 

(Adaptive-speed-volumn) 
46.1 -- -- 

Fusion 39.6 

 

Due to the time limit, we didn’t train systems with all kinds 
of data augmentation methods. We fused all the systems in table 
X because we found such a fusion strategy can bring the best 
result. Note that the results in table X are directly obtained by 
the first pass decoding (with VAD, interpolated language model 
and hyper-parameters adjustment), but without LM rescoring or 
post processing which we have applied to the evaluation set.  

We can see that system fusion can greatly enhance the 
performance, benefiting from the effective compensation of 
different systems. 

J. Post Processing 

1) Confidence filtering 
We applied confidence filtering to the ASR results obtained 

from lattice. Words were filtered according to their confidence 
scores [27]. The threshold was set within the range from 0 to 0.5, 
which means the recognition results with confidence scores 
below the threshold would be discarded. If the deletion errors 
were high, a small threshold would be used. The higher the 
threshold was, the fewer substitution and insertion errors the 
recognition result had. We found that confidence filtering with 
appropriate threshold brought about at least an absolute 0.2% 
improvement in WER for most languages and an absolute 0.5% 
improvement for some languages such as Kurmanji-Kurdish, 
Tamil, Amharic. 

2) Removing underline 
The lexicon provided in the references materials contains 

some words with underlines, and we modeled the whole words, 
resulting in the recognition results also with underlines. Then, 
we split the words with underlines in the recognition results into 
multiple words. For example, 'I_B_M' was split into 'I B M', 
which brought improvement in Javanese, Kurmanji-Kurdish and 
Swahili. 

K. Final Results 

In the evaluation period, the lattices of the first pass decoding 
were rescored and then fused with the rescored lattices. We 
found that the fusion result of rescored lattices is not always 
better than the fusion result of the first pass decoding, but 
combining both two fusion results can further improve the 



performance. The final system output was generated by fusing 
nearly 15 systems and post processing. Note that the fusion 
strategies were tailored for each language during the evaluation. 

TABLE XI.  THE RESULTS ON BOTH DEV AND EVAL SET 

Language 
WER (%) 

Dev Eval 

Amharic 32.0 39.9 

Cantonese 38.2 37.6 

Guarani 36.4 42.6 

Javanese 47.8 48.1 

Kurmanji-Kurdish 61.4 61.7 

Mongolian 41.3 41.0 

Pashto 41.4 43.2 

Somali 52.7 55.6 

Tamil 57.7 62.3 

Vietnamese 40.9 40.3 

Swahili 29.5 32.4 

Tagalog 39.3 40.4 

Georgian 34.9 39.2 

Kazakh 40.1 50.0 

Farsi 49.5 68.0 

 

Table XI shows the final results of our fusion system. The 
results on Dev set were obtained by Sclite [29] with Reference 
File Format (STM) generated by ourselves. The results on Eval 
set were released by the OpenASR21 scoring server. As we can 
see, after LM rescoring and post processing, the lattice fusion 
achieved 1.4% absolute reduction of WER for Cantonese (from 
39.6% to 38.2%).  

III. UNCONSTRAINED SYSTEM 

In the unconstrained condition, we are allowed to use 
additional speech and text training data from any language that 
can be publicly accessed. Because of the large amount of data, 
we used the encoder-decoder based E2E models as our 
unconstrained systems. In OpenASR21, we only participated in 
Cantonese, Kazakh, Mongolian, Pashto, Tamil, Javanese, and 
Farsi. 

We will describe our system in several sections, including: 
1) Data Pre-processing, 2) Modeling Unit, 3) Pre-training, 4) 
Model Training, 5) Language Model Rescoring, 6) Voice 
Activity Detection, 7) Force Alignment, and 8) Final Results. 

A. Data Pre-processing 

We used some external, publicly available data that were 
bought from many corporations. Besides, we also conducted a 
series of data crawling to collect more speech-text data. Public 
videos which have subtitles can be seen as the target of data 
crawling, then pairs of audio and text are extracted. Due to time 
constraints, we only did data crawling for speech in Cantonese.  

For Cantonese, the final training dataset consists of three 
main types: 140-hour data provided in IARPA BABEL package, 
1,000-hour data from HUITING Tech Inc [30] and 3,000-hour 
crawled data. For the other six languages, their training data 
contain two main sources: from IARPA BABEL, and bought 
from WILLTECH [31-36] (Kazakh: 362 hours, Mongolian: 454 
hours, Pashto: 315 hours, Tamil: 244 hours, Javanese: 332 hours, 
and Farsi: 324 hours). Development sets for all languages keep 
the same with original OpenASR21 datasets. In BABEL dataset, 
the sampling rate is 8 KHz. However, most of additional speech 
data are sampled at 16 KHz. As a result, we uniformly set the 
sampling rate to 16 KHz. 

Based on the original audios, we took a series of operations 
to further enhance the diversity of training data. Firstly, we used 
a method called as long-term audio splicing. For example, the 
non-speech segments were taken as the separator to extract 
separate speech segments in BABEL, then different speech 
segments were stitched together. Considering the efficiency of 
data loading and model training, we set the maximum length of 
audio to be no more than 20 seconds. Secondly, we applied 
speed perturbation to both the original and long-term spliced 
data with the speed factors of 0.8, 1.0 and 1.2. Thirdly, we 
conducted noise augmentation on all audios. Finally, the overall 
data of every language reached more than 1,000 hours. 

