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Abstract—Causality is a basic concept in system theory. In this 
paper we introduce the notions of causal and non-causal indoor 
localization. A non-causal localization system uses future signal 
and sensor measurements, in addition to past and present ones, 
to estimate the location of a person or an object at the present 
time. We provide example use cases where non-causal localization 
could prove useful. 

The main contribution of the paper is the development of an 
indoor localization system based on Wi-Fi fngerprinting and the 
Viterbi Algorithm that could be used in both causal and non-
causal modes. Our proposed method fnds the best “path” in a 
building matching a time series of Wi-Fi scan results made by the 
mobile device carried by the person to be located over a period 
of time. Our system improves localization accuracy by using the 
knowledge of building foor plans and the fact that humans do 
not move faster than a certain speed. 

We evaluate the performance of the causal and non-causal 
versions of our system and compare them against the basic Wi-
Fi fngerprinting localization system based on the KNN algorithm 
in an offce building. Our empirical results show that both the 
causal and non-causal versions of our system outperform the 
basic fngerprinting system, with the non-causal version yielding 
signifcantly higher accuracy than the basic fngerprinting system. 

Index Terms—Indoor localization, Wi-Fi fngerprinting, Viterbi 
algorithm, dynamic programming, real-time localization, causal 
localization, non-causal localization, human mobility model, 
building foor plans, spatiotemporal constraints, lookahead 

I. INTRODUCTION 

Most researchers regard (indoor) localization as a process 
through which the location of an entity of interest is estimated 
in real-time. That is, the location L(t) is estimated using 
past and present samples of one or more random processes 
(observations) through time t, and the location estimate L̂(t) 
is made available to the system user instantly. This is what 
we’d like to call causal localization. The random processes 
are signals received and/or sensor measurements. Admittedly, 
the boundary between signals and sensors is hazy. Typically, 
signals include radio frequency (RF) signals, ultrasound, in-
frared, and visible light. Sensors commonly used include 
accelerometer, gyroscope, magnetometer, and altimeter. The 
entity of interest, which is equipped with an electronic device 
to facilitate localization1, can be a person, an asset, a robot, 
etc. The best example of using sensor measurements prior 
to time t to estimate L(t) is a localization system that 
uses dead reckoning based on an Inertial Measurement Unit 

(IMU), which includes an accelerometer and a gyroscope. In 
such a system, the past history of measurements does indeed 
matter, as L(t) cannot be estimated from the instantaneous 
accelerometer and gyroscope measurements. 

More generally, a localization system estimates L(t) based 
on available observations, which may include observations 
made after time t. Sometimes, one is interested in estimating 
L(t) on demand, such as when one wishes to know the location 
of a stationary asset on a factory foor. In other applications, 
one is interested in estimating L(t) in a periodic manner over 
a set of discrete time indices Λ = {1, 2, . . . , T }. This paper 
focuses on the second case with the entity of interest being a 
person. 

A non-causal localization system is one that uses obser-
vations made after time t to estimate L(t). This necessarily 
means that the system has to wait and make more observations 
beyond time t before it estimates L(t). Therefore, L̂(t) will 
be made available some time after time t. We provide two use 
cases where non-causal localization could prove useful. One is 
a surveillance application, where the system uses the signals 
received over Λ by the Wi-Fi Access Points (APs) in a building 
from the smartphone of a person of interest to determine which 
places in the building the person visited during Λ, at what 
times, and how much time the person spent at each location. 
A second example is when a person spends several hours at 
a trade show and sometime later wishes to know at which 
booths he/she spent most time and hence which technologies 
and products were of most interest to him/her. This can be 
done using Wi-Fi signals received by the person’s smartphone 
from Wi-Fi APs at the trade show. It may also be done using 
technologies other than Wi-Fi. 

Bahl and Padmanabhan [1] developed the RADAR sys-
tem based on Wi-Fi fngerprinting. Their paper has had a 
large impact since its publication in the year 2000. Many 
researchers have developed indoor localization systems using 
fngerprinting, not just based on Wi-Fi, but also based on 
Bluetooth, ZigBee, magnetic signals, or combinations thereof. 
In addition, many companies have developed commercial 
indoor localization solutions based on fngerprinting. Wi-Fi 
fngerprinting has an offine phase and an online phase. A 
fngerprint catalogue/database, also called a radio map in more 
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recent papers, is built in the offine phase. Each fngerprint 
measurement involves placing a mobile Wi-Fi device at the 
fngerprint location and making Received Signal Strength 
Indicator (RSSI) measurements at either the mobile device 
or at the M Wi-Fi APs deployed in the building. The online 
phase is when the system is used for localization, where either 
the mobile device or the APs do a Wi-Fi scan and record the 
RSSIs. The resulting M -tuple of RSSIs is then compared with 
the fngerprints in the radio map using the K-Nearest Neighbor 
(KNN) algorithm, which is often used to solve classifcation 
problems. L̂(t) would then be computed as a combination of 
the resulting K fngerprints. In this paper, we use K = 1, 
which means the fngerprint “closest” to the RSSI scan result 
is selected in our implementation of RADAR. 

