
1

Using Machine Learning Techniques for Speeding up Manipulator Path
Planning to Find High Quality Paths in Cluttered Environments

Pradeep Rajendran†, Shantanu Thakar†, Prahar M. Bhatt†, Ariyan M. Kabir†,and Satyandra K. Gupta† Center
for Advanced Manufacturing, University of Southern California

Los Angeles, California 90089-1453.

Robotic manipulators are widely used in the factory floor for
various tasks such as automotive assembly, part transport,
packing and machining. A large fraction of these manipu-
lators follows pre-programmed sequence of actions to com-
plete tasks. Before any task, human operators program the
manipulator by manually teaching waypoints to accomplish a
given task. In high-mix, low-volume manufacturing settings,
robots cannot be manually programmed by humans as robot-
tasks change frequently. In such applications, we seek a
planning method that quickly produces high-quality paths
given a finite time budget. High-quality paths typically have
minimal end-effector motion for the following reasons. Many
manufacturing applications require a task to be completed
with a minimal execution time. And, the task constraints
typically dictate the joint speeds required and thus, the
required joint speeds are much lower than the what the robot
maximum limits are. So, minimizing joint motion is not
going to make task execution faster. In fact, the workspace
is cluttered and minimizing the end-effector motion instead
reduces the risk of collision with other objects. In high-mix,
low-volume applications, if the trajectory planning takes a
long time, the robot is idle and not productive during that
time. In such applications, robot needs to be productive for
as long as possible and planning time needs to be minimal.

We focus on a general point-to-point path planning prob-
lem where the start and goal end-effector poses are given.
Such under-specified start/goal configurations arising out
of end-effector poses frequently occur in manipulator path
planning (e.g., task feasibility assessment in task and motion
planning). The objective is to find a configuration-space path
that minimizes tool-path length. Tool-path length refers to
the distance traveled by the tool at the end-effector and in
this work, it is approximated by the distance traveled by the
end-effector. A configuration-space path with minimum path-
length in configuration-space does not necessarily correspond
to having minimum tool-path length. Finding paths with
minimum tool-path length is challenging as the workspace
is often cluttered with obstacles with complex geometries.

Deterministic search-based methods can be used to solve
the path planning problem for manipulators. But without spe-
cialized heuristics and techniques to control graph sparsity,
these methods take a longer time to solve the problem than
sampling-based methods.

Sampling-based motion planning algorithms have been
studied for more than two decades and they have been
extremely successful in solving a wide variety of motion
planning problems. Popular sampling-based methods include

RRT [1] and PRM [2]. These sampling-based planning meth-
ods are able to quickly generate paths by randomly sampling
the configuration space and therefore cannot produce high-
quality paths. They may produce feasible paths involving
large end-effector motion. On the other hand methods that
aim for asymptotic optimality take a long time to converge to
an optimal solution. With a limited amount of time, neither
of these methods can produce the required paths in high-mix,
low-volume applications.

Local optimization can be performed using methods can
be to smooth trajectories. But, these methods are limited to
the homotopy class of the seed path and may not produce
high-quality trajectories. Even after local optimization, we
are likely to observe locally-optimal paths belonging to a
variety of homotopy classes.

In the past, we worked on search-based [3], and sampling-
based [4], [5] approaches that find a compromise between
solution quality and planning time. They produce solutions
with low-tool path length quickly by exploiting workspace
cues. Workspace cues refer to focusing hints in the form of
configuration space regions. These regions are derived from
workspace paths of a reference point on the end-effector
(Figure 1).

Fig. 1: Point-to-point planning between any two points in
(A,B,C,D,E) can benefit from workspace-cues generated from
workspace tool-paths. An example tool-path is shown for A to B.

In our prior work [4], we recognized that a general bi-
directional tree search algorithm can be decomposed into the
following primitive modules: tree selection, focus selection,
node selection, target selection, extend strategy selection,
and connection strategy selection (Figure 2). We refer to
a specific implementation of a module as a strategy. In
the literature, many of these modules have been imple-



2

mented in different ways. This has resulted in a rich set
of alternative strategies. Each strategy is designed with a
specific application in mind. For example, there are a set
of alternative strategies for (1) handling the narrow passage
problem, (2) focused sampling and extend strategy. In [4],
as part of a human/machine cooperative-planning strategy,
we exploited human assistance through an intuitive GUI
to help dynamically refine workspace focus regions. These
regions were simultaneously used by the planner for focusing
the search efforts. As a continuation of [4], in [5], we
removed the human component and improved our framework
by reducing failure rate and reducing sub-optimality in many
complex scenarios.

Through [4], [5], we have shown that intelligently switch-
ing between these strategies (Figure 2) (1) improves the
robustness of the search method, (2) encodes user preferences
(e.g., planning speed vs. sub-optimality trade-off), and (3)
produces high-quality solutions in many challenging scenar-
ios quickly. In this work, we are interested in using machine
learning for search strategies. We use framework shown
Figure 2) to solve the path planning problem. Conceptually,
our framework is composed of six modules as in Figure 2.

