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ABSTRACT

We present an objective estimator of speech intelligibility that fol-
lows the paradigm of the Modified Rhyme Test (MRT). For each
input, the estimator uses temporal correlations within articulation
index bands to select one of six possible words from a list. The rate
of successful word identification becomes the measure of speech
intelligibility, as in the MRT. The estimator is called Articulation
Band Correlation MRT (ABC-MRT). It consumes a tiny fraction of
the resources required by MRT testing. ABC-MRT has been tested
on a wide range of impaired speech recordings unseen during de-
velopment. The resulting Pearson correlations between ABC-MRT
and MRT results range from .95 to .99. These values exceed those
of the other estimators tested.

Index Terms— ABC-MRT, articulation index, modified rhyme
test, MRT, objective estimator, speech intelligibility

1. SPEECH INTELLIGIBILITY

Testing the intelligibility of a speech signal is an important and
time-honored problem. Numerous techniques have been developed
over the years, and these often provide satisfying and repeatable re-
sults within specific limited application areas. Overviews of this
field can be found in many places including [1]–[3].

1.1. Human Evaluation of Speech Intelligibility

The most direct approach to evaluate speech intelligibility is based
on human listening. Carefully prepared speech material is played
or read to screened listeners in highly controlled environments. Lis-
teners then respond by answering questions or repeating what was
heard. Analysis of those responses leads to conclusions regarding
the intelligibility of the speech, within the specific context of the
test methodology.

A key factor in these tests is controlling the amount of context
available to the listeners. One approach is rhyme testing, and a spe-
cific form called the Modified Rhyme Test (MRT) [4], is standard-
ized in [5]. The U.S. National Fire Protection Association specifies
the MRT for critical communications testing and our colleagues
have completed four large MRTs to support the communications
needs of public safety officials, especially firefighters [6]–[8]. Ad-
ditional details for the four tests are given in Section 3.

MRT speech materials include 50 lists, each containing six En-
glish language words with the phonetic pattern consonant-vowel-
consonant. The six words differ only in the leading or trailing con-
sonant. A trial consists of the presentation of one word in a carrier
phrase (e.g., “Please select the word kit.”) The listener then selects
what was heard from six options (e.g., “kit,” “bit”, “fit,” “hit,” “wit,”

and “sit”) on a graphical interface. The rate of correct word identi-
fication leads to a measure of speech intelligibility.

Human speech intelligibility tests can provide useful results if
test protocols are fully specified and carefully followed. But these
tests take time, they require specialized facilities, and they always
include the variabilities inherent in human perception and behavior.

1.2. Objective Estimation of Speech Intelligibility

Signal processing algorithms can be used to analyze speech sig-
nals and estimate intelligibility. This approach is fast and perfectly
repeatable (objective) but the results are only estimates of what hu-
man testing would produce. Seminal work by Harvey Fletcher in
the 1920s determined how different frequency bands contribute to
speech intelligibility, resulting in the idea of articulation bands and
the intelligibility estimator called articulation index (AI) [9]. Many
other approaches can be found in [1]–[3],[10],[11]. In [12] exist-
ing estimators are successfully tuned to track MRT scores resulting
from stationary additive noise and clipping.

Automatic speech recognition (ASR) provides a natural route
to objective speech intelligibility estimation. When speech be-
comes impaired, ASR performance suffers. If ASR errors are con-
sistent with human errors, then ASR performance can serve as a
speech intelligibility estimate. In [13] conventional ASR techniques
were adapted to successfully approximate intelligibility ratings for
a database of five speech coders with ten bit error rates. We have
located only one prior attempt to emulate MRTs using ASR [14].
This work addresses additive noise and reverberation. The ASR in-
corporates multiple bivariate autoregressive models but it falls far
short at matching MRT results. The ASR in [14] requires an artifi-
cial SNR advantage of 24 to 45 dB in order to match MRT results
and thus cannot be used in any practical application.

The set of relevant factors that influence speech intelligibility
continues to evolve and objective intelligibility estimation for com-
binations of these factors remains a challenge. One example is the
mobile-to-mobile telecommunications scenario where speech may
be impaired by non-stationary noises at the transmit and receive lo-
cations, imperfect transducers, noise reduction algorithms, digital
coders, and packet losses.