It is well-known that the basic Wi-Fi fngerprinting localiza-
tion scheme described above suffers from “jumps” in L̂(t) over 
short times. For example, when a user is walking around in a 
building and L̂(t) is tracking L(t) fairly well, the system may 
suddenly produce a location estimate quite far from the user’s 
true location followed by another one that may be reasonably 
close to it. The same phenomenon is observed when locating 
stationary objects. These jumps are annoying and should be 
prevented from happening at all cost. Gentile and Klein-Berndt 
[2] used a Markov chain model for a person’s movements to 
prevent the possibility of such jumps. Their scheme basically 
limits the “next” user location estimate to fngerprint locations 
in the neighborhood of the “present” location estimate, which 
itself is a fngerprint location. The system developed in [2] is 
a causal localization system. 

In this paper, we generalize the concept introduced in [2] in 
two ways. First, we not only prevent location estimate jumps, 
but we also prevent consecutive location estimates from being 
on opposite sides of a wall. These location estimate candidates 
may be very close to each other, but a person cannot move 
from one side of a wall to the other in a short time span. 
To prevent such transitions, the system needs to know where 
the walls and doors are, and hence it needs to have access 
to the building foor plans. Second, we allow non-causality in 
our system by using Wi-Fi scan results made after time t to 
estimate L(t). We show later how the solution to this problem 
is reduced to searching for the path in a trellis diagram most 
similar to the set of Wi-Fi scan results over Λ. We use the 
Viterbi algorithm (VA) [3], [4] to solve this problem, thereby 
increasing the accuracy of the localization system. Specifcally, 
we leverage the abovementioned spatiotemporal constraints 
to develop an accurate non-causal localization and tracking 
system based on Wi-Fi fngerprinting. 

Our key contributions include: 

• We design our system based on a minimum number 
of Wi-Fi fngerprints taken at each fngerprint location, 
thereby signifcantly reducing the fngerprint surveying 
effort and the memory requirements for the fngerprint 
database. This also means that we cannot compare our 
system to that in [2] which uses 100 measurements at 
each fngerprint location. 

• The positions along the path are computed in real-time 
and corrected dynamically over time. 

• The proposed algorithm is evaluated repeatedly on two 
smartphones of different brands using fve test scenarios 
in a typical offce environment. The results show that 
our algorithm achieved an error as low as 0.7 m on the 
average, and the 95-percentile point on the probability 
distribution of the errors was 1.9 m. 

The rest of the paper is organized as follows. Section II 
reviews related work on solutions based on Wi-Fi fngerprint-
ing. Section III describes our algorithm in detail. Evaluation 
results are presented and analyzed in Section IV. Concluding 
remarks and insights obtained in this study are presented in 
Section V. 

II. RELATED WORK 

The Viterbi algorithm (VA) [3], [4] is a dynamic program-
ming algorithm for fnding the most likely sequence of hidden 
states that results in a sequence of observed events. Modeling 
location estimation over a time window as a maximization 
problem, the VA has been applied in a few indoor localization 
papers. While a sequence of hidden states models the user’s 
unknown path in a building, the time series of Wi-Fi scan 
results (RSSI measurements) represents the observed events. 
Different probabilities may be assigned to transitions from 
the current state/location to the next possible states/locations, 
which may include the current state/location. 

Kohri [5] developed a ML estimator of the user’s path using 
the VA. Instead of using Wi-Fi signal strengths, his method 
is based on comparing the range estimates from a number of 
fxed nodes in the building (typically called anchor nodes) to 
the user’s location with the fxed distances from anchor nodes 
to a set of reference locations in the building. One can think of 
the reference locations as playing the same role as fngerprint 
locations in a fngerprinting method. The user’s path in the 
building is estimated as a sequence of reference locations. 

