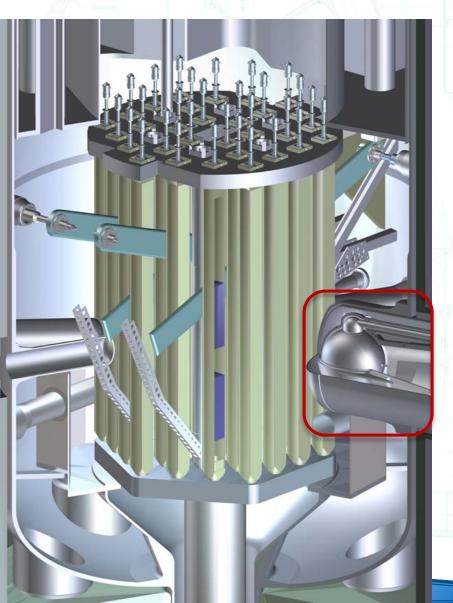


Upgraded Helium Refrigerator

Ryan Fangmeyer

Background

- Conversion to Low Enriched Uranium (LEU)
- Replacing existing hydrogen cold source with deuterium cold source
- New cold source has increased heat load and requires upgraded 7kW helium refrigerator
- New refrigerator received from EDEN Cryogenics uncompleted
 - NCNR will complete and start up the refrigerator



Importance

- Maintaining standards of the NCNR
- Vital to the mission of the NCNR
 - Improving the quality of the cold neutrons supplied to the researchers

Creation of New Cold Source

 Existing hydrogen cold source is being replaced with more efficient deuterium cold source

The deuterium cold source will compensate for the loss in flux

The entirety of the system is being upgraded

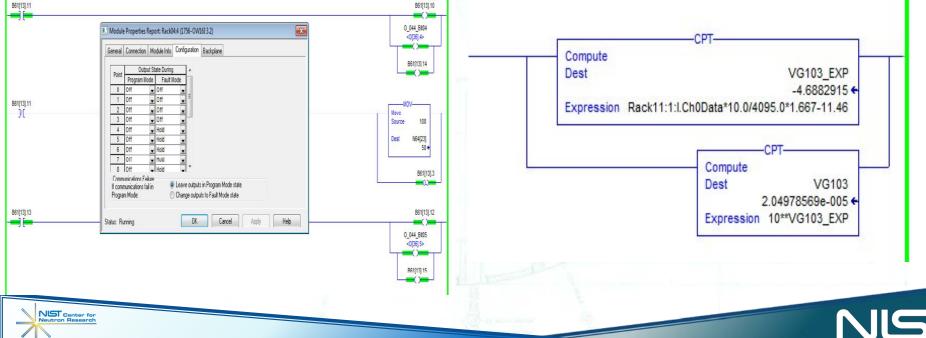
Helium Refrigerator Background

Helium refrigerant

- Pressure drop turbine allows for greater temperature drop
 - Must be enclosed in vacuum
 (10⁻⁶ Torr)
 - Supplies cold helium to the condenser which condenses the deuterium gas

Project Summary

- Programming
 - Programmable Logic Controller
- Human Machine Interfaces
 - Display screens, Alarm, and Bypass screens
- Electrical
 - Wiring, Diagrams, Instrumentation, Air Actuated Control Valves
- Mechanical
 - Turbomolecular Pump

