

SHIP Research Project:

Using Tomography to Scan and Create a 3D Model

Special Thanks To: Jacob LaManna, and David Jacobson

By: Perry Gonzalez

SURF Student: Gamitha Wijekoon

Mentor: Heather Chen-Mayer

Ę

Introduction

- Tomography
 - Taking pictures with penetrating force
 - X-ray CT Used in medical field
 - Neutron tomography developed at NIST

Learning the specifics of:

- How to create instrumentation for a neutron tomographic system
- How to take images
- How to reconstruct images

Prompt Gamma Activation Analysis

- NGD restrictions
- Create system at NGD
- My role

Specifics of Project

- Main Goal:
 - Learn from BT-2
 - Demonstrate process and apply to NGD PGAA
 - Instrumentation needs:
 - XYZ stage (left)
 - Rotational stage (right)
 - Camera
 - Control Software

Creating Adapters by 3D printing

- Inventor CAD software
 - XYZ sits on top of rotary
 - Copied rotary layout
 - Middle holes go through bottom
 - Head can't stick out

- XYZ sits below rotary
 - Top holes fit on rotary
 - XYZ screws in front hole panel
 - Restricts XYZ vertical movement

Control Software

- Made on LabView
 - Versatile visual programming language
 - Motion Control: Rotary rotates 1.1 degrees per step
 - Take a projection image and save onto computer
 - Do this for the entire 360 deg rotation

How Neutron Images Are Taken

- Neutron Beam is absorbed by the scintillator
- Converts into visible light
- Light hits mirror and is reflected
 - Camera is able to capture light and forms an image

Rotary stage inside of frame

Camera mounted on top of frame

Lead bricks act as gamma radiation shielding

NGD Pictures

Shows resolution values for different beam apertures

Camera hooked up to frame, specimen placed inside along with adapters

Beam collimator used for testing

BT-2 Pictures

*NIST does not endorse BLU or their products

apart

Test object: E-Cigarette

- Reasons for choosing this specimen:
 - "About 3 million—or 20 percent—of high school students are vaping, according to the findings. In contrast, last year 1.73 million—or 11.7 percent—used e-cigarettes, according to recently published federal data."
 - Demonstrate process
 - Learn the differences between neutron and x-ray tomography

Taking it Apart

Side View of The Model

Understanding The Difference

Attenuation:

How much of the beam a material can absorb

Certain materials can be seen better with each beam

Combining both can help with reconstruction

Neutron

15 Summary

Summary

- Learning the process of tomography, looking at both hardware and software
- Explain the differences between NGD and BT-2
- Understanding how reconstruction works and showing data

Progress

- Neutron tomography image taken at BT-2
- Limited resolution
- Attempted again at NGD
- Similar results