MapCraft [6] expresses the user path estimation problem 
as fnding the most likely sequence of states in an undirected 
probabilistic graphical model, i.e. Conditional Random Field 
(CRF), using the VA. Instead of maximizing the joint prob-
ability, computed as the product of state priors and condi-
tional probabilities of observations given states, the conditional 
probability of state variables given the observations can be 
directly maximized. Fusing Wi-Fi measurements with data 
collected from accelerometer, magnetometer and gyroscope on 
the mobile device, the 97-percentile error of MapCraft varies 
from 2.37 m to 4.53 m at different indoor test sites. 

Trogh et al. [7] proposed to use the sum of squared errors 
between RSSI measurements and reference values in the radio 
map as the cost associated with each possible path in the 
location graph, which is modeled as a trellis diagram. A 
network planner was utilized to predict the RF path loss 
between each Wi-Fi AP and each fngerprint location. This 
method yielded a mean error of 2.2 m in experiments in an 
offce test bed. 
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Wawrzyniak et al. [8], [9] introduced a sequence detection 
method for indoor tracking at zone level using a minimum 
squared error metric for the overall path. Specifcally, the 
transition from zone m to zone n at time t depends on 
the dissimilarity between reference RSSI data for zone m 
and RSSI measured at time t, and the dissimilarity between 
reference RSSI data for zone n and RSSI measured at time 
t. With a 2 m × 2 m zone size, they achieved a mean error 
of 1.4 m in their experiments, assuming the user was in the 
center of the zone in which he/she is located. 

III. ALGORITHM 

In this section, we describe our algorithm that estimates 
the mobile device’s location along the user’s trajectory in 
real-time. Our algorithm has the property that it continuously 
updates location estimates at all earlier times. Therefore, by 
the time it processes RSSI scan results at time T , which 
is the end of the period for which RSSI scan results are 
available, we not only have the real-time location estimate for 
time T , but also non-causal location estimates for any time 
t ∈ {1, 2, . . . , T − 1}, with t referring to the time the tth 

Wi-Fi scan is completed. 
The frst step in the offine phase of developing any fnger-

printing localization system is to select a set of N fngerprint 
locations. It is common practice to lay a point lattice over the 
service area for the localization system, and that’s what we 
do in this paper. However, that is not the only choice, and the 
techniques presented in this section are equally applicable in 
the situation where the fngerprint locations do not follow the 
regular structure of a point lattice. Let δ, fs, and vmax denote, 
respectively, the distance from each lattice point in the left part 
of Figure 1 to its closest neighbors, the frequency at which 
Wi-Fi scans are made, and the maximum speed of a person 
moving around in a building. vmax is typically assumed to be 
about 1.4 m/s, which corresponds to roughly 5 Km/h. This 
suggests that the user cannot move by more than vmax/fs 

meters during one period of Wi-Fi scanning. Comparing this 
maximum possible displacement to δ determines to which 
lattice points in the neighborhood of a given lattice point 
the user may move to by the time the next Wi-Fi scan is 
completed. For example, if the user is at lattice point 5 in the 
left part of Figure 1 at time t, then at time t + 1 the user 
can be at any of the lattice points to which a transition with 
a red dashed line is shown, including lattice point 5 itself if 
the user does not move at all. Transitions to lattice points 3, 
6, 8, and 9 are not feasible, even though they are still within 
maximum possible displacement from lattice point 5, because 
the user cannot breach the wall. (If the user enters the room 
through the door, it will take longer than 1/fs seconds for 
him/her to get to those points.) However, a transition from 
lattice point 5 to lattice point 7 is feasible, because the total 
length of the piece-wise linear red dashed line from 5 to 7 is 
less than vmax/fs. Essentially, one has to look at the shortest 
feasible path (not going through walls) from lattice point i to 
lattice point j to decide if j is reachable from i. Note that 
the notion that the radius of the circle that encloses the lattice 

Fig. 1. Possible transitions from one fngerprint location to its neighbors and 
itself 

points reachable from a given lattice point has to be vmax/fs 

is not 100% correct. Lattice point 5 may be the closest lattice 
point to the user location at time t, but the user may not be 
precisely at lattice point 5 at that time. This affects which 
lattice points in the vicinity of lattice point 5 are reachable 
from the true user location. All that can be assumed is that 
lattice point 5 is a “candidate” estimate for user’s location at 
time t. This issue is further discussed at the end of Section IV. 