Fig. 2: Bi-Directional Tree Search Framework

For each module, we dynamically select one of the strate-
gies from the table in Figure 2 during each iteration. Each
module operates on inputs and provides outputs. Thus, all
strategies corresponding to a particular module follow the
same input/output relationship (see Figure 2). For instance,
consider the node selection module. No matter what strategy
is used within the node selection module, the output has to
be a node belonging to the tree that was given as an input.

We tested our method in a diverse set of 30 scenarios.
These scenarios were constructed by taking inspiration from
manufacturing tasks. Figure 3, 4 shows a representative
subset of the test scenarios. This set contains scenarios
of varying difficulty including those scenarios for which
workspace cues could be misguiding.

Results shown in Figure 5 were computed using the data
collected over 50 planning queries for each scenario (total
30), for each planner. In Figure 5, each colored data point
(x, y) is the performance of a particular planner. Here x
refers to the average failure rate of a particular planner
averaged over all scenarios and all trials. And, y refers to
the average suboptimality factor attained for each planner-
scenario combination. The star symbol denotes the expected
performance of a particular planner.

To study the impact of strategies, test scenarios shown in
Figure 3, 4 are used. A brief description of some of the test
scenarios is given below.

S03 features a table-like structure where the tool has to
reach the other side of the central partition. In S04, a sanding
tool needs to be moved from one side of the mold to the
middle slot. There is a narrow constriction blocking the way,
and the tool cannot be slid through. In S07, the manipulator
is reaching into the void formed by the cross-bars supporting
the cylindrical structure. In S12, the manipulator is in a pillar
problem where it has to move from one side of the rods to the
other side. In S14, the manipulator needs to move from one
mold to another mold. But, its motion highly restricted by
the long vertical rod in the middle. In S23, the manipulator
arm is reaching out into a circular cut and it needs to pull the
arm out of the cut and reach the goal pose. In S26, a sanding
tool is to be transferred from one circular slot of a mold
to another slot next to it. The mold is structured such that
simply sliding the tool will not work (due to constriction).
The tool has to be carefully maneuvered out of the mold
first before inserting it again into the next slot. In S30, the
manipulator needs to move the tool from a confined pose
between two bars. And, the tool has to be taken out into a
new pose where it is relatively less confined.

In Figure 5, RRTC and RRTC* have the highest failure
rates. Compared to RRTC, RRTC* yields only a slightly
better solution quality and incurs an increased failure rate.
This is due to time spent rewiring nodes that were never
going to be part of a high-quality solution. EETC dominates
RRTC in terms of failure rate and path quality. The blending
of EETC and RRTC as in A-RRTC+A-EETC yields lower
failure rates and demonstrates the synergistic interaction be-
tween the strategies. This positive interaction is particularly
noticeable in the workspace-misguiding scenarios (S12, S26,
S19, S31) where EETC is likely to fail often. However, it
does little to increase path quality. Context-awareness and
synergistic interaction of strategies help drive the failure rate
down and increase path quality in CODES3. Specifically,
random sampling in W-space helps to easily identify narrow
passages in W-space that are close to the end-effector; thus,
it effectively identifies the corresponding C-space narrow
passages (e.g. scenarios S23, S21). Although the path quality
of alternative methods are occasionally better in some tough
scenarios, CODES3 has a considerably lower failure rate and
suffers only slightly in terms of path quality. Sub-optimal
feasible solutions obtained at a low failure-rate are often
more valuable than optimal solutions with high failure-rates.

We have shown that by switching between strategies, we
are able to strike a balance between path quality and planning



3

Fig. 3: A subset of the test scenarios. Start configuration is shown in orange and the goal configuration is shown in green. The robot is
holding a rotary sanding tool in all scenarios.

Fig. 4: A subset of the test scenarios. Start configuration is shown in orange and the goal configuration is shown in green. The robot is
holding a rotary sanding tool in all scenarios.

Fig. 5: Performance of CODES3 against alternative planners recorded over 50 (trials) planning queries of each of the 30 scenarios. A
total of 1500 planning queries were made to each planner. For each planner, failure rate is measured by the percentage of failed planning
queries over all planning queries made. A failed planning query happens when no plan is produced within 7.5 s (timeout)

times. Our experiments show that CODES3, an instance of
the proposed framework, yields high-quality paths quickly in
challenging test scenarios.

REFERENCES
[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path

planning,” 1998.
[2] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, Aug 1996.

[3] A. M. Kabir, B. C. Shah, and S. K. Gupta, “Trajectory planning for
manipulators operating in confined workspaces,” in 2018 IEEE Inter-

national Conference on Automation Science and Engineering (CASE),
Munich, Germany, Aug 2018.

[4] P. Rajendran, S. Thakar, and S. K. Gupta, “User-guided path planning
for redundant manipulators in highly constrained work environments,”
in IEEE International Conference on Automation Science and Engi-
neering (CASE), Vancouver, Canada, August 2019.

[5] P. Rajendran, S. Thakar, A. Kabir, B. Shah, and S. K. Gupta, “Context-
dependent search for generating paths for redundant manipulators in
cluttered environments,” in IEEE International Conference on Intelli-
gent Robots and Systems (IROS), Macau, China, November 2019.


	References

