NISTIR 5691

Unravel: A CASE Tool to

Assist Evaluation of

High Integrity Software

Volume 1: Requirements and Design

James R. Lyle
Dolores R. Wallace
James R. Graham
Keith B. Gallagher
Joseph P. Poole
David W. Binkley

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards

and Technology

Computer Systems Laboratory
Gaithersburg, MD 20899

NIST

NISTIR 5691

Unravel: A CASE Tool to

Assist Evaluation of

High Integrity Software

Volume 1: Requirements and Design

James R. Lyle
Dolores R. Wallace
James R. Graham
Keith B. Gallagher
Joseph P. Poole
David W. Binkley

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards

and Technology

Computer Systems Laboratory
Gaithersburg, MD 20899

August 8, 1995

DOC Seal

U.S. DEPARTMENT OF COMMERCE

Ronald H. Brown, Secretary
TECHNOLOGY ADMINISTRATION

Mary L. Good, Under Secretary for Technology
NATIONAL INSTITUTE OF STANDARDS

AND TECHNOLOGY

Arati Prabhaker, Director

Unravel: A CASE Tool to Assist Evaluation
of High Integrity Software
Volume 1

Abstract

Current practice for examination of a high integrity software artifact is often a manual process
that is slow, tedious, and prone to human errors. This report describes a Computer Aided
Software Engineering (CASE) toalnravel, that can assist evaluation of high integrity software

by using program slices to extract computations for examination. The tool can currently be used
to evaluate software written in ANSI C and is designed such that other languages can be added.

Program slicing is a static analysis technique that extracts all statements relevant to the
computation of a given variable. Program slicing is useful in program debugging, software
maintenance and program understanding. Application of program slicing to evaluation of high
integrity software reduces the effort in examining software by allowing a software reviewer to
focus attention on one computation at a time. Once a software reviewer has identified a variable
for further investigation, the reviewer direaiaravel to compute a program slice on the variable.
Instead of examining the entire program, only the statements in the slice need to be examined
by the reviewer. By speeding up the process of locating relevant code for examination by the
reviewer, a larger sample of the software can be inspected with greater confidence that some
relevant section of source code has not been missed.

The source code farnravel is available and requires a UNIX or POSIX environment, an ANSI
C compiler and the MIT X Window System, version 11 release 5 or later.

Volume 1 of this report describes the requirements, design and evaluatiomaxfel. Volume
2 is a user manual and tutorial for theravel software.

Key Words

Code Analysis; High Integrity Software; Inspections; Program Slicing; Program Understanding;
Reviews; Software Safety; Software Tools; Static Analysis

Trademarks

SPARCSstation 2 is a registered trademark of SPARC international, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
The X Window System is a trademark of Massachusetts Institute of Technology

Unravel: A CASE Tool to Assist Evaluation
of High Integrity Software

Executive Summary

Unravel is a prototype Computer Aided Software Engineering (CASE) tool that can be used to
statically evaluate ANSI C source code using program slicing. Developmeamraivel was
funded by both the United States Nuclear Regulatory Commission (NRC) and the National
Communications System (NCS) under contracts RES-92-005, FIN #L24803, and DNRO46115,
respectively. Under the terms of those contracts, the National Institute of Standards and
Technology (NIST) supplied the prototype to both funding parties.

Program slicing is a static analysis technique that extracts all statements relevant to the
computation of a given variable. Program slicing is useful in program debugging, software
maintenance and program understanding. Application of program slicing to evaluation of high
integrity software reduces the effort in examining software by allowing a software reviewer to
focus attention on one computation at a time.

By combining program slices using logical set operatians;avel can identify code that is
executed in more than one computation. This information is immediately useful for addressing
issues of high integrity software, since a failure involving this code may lead to a malfunction

of more than one logical software component. In the case of safety systems, which commonly
use several computations for protection, common code among them can provide a single point
of failure. In the case of security, what may have been perceived as a secure path may be
penetrated by an otherwise unsuspected approach. The identification of common code enables
the developer to consider redesign or to emphasize verification and validation activities in those
regions to provide assurance of the program.

Unravel was evaluated in the context of reviewing safety system software for quality. The
evaluation considered the size of slices produced, time to compute slices and usability by a
novice user. The objectives of the evaluation were to determine the following:

1. Are program slices smaller than the original program to an extent that is useful to a
software reviewer evaluating a program?

2. Can program slices be computed quickly enough to be useful?

3. Isunravel usable by a novice user?

Two examples of typical safety system code were used to test and vefiaeel. Demonstration

of unravel using these and other examples were given to software reviewers. The
demonstrations resulted in improvements to the user interface and in the identification of features
to be explained in more depth in the user manual or to be included in a later versioraotl.

