

Using A Multiple-Temperature MCMC Model to More Efficiently Find the 95\% Credible Interval

David Witten
Montgomery Blair High School

Background: Distributions

- Normal
- Poisson

- Beta

Background

95\% interval of a Normal is [-1.96, 1.96]

Middle 95\% of 100 generated points

95% CI with $100,1000,10000$, and 100000 data points

Goal: More efficiently estimate the $95 \% \mathrm{Cl}$

Background: MCMC

MCMC = Markov Chain Monte Carlo

- Markov Chain = Sequence of events that only depend on the previous event
- Monte Carlo = Generated Random points
- Reference to the Monte Carlo Casino

Background: MCMC (cont.)

Metropolis-Hastings Algorithm

$$
f(x)=3^{-x}
$$

$$
\begin{gathered}
p(\theta \rightarrow \theta+1)=0.5 \min \left(\frac{P(\theta+1)}{P(\theta)}, 1\right) \\
p(\theta+1 \rightarrow \theta)=0.5 \min \left(\frac{P(\theta)}{P(\theta+1)}, 1\right) \\
\frac{p(\theta \rightarrow \theta+1)}{p(\theta+1 \rightarrow \theta)}=\frac{P(\theta+1)}{P(\theta)}
\end{gathered}
$$

Background: Credible Interval

95\% Confidence Interval:

95% of the 955 confidence intervals I create will contain the true value

95\% Credible Interval:

95% probability that the true value falls within a region, given some data
In simple cases, they're the same

Significance

- Credible intervals give an interval estimate of the parameter
- Range of probable values
- Need 1,000,000 points to be accurate to 0.01
- This project reduced required samples by 50%

REACTION TO OBAMA'S SPEECH

VER

Temperature

Concept from Simulated Annealing

- Used to the max/min of some function

Temperature: 1/T power of function
$\mathrm{T}=1$

Benefit of Multiple Temperatures

At $\mathrm{T}=1$,

- Higher variation in the tails
- Lower variation in the center \boldsymbol{V}

At $\mathrm{T}=3$,

- Lower variation in the tails
- Higher variation in the center \boldsymbol{X}

We want to combine them to keep the better parts of both

Finding the Absolute Ratio

What we have:

Area of Norm $(0,1)$ Area of $\operatorname{Norm}(0,1)^{\frac{1}{3}}$
$\int f^{\frac{1}{T}}(x) \mathrm{d} x$

$$
\approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{f\left(x_{i}\right)^{\frac{1}{T}}}
$$

Ratio of the
curves on the left

Algorithm

Weight:

- All points are weighted $\frac{f(x)}{f(x)^{\frac{1}{T}}}$
Note: At $\mathrm{T}=1$, this is 1

Algorithm:
Estimate area under tails

$1 \approx \frac{N_{t, T}}{N_{t, T}+N_{1, T}} \frac{\sum_{T \in \Omega_{T}} w_{i}}{\sum_{i=1}^{N_{T}} w_{i}}+\frac{N_{1, T}}{N_{t, T}+N_{1, T}} \frac{\sum_{N_{1} \in \Omega_{T}} 1}{\sum_{i=1}^{N_{1}} 1}+\frac{N_{t, 1}}{N_{t, 1}+N_{1,1}} \frac{\sum_{T \in \Omega_{1}} w_{i}}{\sum_{i=1}^{N_{T}} w_{i}}+\frac{N_{1,1}}{N_{t, 1}+N_{1,1}} \frac{\sum_{1} \in \Omega_{1}}{\sum_{i=1}^{N_{1}} 1}$

Algorithm Further Explained

Estimate area under tails Estimate under center

Cumulative Density Function

Conclusion

- Simple, yet effective algorithm
- Easy to implement
- $\mathrm{O}(\mathrm{n})$
- Around a 50% improvement

Acknowledgments

- Paul Kienzle
- NIST colleagues
- SHIP Program, NCNR, CHRNS

