Using Molecular Dynamics to Model the Structure of Polyelectrolyte Micelles

> Hayley Boigenzahn, Worcester Polytechnic Institute Advisor: Dr. Debra Audus

- Oppositely charged polymers attract
- Form a coacervate
- Liquid-liquid phase separation
- Hydrophilic neutral polymer goes to water phase

Complex Coacervation

Diblock Copolyelectrolytes

 $\uparrow \uparrow \uparrow \uparrow$

- Hydrophilic neutral polymers bonded to a charged polymer
- Form spherical micelles at low concentrations
- Micelles are responsive to a variety of stimuli
 - pH, salt concentration, among others
- Potential as drug delivery agents

Micelle Structural Properties

- Other molecules can be encapsulated in the core
- Helpful to know size
- R Radius of the core
- D Size of the corona
- C Concentration in the core
- n The number polymers in the micelle, or the aggregation number

Molecular Dynamics

- Method of computer simulation
- Uses Newton's equations of motion to determine positions of atoms
 - LAMMPS
- Coarse-grain simulations 'necklace beads'
 - Charge of ±1 on charged beads (Coulomb interactions)
 - Repulsive interactions models a good solvent
- Why not just throw a bunch of polymers in a box, wait for it to equilibrate, and take the average micelle size?
 - Many molecules in a very large box → Extremely long computational time

Finding the Aggregation Number

- Model with different numbers of polymers
- Find free energy per chain minimum
- Lowest free energy per chain → most favorable energy state → most common/accurate aggregation number
- Free energy cannot be directly measured from a single simulation

Thermodynamic Integration

- Free energy is found with thermodynamic integration
- Relate free energy to coulomb potential energy (energy due to charged beads)
- Plot from known state (neutral, q=0) to desired state (micelle, q=1)

Equilibrium Coulomb Energy

- Generate thermodynamic integration curves using coulomb energy
- Simulations record coulomb potential energy through time
- Once the system equilibrates, find the mean \rightarrow one point on TI curve

Micelle Conditions

- Not all polymers make micelles
- Too many charged beads → macro-phase separation
- Too few charged beads → paired polymers/unstable micelles
- Significantly too many or too few polymers also tend to break apart

n Results

- Polymer with 20 charged and 30 neutral beads
- n ≅ 40
- Additional points between 30 and 50 can be tested to improve accuracy

Structural Results & Relations

Concentration does not depend on knowing the aggregation number

- Controlled by interactions
- Agrees with a theoretical prediction
- Since C is constant, we know the scaling of R $R \propto \left(\frac{n}{r}\right)^{\frac{1}{3}}$

n Results

- Polymer with 15 charged beads and 30 neutral beads
- n ≅ 26
- Additional points needed to improve accuracy

Structural Results & Relations

	20/20	20/30	15/30
n	52	40	26
С	0.318	0.318	0.279
R	9.17	8.52	7.03
D	9.14	12.81	12.40
Accuracy expressed in significant figures			

- n is more dependent on N_c
 - C only depends on $\rm N_c$
 - R scales with n
 - D is more dependent on N_n

	20/20	20/30	15/30
n	52	40	26
С	0.318	0.318	0.279
R	9.17	8.52	7.03
D	9.14	12.81	12.40
Accuracy expressed in significant figures			

- n is more dependent on N_c
- C only depends on $\rm N_c$
- R scales with n
- D is more dependent on N_n

	20/20	20/30	15/30
n	52	40	26
С	0.318	0.318	0.279
R	9.17	8.52	7.03
D	9.14	12.81	12.40
Accuracy expressed in significant figures			

- n is more dependent on N_c
 - C only depends on $\rm N_c$
 - R scales with n
 - D is more dependent on N_n

	20/20	20/30	15/30
n	52	40	26
С	0.318	0.318	0.279
R	9.17	8.52	7.03
D	9.14	12.81	12.40
Accuracy expressed in significant figures			

- n is more dependent on N_c
- C only depends on N_c
- R scales with n
- D is more dependent on N_n

	20/20	20/30	15/30	
n	52	40	26	
С	0.318	0.318	0.279	
R	9.17	8.52	7.03	
D 9.14 12.81 12.40				
Accuracy expressed in significant figures				

- n is more dependent on N_c
- C only depends on $\rm N_c$
- R scales with n
- D is more dependent on N_n

Conclusion

- Coacervation
- Use Molecular Dynamics and Thermodynamic Integration
- Established sizes and explored stability of polymer micelles
- Questions?