2. ARTICULATION BAND CORRELATION MRT
(ABC-MRT)

We have developed a very effective objective speech intelligibility
estimator that follows the paradigm of the MRT. The core is a highly
specialized ASR algorithm. Many ASR tools are already available
and common goals for these are large vocabularies, speaker inde-
pendence, and robustness to impaired speech. The MRT application
is distinctly different: the vocabulary is tiny, speakers are known a
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priori, linguistic context is zero, and the word list structure limits
the usefulness of the phonemic context. Finally, we are not seeking
maximal robustness to impairments, we are seeking a failure char-
acteristic that matches that of humans across the full range from
zero intelligibility to perfect intelligibility.

These unique requirements motivated us to design a simple
ASR algorithm to emulate the MRT task. It uses basic properties
of human audition and speech perception to select one of six words.
AI bands provide an organization of the speech spectrum that is
highly applicable to speech recognition. Following the insights of-
fered in [15] we use articulation index band temporal correlations
to select words, resulting in ABC-MRT.

ABC-MRT creates an AI band based time-frequency (T-F) pat-
tern for an impaired speech signal and then correlates that pattern
with the corresponding patterns of the six unimpaired word options
to make a selection. ABC-MRT addresses narrowband speech, con-
sistent with the MRTs available to us. The required steps are out-
lined below.

2.1. AI-based T-F Patterns

Given a sequence of time-domain samples xt (fs = 48 kHz) the
steps for computing the corresponding T-F pattern are as follows.
Apply the Hann window to blocks of 512 samples (10.7 ms) and
use a 128 sample increment (2.7 ms) between blocks (75% over-
lap). Compute the DFT of the windowed samples, convert the re-
sults to power (exponent 2), then use Stevens’ Law [16] to approxi-
mate loudness (exponent 0.3). Each result becomes a column in the
matrix X̂ . More formally

x̂i,k =

∣∣∣∣∣ 1√
N

N∑
t=1

wtx(k−1)B+t e
−j2π(i−1)(t−1)

N

∣∣∣∣∣
(2×0.3)

,

wt = sin2

(
π(t− 1)

N − 1

)
,

N = 512, B = 128, i = 1 to 42, k = 1 to Nx , (1)

where Nx is the number of blocks available in xt. Next normalize
X̂to X̃so that each row (each time-history at fixed frequency) has
zero-mean and unit norm:

x̃i,k =
x̂i,k − x̂i,·√∑Nx
k=1 (x̂i,k − x̂i,·)2

, x̂i,· =
1

Nx

Nx∑
k=1

x̂i,k . (2)

This normalization removes relations between frequency compo-
nents, but it maintains time-histories for each frequency and is inte-
gral to the correlation operations that follow. The resulting matrix
X̃contains M = 42 rows covering 0 to 3844 Hz with a resolu-
tion of 93.75 Hz and these will be aggregated later to cover 17 AI
bands (rows 1, 2, and 3 are unused). X̃contains Nx columns, each
associated with a time increment of 2.7 ms.

ABC-MRT uses all six words from all 50 MRT lists. Each of
these 300 words was read (in the carrier phrase) by two female
and two male talkers and recorded, resulting in 1200 recordings.
For each recording we isolated the MRT keyword, then created and
stored a T-F pattern using steps given above.

To apply ABC-MRT to a system-under-test (SUT), pass the
1200 input recordings through the SUT to produce 1200 output
recordings. The SUT may introduce delay, so the recording op-
eration must be timed so that each output recording captures at least
the entire keyword. Next transform each output recording to a T-F

pattern using (1). The normalization in (2) is not required because a
local (temporal) normalization is applied later. Each resulting pat-
tern Ŷ must be compared with the patterns for six candidate words.
Next we present the process for one such comparison.

2.2. Comparing T-F patterns

Let X̃be a matrix containing an original word T-F pattern and Ŷ be
a matrix containing a T-F pattern obtained from one SUT output
(containing at least a keyword). X̃is M by Nx and Ŷ is M by Ny ,
withNx ≤ Ny . The first step of the comparison process is to locate
the keyword within Ŷ . Our approach assumes that the SUT delay
is approximately constant for the duration of the keyword.

