

Using A Multiple-Temperature MCMC Model to More Efficiently Find the 95% Credible Interval

David Witten Montgomery Blair High School

Background: Distributions

• Normal

• Poisson

• Beta

Goal: More efficiently estimate the 95% CI

MCMC = Markov Chain Monte Carlo

- Markov Chain = Sequence of events that only depend on the previous event
- Monte Carlo = Generated Random points
 - Reference to the Monte Carlo Casino

Background: MCMC (cont.)

Metropolis-Hastings Algorithm

$$egin{aligned} p(heta o heta + 1) &= 0.5 \min\left(rac{P(heta + 1)}{P(heta)}, 1
ight) \ p(heta + 1 o heta) &= 0.5 \min\left(rac{P(heta)}{P(heta + 1)}, 1
ight) \end{aligned}$$

p(heta o heta + 1)	P(heta+1)
$\overline{p(heta+1 o heta)}$	$P(\theta)$

Background: Credible Interval

95% Confidence Interval:

95% of the 955 confidence intervals I create will contain the true value

95% Credible Interval:

95% probability that the true value falls within a region, given some data

In simple cases, they're the **same**

Significance

- Credible intervals give an interval estimate of the parameter
 - Range of probable values
- Need 1,000,000 points to be accurate to 0.01
- This project reduced required samples by 50%

Temperature

Concept from Simulated Annealing

• Used to the max/min of some function

Temperature: 1/T power of function

Benefit of Multiple Temperatures

At T = 1,

- Higher variation in the tails X
- Lower variation in the center

At T = 3,

- Lower variation in the tails \checkmark
- Higher variation in the center X

We want to combine them to keep the better parts of both

- Algorithm Further Explained

Estimate area under tails

Estimate under center

Cumulative Density Function

500

Using 50% partition

Distribution	Required to equal T = 1: 1000	Reduction
T(3)	498	50.2%
Beta(2,5)	420	58%
Normal(0,1)	500	50%

Conclusion

- Simple, yet effective algorithm
 - Easy to implement
 - O(n)
- Around a 50% improvement

Acknowledgments

- Paul Kienzle
- NIST colleagues
- SHIP Program, NCNR, CHRNS