In the right part of Figure 1, we have shown the transitions 
from lattice point 5 to all lattice points (fngerprint locations) 
reachable from lattice point 5 as well as transitions from the 
same reachable set to lattice point 5. Note that if a transition 
from lattice point i to lattice point j is possible, then so is a 
transition from lattice point j to lattice point i. The horizontal 
axis depicts discrete time. Also, note that if the wall going 
through the circle did not exist, transitions to/from all eight 
neighbors of lattice point 5 and lattice point 5 itself would 
have been possible. Figure 2 depicts a trellis diagram that 
shows all possible state transitions from time 1 to time T = 5, 
stage by stage. The set of hidden states at each stage of the 
trellis is the set of all N lattice points in the service area, 
where fngerprint measurements are made in the offine phase. 
Stage t of the trellis is marked by Xt , which is the RSSI 
M -tuple resulting from the Wi-Fi scan by the mobile device 
at time t. For any t ∈ Λ, if one approaches the non-causal 
localization problem in a brute force manner, one would think 
there are N t possible sequences of location estimates for the 
user from time 1 to time t. However, such a large set of 
sequences include sequences with jumps and/or wall breaches. 
The trellis prevents such jumps and wall breaches, and hence 
the actual number of possible paths in the trellis, which 
represents feasible sequences of estimates for user’s location 
from time 1 to time t, is far smaller than N t . Therefore, all that 
is needed to estimate the user’s location from time 1 to time t is 
to search the trellis up to time t for the path whose fngerprint 
labels are “closest” to the sequence of Wi-Fi scan results from 
time 1 to time t. We use the VA to solve this problem. We 
next describe the fngerprinting process and precisely defne 
what we mean by “closest”. 

Let M denote the number of Wi-Fi APs whose signals can 
be received in the localization system service area. While the 
fngerprinting process used in some papers in the literature 
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Fig. 2. Example of a trellis with N = 4 hidden states 

TABLE I 
TERMINOLOGY USED IN THIS PAPER 

Symbols Descriptions 
Xt Online Wi-Fi scan results at time t 
Yi,φ Fingerprint at location i and direction φ, where φ ∈ 

{E, N, W, S}
Yi (Yi,E , Yi,N , Yi,W , Yi,S ) 
F t Set of binary fags f [t][i] indicating whether state i 

is reachable at time t 
P t Set of minimum-cost t-tuple paths p[t][i] for each 

reachable state i at time t 
Ct Set of minimum costs c[t][i] associated with paths 

in P t 

l̂t Real-time estimate of user’s location at time t 

involves making hundreds [10] or even thousands [11] of Wi-
Fi scans at each fngerprint location, we make only four Wi-
Fi scans at each location. While holding a smartphone in our 
hands, we stand at the location facing E, N, W, and S and we 
make a single Wi-Fi scan at each of those directions. Most Wi-
Fi APs are dual-band and transmit and receive signals in both 
2.4 GHz and 5 GHz Industrial, Scientifc and Medical (ISM) 
frequency bands. Each of these bands are further divided into 
smaller sub-bands or channels. The center frequencies of these 
channels range from 2.412 MHz to 2.484 MHz and from 
5.180 MHz to 5.825 MHz. Therefore, there may be as many 
as 2M RSSI samples for each fngerprint and each of the 
four directions. We say as many as 2M samples, because 
one may not see all M APs and signals in both frequency 
bands at a given fngerprint location and direction. Hence, 
the fngerprint database or radio map can be represented by 
a 4N × 2M matrix. Note that matrix entries corresponding 
to the signals that were not received at given locations and 
facing certain directions were set to −100dBm, corresponding 
to the smartphone Wi-Fi receiver sensitivity. The 2D or 3D 
coordinates of the fngerprint locations are stored in a separate 
table. 

The terminology used to describe the way we apply the VA 
is provided in Table I. The smartphone carried by the user 
initiates a passive Wi-Fi scan every 1/fs seconds. Upon the 
receipt of beacons that are periodically transmitted by Wi-
Fi APs, the phone extracts and records information about 
the beacons received in both ISM frequency bands from 
each Wi-Fi AP within the wireless communication range. 
The information recorded includes the RSSI for each beacon 
received by the phone. This results in a sequence of Wi-Fi scan 
results X1, X2 , . . . , XT . The details of our algorithm that sets 

binary fags F t equal to 1 for each state reachable at time t 
and computes the minimum-cost paths P t for those states and 
the corresponding minimum costs Ct , given F t−1 , P t−1 , and 
Ct−1 are given in Algorithm 1. The cost function, which is 
a measure of dissimilarity between Xt and a fngerprint Yi is 
defned as: qP 

c(Xt, Yi) = [d(Xt, Yi,φ)]
2 , (1)φ∈{E,N,W,S} 

where qP2M td(Xt, Yi,φ) = (x − yi,φ,m)2 , (2)m=1 m 

twhere xm and yi,φ,m are the mth components of Xt and Yi,φ, 
respectively. 