Use articulation bands 3 and 4 (rows 7-9, 505-795 Hz) to locate
the keyword. On average, these bands contain greater speech power
than other bands, so if we make no assumptions about the noise and
distortion produced by the SUT, then these bands are most likely
to be useful for locating the keyword. Define ŷi(t) to be a column
vector containing Nx samples from the ith row of Ŷ :

ŷi(t) = [ŷi,t+1, ŷi,t+2, . . . , ŷi,t+Nx ]T ,

i = 7 to 9, t = 0 to Ny −Nx. (3)

Normalize ŷi(t) to ỹi(t) using the process specified in (2). Let x̃i

be the column vector that contains the ith row of X̃ . Find the lag t
cross-correlation at frequency i:

ρ2i (t) = ỹi(t)
T x̃i,

i = 7 to 9, t = 0 to Ny −Nx. (4)

Next find the maximizing time shift t∗. This is the shift that best
matches the contents of Ŷ with the keyword in X̃:

t∗ = arg max
t

(
9∑
i=7

ρ2i (t)

)
. (5)

Once t∗ has been determined, calculate correlations for the
other frequencies of interest, i = 4 to 42, as follows. Use (3) to
extract ŷi(t

∗) from Ŷ , normalize ŷi(t
∗) to ỹi(t

∗) using (2), and
cross-correlate each of these vectors with the corresponding row of
X̃using (4), resulting in ρ2i (t

∗). Then accumulate correlation val-
ues across AI bands and eliminate any negative results:

r2j = max

∑
i∈Bj

ρ2i (t
∗), 0

 , j = 1 to 17, (6)

where Bj is the set of frequency indices that comprise the jth AI
band given in [1]. Due to normalizations, (6) is equivalent to a
single cross-correlation for each AI band.

2.3. Word Selection

The T-F pattern Ŷ is based on the SUT output. It contains a known
keyword taken from a list of six keywords. Thus Ŷ must be com-
pared with six T-F patterns X̃as described in 2.2. The result is 17
values of r2j for each candidate keyword. Introduce the keyword
argument κ = 1 to 6 to indicate which keyword is under consider-
ation. The result of (6) becomes r2j (κ), j = 1 to 17, κ = 1 to 6.
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Next make a word selection based on each of the 17 AI bands.
The success rate across AI bands and lists leads to the ABC-MRT
measure of intelligibility for the SUT. This is in loose analogy to
the MRT where the success rate across subjects and lists becomes
the measure of intelligibility. In each AI band, select the keyword
associated with the highest correlation:

ŵj = arg max
κ

(
r2j (κ)

)
, j = 1 to 17. (7)

2.4. Intelligibility Estimate

Compare the keyword selections ŵj with the known correct key-
word w∗ associated with Ŷ :

ŵj = w∗ ⇒ cj = 1, otherwise cj = 0, j = 1 to 17. (8)

Average the success flags cj across the 17 AI bands to produce c̄,
then average c̄ across all 1200 trials to produce ¯̄c. In the MRT, the
intelligibility result is formed from the success rate via an affine
transformation that maps 1

6
(the guessing rate) to 0 and 1 (perfect

keyword identification) to 1. Apply that same transformation to ¯̄c to
produce c′:

c′ =
6

5

(
¯̄c− 1

6

)
. (9)

3. RESULTS

We have access to speech files and scores from four MRTs [6]-[8]
that were conducted to support the land-mobile radio (LMR) com-
munications needs of public safety officials, especially firefighters.
For these tests, MRT input recordings were mixed with high-level
background noise recordings (e.g., alarms, saws, pumps, crowds),
passed through self-contained breathing apparatus (SCBA) masks
and passed through various components of analog and digital LMR
systems and proposed future systems. Many different combinations
of these factors were tested, and Table 1 provides a high-level sum-
mary. The tests cover 139 conditions and 119 of these are unique.
Five conditions from Test 2 were repeated in Test 3, 12 conditions
from Test 2 were repeated in Test 4, and three conditions from Test
3 were repeated in Test 4.

Subjects performed the MRT tasks in the presence of pink noise
(13 to 19 dB below the speech level) to model receive location noise.
For consistency, that same noise was added to each recording at the
correct level before ABC-MRT processing.

We used only Test 4 to develop ABC-MRT. Tests 1, 2, and 3
were held back as unseen testing data. To best align ABC-MRT
results with MRT results from Test 4, use the transformation:

φ̂ = αc′ + β, with α = 0.865, and β = 0.119. (10)

The coefficients were selected to minimize the RMS error
(RMSE) between the ABC-MRT intelligibility estimate φ̂ and MRT
results φ using only Test 4. These are the only optimized coefficients
used in ABC-MRT. Otherwise ABC-MRT is completely motivated
by very simple models for the human audition and word-selection
tasks in the MRT. Note that (10) reduces large c′ values very slightly
(1.0 maps 0.984). More significantly, (10) boosts low c′ values (0
maps to 0.119). This boosts ABC-MRT word identification perfor-
mance in difficult conditions so that it better matches the average
MRT subject in Test 4.