More importantly, we used the Flow-TTS based method to 
generate more acoustic data for training. To achieve it, we first 
sampled 100 hours data from original speech data to train TTS 
models. Then, we collected a large amount of publicly available 
text from websites. Using them, we can easily synthesize large 
amounts of filterbank features. During training, we randomly 
mixed real acoustic features and TTS features. 

B. Modeling Unit 

To determine proper modeling units, it’s necessary to do data 
clean-up on the collected text data. Firstly, all abnormal 
characters were removed. As a result, Kazakh had 43 characters, 
Mongolian had 38 characters, Pashto had 50 characters, Tamil 
had 50 characters, Javanese had 28 characters, and Farsi had 38 
characters. Then, we tokenized the remaining texts using byte-
pair-encoding (BPE) [37] and obtained 8,000 BPEs for each 
language except Cantonese. For Cantonese, we directly used 
Chinese characters which are more than 3,000 kinds and 26 
English letters. Finally, all modeling units were sorted according 
to frequency of occurrence. 

C. Pre-training 

As we know, a good pretrained model can be transferred 
quickly to other tasks. To accelerate our experiments in all seven 
languages, we conducted the pre-training works using two main 
types of datasets. 

The first dataset is derived from IARPA BABEL corpora, 
including 25 languages. The overlapping parts between BABEL 
and OpenASR21 dataset were removed in advance. After speed 
perturbation and noise augmentation, approximately 8,000 
hours of data were obtained. Instead of using BPE, we directly 
used single characters in 25 languages as the modeling units. 
And all the characters in words were segmented with tag ‘<sep>’. 



The second dataset consists mainly of Chinese and English, 
which includes many publicly available corpora such as Aishell 
[38], Aishell2 [39], Librispeech [40], TIMIT [41] and 
Switchboard [42]. The modeling units include 8,000 Chinese 
characters and 6,000 English BPEs.  

For convenience, the model trained on the first dataset is 
denoted as ‘Multi-lingual pretrained’, and the other is ‘Ch-En 
pretrained’. When using them, we only used the encoder of the 
pretrained models. 

D. Model Training 

During model training, we trained five different encoder-
decoder based models. The optimization process follows a 
multi-task approach, one task is the final cross-entropy loss of 
the ED model, and the other one is the CTC loss of the encoder.  

We used the Adam optimizer and warmup strategy. The 
initial learning rate was set to 0.0007. We also applied the 
SpecAugment and Scheduled Sampling [43] to make the system 
more robust. The E2E systems were trained using the open-
source toolkit Fairseq [44]. Table XII describes the training 
setups about all five models which differ in the encoder design. 
As to the decoder part, five models use the same structure which 
contains six transformer layers. For each language, we trained 
all five types of models. 

In the inference stage, we first conducted parameter 
averaging to each model and got five final models. When 
decoding, the beam size was set to 15. The posterior 
probabilities of all models were weighted and averaged. 
Meanwhile, those probabilities were also divided by the 
temperature constant for smoothing. The strategy was first 
validated in some languages and then extended to others. In 
Table XIII, the results of development set on both Mongolian 
and Farsi are listed. 

TABLE XII.  THE TRAINING SETUPS OF DIFFERENT ED MODELS  

Model Encoder 
Training Data 

Type 

Pretrained 

Model 

Model 1 

9-layer DenseNet + 

12-layer conformer 
block 

Realistic Ch-En 

Model 2 

9-layer DenseNet + 

12-layer conformer 
block 

Realistic + TTS Ch-En 

Model 3 
4-layer Vggblock + 12 

conformer layers 
Realistic + TTS Multi-lingual 

Model 4 
4-layer Vggblock + 12 

transformer layers 
Realistic + TTS Multi-lingual 

Model 5 
9-layer DenseNet + 12 

conformer layers 
Realistic + TTS Multi-lingual 

TABLE XIII.  THE RESULTS OF DIFFERENT MODELS AND MODEL FUSION 

FOR MONGOLIAN AND FARSI 

OpenASR21 Dev Set 
WER (%) 

Mongolian Farsi 

Model 1 35.6 41.1 

Model 2 33.6 39.5 

Model 3 33.8 38.5 

OpenASR21 Dev Set 
WER (%) 

Mongolian Farsi 

Model 4 34.2 40.9 

Model 5 33.2 37.5 

Model 1 + Model 2 32.5 37.5 

Model 1 + Model 2 + Model3 30.8 35.2 

Model 1 + Model 2 + Model3 + 

Model 4 
29.5 34.8 

Model 1 + Model 2 + Model 3 + 
Model 4 + Model 5 

28.4 33.7 

 

As seen in Table XII and XIII, the comparison between 
Model 1 and Model 2 shows that adding TTS synthesized data 
in training can improve the overall performance. From the 
results of Model 2 and Model 5, the Multi-lingual pretrained 
model performs better than the Ch-En pretrained model, which 
can be attributed to more language coverage in training. Among 
all models, Model 5 yields the lowest WER. As the number of 
models increases during fusion stage, the recognition results 
consistently improve. The performance trend of the other five 
languages is similar to Table XIII. 