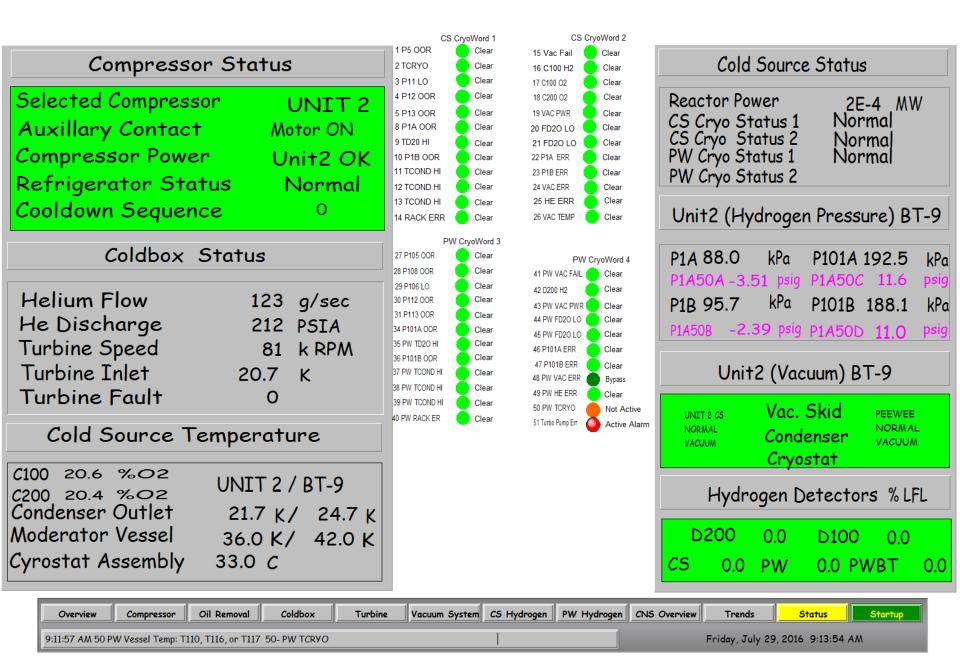


Programming & PLC

Ladder logic software

Inputs vary from 4-20mA, 0-10V, or 1-5V which are converted to counts

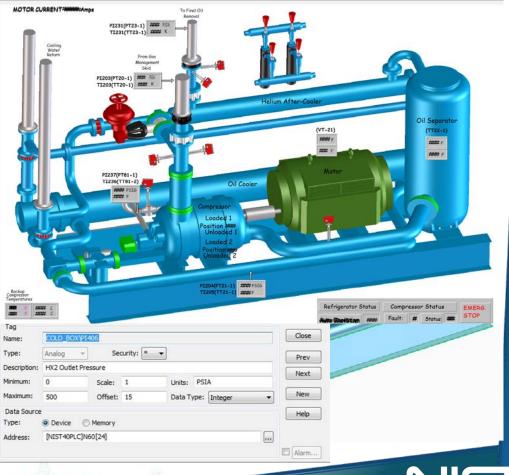
Counts are used to create engineering units


Human Machine Interfaces

- Visual representations of instruments and systems for the reactor operators and engineers
- Uses memory variables called tags to interact with the PLC memory
- Compressor Room/Alarm screen/Bypass screen

g me:	COLD_BOX	PT406							Close
		_		1					
be:	Analog	_	curity: * 🔻	J					Prev
scription:	HX2 Outlet Pressure						_ [Next	
imum:	0	Scale:	1	Units:	PSI	A			
ximum:	500	Offset:	15	Data Ty	/pe:	Integer		, (New
langer.	INTET 4001 C	IN60[24]							
neric Disp eneral Cc Expressi	[NIST40PLC lay Properties ommon ion BDXXFI406)		-	4		_] Alarm.
eneral Co Expressi	lay Properties		onal) (Arithmet	ic) B	titwise		ctions)	Tag	

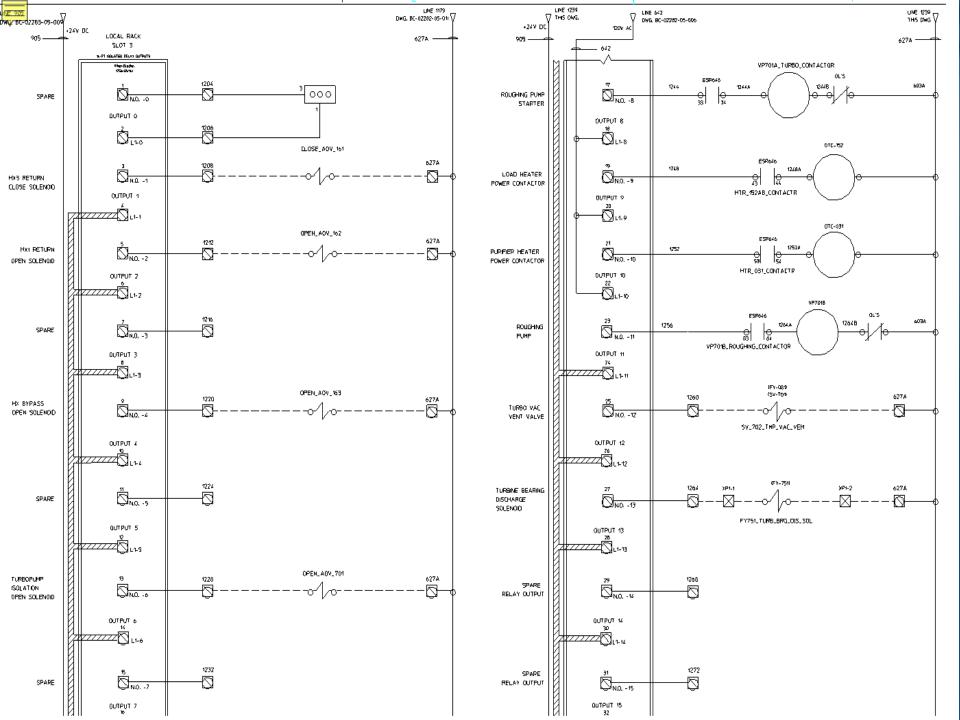
System Status


ALARMS BYPASSED

Creation of Display Screens

- Begins with creation of CAD model of unit
- High Resolution Print to .tiff file
- Conversion to Factory Talk wallpaper
- Creation of tags for each instrument
- Placement of display components for data values

NIST Center for Research



Electrical & Diagramming

 Wiring of several controls, actuators, transmitters, and PLC connections

- Wiring diagrams kept up to date
- Determining the installation of specific instruments
 - (research/contacting people/verifying wiring)

Electrical & Testing

 Pressure testing of transducers, solving problem with continuity
 Must determine varied input the PLC will read based on pressure

Electrical & Troubleshooting

 Air Actuated Control Valves
 Calibration, troubleshooting, programming of limit switches

 Digital limit switches or mechanical limit Switches

High or low digital readings

Mechanical Installations

Turbomolecular pump

- Conduit created and installed
- Terminal box created, pinned, then wired
- Create PLC interface

Conclusions

- Refrigerator is closer to operation
- Turbine instrumentation installation completed
- Vacuum system is now operational
- Control valves are now operating properly
- HMI display more comprehensive

Future Work

- Compressors operational
- Flowing helium, completing cold box, cooling helium
- Replacing the operating refrigerator
- Expected to be commissioned in 2017

17

Acknowledgements

Michael Middleton

Dennis Nester

Dr. Julie Borchers

Bryan Eyers Sean Mullendore Dr. Joseph Dura

National Science Foundation – CHRNS