Test Number 1 2 3 4
Number of Subjects 30 32 20 15

Number of Conditions 30 56 25 28
Analog FM LMR in Hardware X
Analog FM LMR in Software X X X

MBE Speech Coding X
MBE Speech Coding X X X
with Noise Reduction
AMR Speech Coding X

Impaired Radio Channels X X
Amplifier Overload X

SCBA Masks X X X X
Quiet Environment X X X X
Background Noise X X X X

Lowest per-condition MRT result .00 .33 .53 .02
Highest per-condition MRT result .89 .91 .92 .84

Table 1: Summary of factors and results for four MRTs. MBE is
Multi-Band Excitation and AMR is Adaptive Multi-Rate.

We measure the performance of ABC-MRT by comparing φ̂
with φ across the four tests. The Pearson correlation coefficient
is a normalized measure of the covariance between φ̂ and φ that
ranges from−1 to 1. As such it reports how well the relative scoring
of ABC-MRT and MRT agree. RMSE is an absolute measure of
agreement that has the same units as φ. Results are provided in
Table 2.

Test Number 1 2 3 4
Pearson Correlation Coefficient .985 .947 .965 .950

RMSE .121 .086 .130 .059

Table 2: Agreement between four MRTs and ABC-MRT.

The correlation values in Table 2 are quite high. Tests 1 and
3 are unseen testing data and have higher correlations than the de-
velopment data of Test 4. The lowest correlation (Test 2) is only
slightly different from the Test 4 correlation. We read this as af-
firmation that ABC-MRT correlation is not unduly related to the
development process or any specific characteristics of Test 4.

On the other hand, RMSE values show a preference for Test
4. This is due to (10) which fits φ̂ to φ to minimize RMSE on
Test 4 (but has no effect on correlation.) But these RMSE values
must be viewed in the proper context. There are 20 conditions that
overlap between tests. RMSE (MRT to MRT) for those conditions
is 0.115 and RMSE values in Table 2 are never much greater than
that baseline value.

The segregation of development data and testing data enforced
above is very important to prevent over-fitting and falsely optimistic
results. Given the high cost of MRT data, however, we also want
to use every available MRT result to offer the research community
the most useful tool. Toward that end we also performed the fit
in (10) across all four tests. The resulting coefficients are α =
1.109 and β = 0.050. This fit boosts high-end values significantly
(0.857 maps to 1.0) and it boosts low-end values to a lesser degree
(0 maps to 0.050). Using these values the correlation between φ̂ and
φ calculated across all four tests is 0.955 and RMSE is 0.073. This
result is shown graphically in Fig. 1.

Table 3 reports these results and includes analogous results (al-
lowing a single affine fit to all four MRTs) for seven other estima-
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Figure 1: ABC-MRT compared with four MRTs.

tors. ABCa-MRT is similar to ABC-MRT but it uses a detailed audi-
tory model to form T-F patterns. The model includes basilar mem-
brane filtering, rectification, and envelope filtering and was used
to produce AIgrams in [17] . ABCa-MRT gives slightly better es-
timates than ABC-MRT but its computational complexity is more
than ten times that of ABC-MRT. PESQ is a very effective speech
quality estimator that also shows some applicability for intelligibil-
ity estimation. The final five estimators are described in [10] and our
implementations were taken from [3]. Each estimator has demon-
strated effectiveness in specific application areas but our tests apply
them outside those areas. In spite of this, Normalized Covariance
Measure shows good results.

Estimator Correlation RMSE
ABC-MRT .955 .073
ABCa-MRT .963 .066

PESQ .836 .135
Normalized Covariance Measure .926 .093

CSII, mid level .740 .165
I3 .682 .174

modified I3, for sentences .551 .205
modified I3, for consonants .742 .165

Table 3: Agreement between MRTs and eight estimators. CSII is
the Coherence Speech Intelligibility Index and I3 is a 3-level ver-
sion of CSII.

ABC-MRT provides good estimates of MRT intelligibility re-
sults. We are very encouraged by these first results, especially in
light of the simplicity of ABC-MRT, the fact that it uses only two
optimized parameter values, and the breadth of the testing to date.
But there remain countless additional speech impairment scenar-
ios of interest that should be studied. In addition, the extension of
ABC-MRT to wideband speech is straightforward but verification
requires wideband MRTs. We encourage other researchers to build
on our work. ABC-MRT tools and MRT databases are available at
www.its.bldrdoc.gov/audio.
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Download MRT audio files here: http://www.pscr.gov/projects/audio_quality/mrt_library/mrt_library1.php

http://www.pscr.gov/projects/audio_quality/mrt_library/mrt_library1.php