The algorithm described above is an incremental algorithm 
that computes real-time estimates of the user’s location one 
sample at a time. It is applied from time 2, after an initial-
ization step at time 1 is done. In some applications, the user 
location at time 1 is known and assumed to be one of the 
fngerprint locations, say k ∈ {1, 2, . . . , N}. In that case, F 1 

is an all 0s sequence of length N except for a 1 in the kth 

position, P 1 is a sequence of length N , all whose elements 
are set to (0) except for the kth element that is set to (k), and 
C1 is an all-infnity (or the largest number the smartphone can 
represent correctly) sequence of length N , except for the kth 

element which is set to c(X1, Yk). 
In other applications, the user location may not be known 

at time 1. In such cases, it is modeled as being any of the N 
fngerprint locations. In that case, F 1 is an all 1s sequence of 
length N , P 1 = {(1), (2), . . . , (N)}, and 

C1 = {c(X1, Y1), c(X
1, Y2), . . . , c(X

1, YN )}. (3) 

The computational complexity of Algorithm 1 is compa-
rable to that of the KNN algorithm used in basic Wi-Fi 
fngerprinting localization systems. At each time t, both have 
to compute N terms of the form c(Xt, Yi) and they have 
to fnd the minimum among N numbers. The complexity of 
the frst part is O(MN). Algorithm 1 has to additionally 
compare, for each trellis state i at stage t, the minimum 
costs associated with all trellis states j at time t − 1 that 
have a transition to i. If each trellis state has on the average 
transitions to N states at the next stage, then this additional 
cost will be O(NN) comparisons of a pair of real numbers. 
Note that NN is actually the total number of transitions in one 
stage of the trellis. Therefore, the computational complexity 
of Algorithm 1 is O(N(M + N)). 

All the experimental results presented in Section IV are 
based on the frst assumption. That is, the starting location of 
the user is assumed to be known in all test scenarios. 

IV. TESTING AND PERFORMANCE EVALUATION 

In this section, we describe the experimental work we did 
to assess the effectiveness of the causal and non-causal indoor 
localization and tracking system we developed, and we present 
our empirical results along with an analysis of the results. 
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Algorithm 1: Estimate user location at time t in real-
time 

Input : Xt , F t−1 , P t−1 , Ct−1 

Output: F t , P t , Ct , l̂t 

foreach i ∈ {1, 2, . . . , N} do 
c[t][i] = LARGEST POSSIBLE NUMBER ; 
f [t][i] = 0 ; 
foreach state j that has a transition to state i do 

if f [t − 1][j] = 1 then 
if c[t − 1][j] < c[t][i] then 

p[t][i] = p[t − 1][j] appended by i ; 
c[t][i] = c[t − 1][j] ; 
f [t][i] = 1 ; 
Update F t , P t with f [t][i], p[t][i] ; 

end 
end 

end 
c[t][i] = c[t][i] + c(Xt, Yi) ; 
Update Ct with c[t][i] ; 

end 
lt̂ = i associated with the smallest c[t][i] ; 

Fig. 3. Test points deployed in the offce and laboratory building 

A. Evaluation Methodology 

We applied our algorithm to real-world settings in an offce 
environment. 

Test Site: We used an offce environment in a multi-story 
offce and laboratory building, which has brick exterior walls 
and a combination of drywalls and metal walls inside. As 
shown in Figure 3, 230 points, spaced 3 feet apart, were laid 
on the foor over half of the second foor that served as the 
service area for our indoor localization and tracking system. 
This covers an area of 56 m × 24 m with corridors, offces, 
laboratories, and a few offces with cubicles. We used these 
points as locations for fngerprinting as well as performance 
testing. The 2D coordinates of these test points were computed 
relative to a test point at one corner of the service area. There 
are 44 Wi-Fi APs deployed in this building and 33 of them 
were used in the radio map. Signals from the remaining 11 
APs could not be received in the service area. We performed 
all our experiments during regular working hours when people 
were in the building and busy with their daily activities. One 
important feature of this test site is its “one-dimensionality”. 

In most cases, each test point (or fngerprint location) has only 
two immediate neighbors. Only eight points out of 230 have 
three immediate neighbors and two points have only a single 
neighbor. Many papers in the literature have used this type of 
test site. 