E. Language Model Rescoring 

Since the one-best sequence in decoder output may not be 
the optimal result, we used an additional language model to do 
rescoring. We trained two language models which are based on 
N-gram and BERT, respectively. The training data consist of 
BABEL (training set) and the collected text data described 
above. In Table XIV, results of development set of the two 
language models in multi-model fusion on both Mongolian and 
Farsi are listed. 

It can be seen that the language model does not contribute 
much in terms of final WERs. However, we still used BERT for 
rescoring in the evaluation stage, especially for Cantonese where 
the recognized characters are in great need of reordering. 

F. Voice Activity Detection (VAD)  

The VAD strategy in the unconstrained condition is similar 
to the constrained condition. Since an ED ASR model itself can 
also serve as a VAD module to some extent, we found that a 
simple energy-based VAD with proper thresholds could yield 
good and stable performance in unconstrained tasks. In the 
development set, replacing manual segments with an energy-
based VAD strategy could yield similar WERs on an ED ASR 
model. Finally, we migrated the same method to the evaluation 
set. 

TABLE XIV.  THE RESULTS OF DIFFERENT LANGUAGE MODELS IN MODEL 

FUSION FOR MONGOLIAN AND FARSI 

OpenASR21  

Dev Set 

Language 

Model 

WER (%) 

Mongolian Farsi 

Model 1 + Model 2 + 

Model 3 + Model 4 + 

Model 5 

N-gram 28.40 33.70 

BERT 28.39 33.69 



G. Force Alignment 

As mentioned in the section of data pre-processing, we used 
lots of long-term audios in training. During testing, it’s better to 
match such conditions and conduct long-term splicing on VAD 
segments. Segments spaced less than 1.5 seconds were spliced 
together, and the maximum length was set to 20 seconds. In our 
experiments, long-term testing can consistently get better results. 

However, the final evaluation requires that system results 
should follow the CTM format. Though an ED based system can 
give more precise output sequences than the traditional hybrid 
ASR system, it lacks fine-grained time information for every 
recognized word.  

To solve this problem, for unconstrained tasks we also 
trained a hybrid DNN-HMM system using Kaldi. The model 
architecture is the same with our constrained works. This hybrid 
system was only used to do force alignment on the recognized 
sequences generated by the ED system. As the Fig. 5 shown, we 
got the duration of each word and made final CTM files. 
Another way to do force alignment is to take the usage of the 
CTC output. The non-empty characters output of all CTC branch 
from all five models were voted frame by frame. An optimal 
frame sequence was selected and aligned with the recognition 
results.  

In the development set, the performance of hybrid-system 
based force alignment was stable, while the CTC-branch based 
method is unstable. Finally, we used CTC-branch based force 
alignment only on Kazakh and Tamil, and other languages use 
hybrid-system based results. In evaluation stage, we migrated 
the same strategies.  

 

Fig. 5. Force alignment used on the recognized sequences of ED system. 

H. Final Result 

The final results of both the development set and evaluation 
set are listed in Table XV. As we can see, the WER of the 
evaluation set is higher than that of the development set. Among 
them, Farsi is the most anomalous one, with a gap of nearly 20. 

TABLE XV.  THE RESULTS ON BOTH DEV AND EVAL SET 

Language 
WER (%) 

Dev Eval 

Cantonese 22.0  

Kazakh 29.5  

Mongolian 28.4  

Language 
WER (%) 

Dev Eval 

Pashto 30.7  

Tamil 51.2  

Javanese 37.8  

Farsi 33.7  

HARDWARE AND TIME REQUIREMENT 

The hardware description of a single server is shown in 
Table XVI. In constrained condition, we performed all training 
experiments on a single server. For each language, the elapsed 
wall-clock time is approximately 20 hours for a single whole 
system. It takes 40 minutes for GMM training, 5 hours for TTS 
model training on 1 GPU and 4 hours for chain model training 
on 1 GPU. With TTS synthesized data, it takes 6 hours for 
GMM training, 7 hours for chain model training on 4 GPU in 
parallel. GPU resources were only used for NN acoustic model 
training. Running decoding pipeline using GPU on the 
evaluation set takes about 30 minutes. And the maximum 
memory consumption in decoding was around 12 GB. 

In unconstrained condition, using 24 GPUs, the processing 
time of pre-training on 25 languages is about 40 hours. For each 
language, it takes 40 hours for a single ED model training on 12 
GPUs. The total processing time required is about 80 hours. 

TABLE XVI.  THE HARDWARE DESCRIPTION OF A SINGLE SERVER 

OS CentOS 7.2 64-bit 

CPU num 48 

CPU description 
Intel(R) Xeon(R) CPU E5-

2650 v3 @ 2.30GHz 

GPU num 4 

GPU description Tesla V100-PCIE 32GB 

RAM 128 GB 

Disk storage 10 TB 
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