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Objective

|
“To reconstruct the target templates from

observed match scores”

Query | Face Recognition J  Match
Template ] System Score

 The Recognition system is considered as a black box and we do not
perform any reverse engineering methods.
 All the target images are completely unknown
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Reconstruction of templates

Major Steps

1.

Model the recognition system through
an affine transformation of image space

Embed the target template in affine
space
Reconstruction of target template.



Comparison to Hill-Climbing Approach
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Modeling Recognition Algorithm

1. Create an Independent set of images “Break-in set”
2. Compute the distance matrix D using the recognition system

3. Using the same break-in set design an affine transformation s. t.
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Modeling Recognition Algorithm
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. . e anon-rigid transformation
- arigid transformation

 depends on the specific
recognition algorithm

- independent of the recognition
algorithm

e approximate the recognition
algorithm through sheer and
stretching of the image space

» derived using classical MDS
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- derived from the orthonormal
subspace analysis e.g. PCA of
Images in break-in set




Embedding & Reconstruction
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Embedding

» Observe the distance from selected templates from break-in set
to unknown target X,

» Calculate the co-ordinate of the unknown target in transformed
space Y,
Reconstruction

» Use Invert transformation to reconstruct the unknown target template
in original affine space
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Outline of Proposed Scheme
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Dataset & Recognition Algorithms

m Database
m Break-in set : 600 FERET images ( 150 subjects)

m Target Set
= 100 FRGC Subjects
= 100 FERET Subjects (all different from break-in set)

m Algorithm
= FRGC baseline algorithm (template based)
= Bayesian intrapersonal/extrapersonal classifier (template based)
= Commercial Face Recognition System (feature based)

All algorithms are set to operate at 1% False Acceptance Rate
and 99% True Acceptance Rate* with 100 enroliments on both the target sets.

* Except Bayesian Method on FRGC target set L:
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Results

®m Modeling Error
2 2
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]
d;  Original distance computed by the recognition algorithm

Error =

0.  Euclidean distance in model space
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Error distribution has zero Mean in all three cases
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Results (Contd.)
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Results (Contd.)

B Reconstructed FRGC Target Templates
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Results (Contd.)

®m \We reconstruct the target sets using five different
break-in set with 75, 150, 300, 450 and 600 images

Probability of Break-in

“Probability of breaking into a face recognition system by randomly
selecting an enrolled account”

Target
+
Reconstructed Fac\\? ‘ Accept Prob. of
Target — | Recognition |~ / Break-in
Template System S
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Results (Contd.)

N
No. of Images in Break-in Set
Original 75 150 300 450 600




Results (Contd.)

|
Probability of Break-in on FERET Set
Break-In Performance
L2 oo
ayesian 1 1 1 1
1 { |®Commercial 0.94 Aag e oize
;? O Baseline
S 0.8 0.74
@ 0.6 0.68
S 06 1 0.55 5
304 035
5 0.3
* 0.2 ]
0
75 150 300 450 600
Number of Attempts /
Bayesian & Baseline 100% Commercial 94%
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Results (Contd.)

.
Probability of Break-in on FRGC Set
Break-In Performance
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Results (Contd.)

i
® Quantization of Match Scores
Break-In Perfromance on Commercial Algorithm with Quantized Scores with
450 Attempts
%r Performance remain
1 7 mCommercial ; 39 unchanged for
= 08 Algorithm 088 Wﬁ/ quantization up to 2nd
S most significant digit
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Conclusion

B The proposed template reconstruction scheme
uses an affine transformation to model the
underlying recognition algorithm

H [t IS non-iterative

B Uses distinct face images to be matched with
target template

B Requires less number of matching compared
to Hill-Climbing Approach

B Robust to Score Quantization
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Questions

Thank You
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