Devices: We used two Android smartphones of different 
brands, referred to as Phone A and Phone B hereafter, in 
our experiments. We used Phone A running on Android OS 
7.1.1 for offine data collection and the online testing phase. 
In addition, we used Phone B running on Android OS 9 in 
the online testing phase to check our algorithm’s robustness to 
the use of different brands and models of phones. It does not 
matter exactly which brands and models we used, as phones 
change every few months. 

Wi-Fi Fingerprint Database: As stated earlier, we used 
Phone A to build the fngerprint databases. Standing on top of 
each fngerprint location, the subject held the smartphone in 
the hand and prompted it to do one Wi-Fi passive scan while 
facing each of the four cardinal directions of East, North, West, 
and South. 

Test Scenarios: A test scenario is defned as a trajectory at 
the test site along which a test subject walked at an average 
speed of approximately 1.4 m/s while visiting a number of 
test points in a certain order and holding a smartphone in 
the hand. The test point sequence is planned prior to testing 
and the distance between two consecutive test points in the 
sequence might vary to realistically capture real pedestrian 
motion rather than artifcial, constant speed trajectories. At 
each test point on the trajectory, we made only one Wi-Fi 
scan and had the phone record the results in the same format 
as had been used in the offine fngerprinting phase. A real-
time location estimate at each test point on the trajectory was 
computed using Algorithm 1 based on the Wi-Fi scan made 
at that test point and all others made before reaching that 
test point. Algorithm 1 might backtrack and correct previous 
location estimates when the phone has collected additional Wi-
Fi scan results. The proposed algorithm was evaluated using 
fve different scenarios, each of which includes 93 test points 
and was repeated fve times. Starting and ending locations of 
the trajectories varied, covering different areas of the test sites 
or walking in different directions. Some of the test points were 
visited more than once. For example, two or more consecutive 
test points along a trajectory might be the same, because the 
test subject stayed at that point for a while. Sometimes the 
test subject returned to a previously visited test point. 

For performance evaluation purposes, we estimate L(t) at a 
fnite number of discrete times Λ = {1, 2, . . . , T }. To estimate 
L(t) at any t ∈ Λ, we consider four possibilities: 

1) Use Wi-Fi scan at t only. This is how the basic RADAR 
scheme [1] works. This method has been dubbed KNN in the 
performance fgures that follow and in Table II. 

2) Use Wi-Fi scans at times 1, 2, . . . , t. 
3) Use Wi-Fi scans at times 1, 2, . . . , t + τ , where τ is a 

fxed positive integer called the system lookahead. In this case, 
we do not insist on having the estimate for L(t) right after the 
Wi-Fi scan at time t is made. Rather, we are willing to wait 
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Fig. 4. CDF of localization error in the offce environment 

until τ additional Wi-Fi scans are made before we estimate 
L(t) based on this extended set of Wi-Fi scans. 

4) Use Wi-Fi scans at times 1, 2, . . . , T . In this case, we 
essentially estimate L(t) for all t ∈ Λ based on all Wi-Fi 
scans at times 1, 2, . . . , T . 

The frst two methods are examples of causal localization, 
the last two examples of non-causal localization. In what 
follows, we compare the performance of these four methods. 
We compute the mean localization error, root mean square 
(RMS) error and the standard deviation of the localization 
error. Since all the test points are on the same building 
foor, we focus on horizontal performance of the algorithm. 
Along with these commonly used performance metrics, we 
also include the 95-percentile and 50-percentile points on the 
Cumulative Distribution Function (CDF) of circular error, i.e. 
CE95 and CEP, respectively, according to the guidance from 
the international standard ISO/IEC 18305, Test and evaluation 
of localization and tracking systems [12]. 

B. Performance Comparisons 

Table II compares the performance of three localization and 
tracking systems in the offce environment. These systems are 
based on the KNN algorithm (with K = 1) corresponding 
to the frst of the four methods described earlier, the second 
method, and the fourth one. These methods have been dubbed 
KNN, VA (Causal), and VA (Non-Causal). The unit for all 
numbers in the table is meters. Figure 4 shows the Cumulative 
Distribution Functions (CDFs) of localization error for the 
three approaches in the offce environment. Both proposed 
approaches based on the VA achieved remarkable improve-
ment over the KNN on almost all performance metrics. The 
improvement, however, is more pronounced for VA (Non-
Causal). As for VA (Causal), the overall mean localization 
error reached 1.584 m and the CEP was 0.915 m, which 
are 30% and 50% smaller than corresponding performance 
fgures for KNN, respectively. The VA (Non-Causal) system, 
which continuously makes corrections to all location estimates 
along the user’s trajectory, further reduced the overall mean 
localization error to 0.7 m, while its RMS error and the 
standard deviation of its error were both less than 1.5 m. It 
is worth noting that only 5% of the errors were larger than 
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1.83 m, and at least half of the location estimates generated 
by the system matched the test points perfectly, leading to a 
CEP of 0 m. 

When we look at the performance results of the two phones, 
we can see that KNN worked better on Phone A than on 
Phone B in terms of all metrics. This can be explained by 
the fact that the Wi-Fi fngerprint database was built using 
Phone A. The RSSI measured by the two phones at the same 
time and location differ. The same is true for RSSI measured 
by the same phone at the same location, but at different 
times. Regardless of whether we look at VA (Causal) or VA 
(Non-Causal), the performance fgures on both phones were 
enhanced with the use of the VA. However, it is surprising 
that our algorithm had even higher performance on Phone B 
than on Phone A for most metrics. 

For any time t ∈ Λ and any lookahead τ ∈ {0, 1, . . . , T −t}, 
let L̂ 

t,t+τ denote the estimate of user location at time t 
computed by the VA based on Wi-Fi scan results through 
time t + τ . Also, let τmin be the smallest number in the set 

ˆ{0, 1, . . . , T − t}, such that L̂ 
t,t+τ = Lt,T , for any τ ≥ τmin. 

As defned, τmin is the minimum lookahead beyond which the 
location estimate L̂ 

t,t+τ converges to L̂t,T . Figure 5 shows the 
CDF of τmin in our experiments. The mean of τmin is 16 time 
steps, and the 50- and 80-percentile points on its CDF are 
11 and 33 time steps, respectively. In the context of the two 
use cases described in Section I (after the fact path estimation 
in the surveillance application and for the person visiting a 
trade show), it does not matter whether τmin is large or small. 
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TABLE II 
PERFORMANCE COMPARISONS IN THE OFFICE ENVIRONMENT 

Phone Method Mean Error RMS Error STD of Error CE95 CEP 

Phone A 
KNN 
VA (Causal) 
VA (Non-Causal) 

2.014 
1.678 
0.798 

2.899 
2.845 
1.653 

2.084 
2.297 
1.448 

6.394 
6.470 
1.831 

1.824 
0.915 
0.912 

Phone B 
KNN 
VA (Causal) 
VA (Non-Causal) 

2.484 
1.490 
0.608 

3.345 
2.457 
1.250 

2.241 
1.954 
1.093 

7.316 
6.371 
1.871 

1.830 
0.915 
0.000 

Overall 
KNN 
VA (Causal) 
VA (Non-Causal) 

2.249 
1.584 
0.703 

3.130 
2.658 
1.466 

2.177 
2.134 
1.286 

6.473 
6.444 
1.833 

1.829 
0.915 
0.000 

Fig. 7. Performance vs. dmax in the offce environment 

One can afford to wait and work with the entire time series 
of Wi-Fi scans from time 1 to time T to estimate the entire 
user path. However, there may be use cases where one is not 
allowed to use an arbitrarily large lookahead. In such cases, it 
is not desirable for τmin to get too large. Figure 5 has a number 
of implications. We discus two of them. First, it implies that 
28% of the time, the VA (Causal) algorithm generates the same 
location estimate at time t that VA (Non Causal) does after 
observing all Wi-Fi scans through time T , i.e. L̂ 

t,t = L̂t,T . 
Second, it implies that we need to use a lookahead of 49 time 
steps if we wish to ensure with 95% probability that we can 
generate a location estimate that is the same as l̂t,T . 

Figure 6 shows the performance of the third method de-
scribed at the end of the previous subsection. It shows that 
mean localization error is minimized for lookahead values 
τ = 7, 8, 9 and then it starts increasing beyond τ = 9. That is, 
some lookahead would be good, but too large a lookahead 
may not be as good. This may appear counter-intuitive at 
the frst glance based on the results presented earlier that 
showed VA (Non-Causal) is superior to VA (Causal). The 
explanation is that method 3 with a fxed lookahead τ may 
result in a sequence of L̂ 

t’s that does not correspond to any 
legitimate path in the trellis diagram. It may result in lower 
mean localization error than what is achievable with the second 
or fourth method, but we know that a path with jumps and wall 
breaches is not realistic. 

In Section III, we suggested that points in a square lattice 
that are approximately within distance vmax/fs of a given 
lattice point should be regarded as reachable from that lattice 
point during one Wi-Fi scanning period 1/fs, unless they are 
on the other side of a wall. The radius of the circle drawn 
with dashed red line in the left part of Figure 1 determines 
connectivity in our trellis diagram. It is not a hard and fast 
rule that the radius of this circle should be vmax/fs. It is 
worthwhile to study the effect of the radius of that circle on 
the accuracy of our proposed method based on the VA (Causal 
or Non-Causal). Let dmax denote the radius of the circle. It 
turns out that dmax is an important parameter in the operation 
of our VA-based system. If dmax is set too small, our proposed 
method (causal or non-causal) cannot keep up with the user’s 
movements, because transitions to the neighboring points of 
a lattice point may be severely limited. This results in large 
localization errors. On the other hand, if dmax is on the order 
of the diameter of the service area for the localization system, 
the performance of the VA-based algorithms approach that of 
the KNN algorithm, which uses the “closest” fngerprint to 
Wi-Fi scan result Xt as L̂(t). (Actually, it is safer to say that 
“if dmax tends to infnity, ..........”. The reason is that if the 
distance between two lattice points is close to the diameter 
of the service area, the presence of walls may make the 
shortest path between those points considerably longer than 
the diameter of the service area. In other words, crow’s fights 
are not possible.) As dmax gets larger, so does the connectivity 
in the trellis diagram and the computational complexity of our 
method (causal or non-causal). Eventually, we reach a situation 
where every lattice point is reachable from all others. That’s 
when the performance of our method (causal or non-causal) 
will be the same as that of the KNN. The use of a large dmax 

would make transitions to far away points possible, defeating 
the whole point of using the VA to prevent jumps. Therefore, 
there has to be a happy medium for the value of dmax that 
works best. This happy medium is typically a bit larger than 
vmax/fs. In the empirical results we presented earlier in this 
section, we used the same value of dmax for all experiments. 
The values of dmax used in the offce environment was 2 m. 

Figure 7 shows the performance of the VA (Causal) and 
VA (Non-Causal) systems as a function of dmax in the offce 
environment. We have also shown the performance of the KNN 
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Fig. 8. CDF of localization error for different dmax values in the offce 
environment 

algorithm, which is independent of dmax. The performance 
metrics examined in this fgure are mean error and CE95. 
As expected, the fgure shows that the performances is poor 
at small values of dmax, but there is a sharp improvement 
when dmax reaches approximately 2 m. The performance 
continues to improve as dmax is increased until we get to 
the happy medium mentioned above. From that point on, the 
performance degrades as dmax is increased, even though not 
always monotonically. Figure 8 shows the CDF of localization 
error of the VA (Non-Causal) system in the offce environment 
for different values of dmax. It shows that dmax = 2 m is 
the best choice, resulting in the highest curve. For reference 
purposes, we have also shown the CDF of localization error for 
the KNN algorithm. Note that dmax = 1 m and dmax = 1.5 m 
are bad choices making the VA (Non-Causal) system inferior 
to the KNN algorithm. 

V. CONCLUSIONS 

This paper presented the notion of non-causal localization. 
We developed one such indoor localization system in the 
context of Wi-Fi fngerprinting. The proposed method uses 
the VA as well as the knowledge of building foor plans. It is 
possible to use our system in the causal mode, where location 
estimates are generated in real-time, with fxed lookahead, 
and in a mode that uses all observations available through 
time T . We empirically evaluated the performance of our 
method in an offce environment and compared it with the 
basic Wi-Fi fngerprinting method using the KNN algorithm 
as a baseline. Our empirical results suggest that our method, 
regardless of whether it is used in the causal or non-causal 
mode, outperforms basic fngerprinting. The improvement in 
localization accuracy achievable with the VA (Non-Causal) 
system, in particular, over basic fngerprinting is substantial. 
We also showed that using a fxed lookahead τ can lead to 
lower mean localization error than to use all observations 

through time T . We showed that the computational complexity 
of our method is comparable to that of the basic Wi-Fi 
fngerprinting method. 

Even though we developed our method in the context of 
Wi-Fi fngerprinting, we believe the same techniques can be 
applied to other types of localization systems. In addition, 
it would be worthwhile to assess the performance of the 
proposed method in a truly two-dimensional service area 
covering not just corridors, but also all rooms/offces. 

DISCLAIMER 

Certain commercial entities, equipment, or materials may be 
identifed in this document in order to describe an experimental 
procedure or concept adequately. Such identifcation is not 
intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor is it 
intended to imply that the entities, materials, or equipment 
are necessarily the best available for the purpose. 
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