Examination of software is often a manual process that is slow, tedious, and prone to human
errors. Withunravel, once a reviewer has identified a variable for further investigation, the
reviewer directaunravel to compute a program slice on the variable. Instead of examining the
entire program, the reviewer only needs to examine the statements in the slice. By speeding up
the process of locating relevant code for examination by the reviewer, a larger sample of the
software can be inspected with greater confidence that some relevant section of source code has
not been missed.

Without any tool, a reviewer evaluates the software for common code by manually searching for
code shared between two computations until it is determined that there is no common code, or
that the common code present will not compromise the mission of the safety critical software.
With unravel, once two computations that could be vulnerable to common mode failure have
been identified, program slices can be computed to find statements relevant to each computation.
Source program statements that have potential to cause common mode failure would be present
in the intersection of the program slices.

Unravel consists of three main components, called the analyzer, linker and slicer. The analyzer
and linker components can process up to 100,000 lines of source code in less than 10 minutes.
The linear behavior of the analyzer and linker leads to stable run time performance. The slicer
component does not use a linear algorithm, but rather uses a quadratic algorithm that can have
significant run time variability. It should be noted that there is potential for significant algorithm
improvement. For example, after one small change in the slicer code the longest time on a
SPARCSstation 2 to compute a slice on code from a 4,000 line actual safety system dropped, from
10 hours to 3 hours. Other areas that can be improved include loop analysis and procedure calls.

Certain trade names and company products are mentioned in the text or identified. |n no
case does such identification imply recommendation or endorsement by the Nationa
Institute of Standards and Technology, nor does it imply that the products are necessarily
the best available for the purpose.

Vi

Symbol Glossary

Symbol Example Meaning of Example

{} {x} the setwith x as a member

O xOA X is a membenf set A

O 0x, >x>0 for all x such thatx is positive

O X, >5x>0 there existsan x that is positive

N AnB intersectionof A and B; members in
both

[A OB union of A and B; members in eithe

U U the empty setthe set with no
members

3 Ox2x>0 for all x such that Xs positive

O xOA X is not a membenof set A

Vii

viii

Table Of Contents

ADSIIaCT . . . o iii
EXECULIVE SUMMAIY. e %
Symbol Glossary. Vil
1 INtroduCtioN 1
2 Slicing ANSI C . .o 3
2.1 Definitionso 3
2.2 General Description. 5
2.2.1 Program Slicing Algorithm 6
2211 Expression Statements. 7
2.2.1.2 Compound Control Statements. 9
22.13 Structure Variables. 10
2214 Indirect Assignment by Pointer. 10
2215 Indirect Reference by Pointer 13
2.2.1.6 Dynamic Structures. 14
22.1.7 References to Structure Members by Pointer ... 14
2.2.1.8 Assignment to Structure Members by Pointer. .. 15
2.2.1.9 Procedure Calls 16
2.2.2 Algorithm Limitations. 16
2.2.3 Assumptions About Users. i 17
2.2.4 General Constraints and Assumptions. 17
3 Unravel Requirements e e e 19
3.1 Scanner Requirements. 19
3.2 Parser Requirements. 20
3.3 Language Independent Format Requirements. 22
3.4 Slicing Algorithm Requirements 23
3.5 System Map Requirements 25
3.6 Linker Requirements 26
3.7 User Interface And Help System Requirements 29
4 Unravel Design. 33
4.1 Analyzer 33
4.1.1 SCANNEI. 33
4.1.2 ParSer. 34
4.2 Language Independent Representation 35

iX

421 File.C. . .. 36

422 Fileh. ... 36
423 FilelLlF . .. 36
4.2.3.1 Flow-Graph. 36
4.2.3.2 Procedure Headers. 39
4.2.3.3 Declarations. 40
4234 Expressions 41
4.2.3.5 Procedure Calls 42
4.2.3.6 Structure Fields. 42
424 FileT .. 44
425 FileH .. 45
426 SYSTEM. 46
427 FileK .. 47
4.2.8 File.LINK 48
4.3 SlCer. . . 48
4.3.1 Procedures 48
4.3.2 Data StUruCtures. 50
A4 LiNKer 51
441 Map . o 51
4.4.2 SINK 51
4.5 User Interface and Help System. 52
44.1 Main Control Panel 53
4.4.2 Analyzer ControlPanel 55
4.4.3 Selection Control Panel. 56
444 Slice Control Panel 57
5 System Evaluation & Performance 63
5.1 Capability Analysis. 63
52 Timing AnalysSiS 64
5.2.1 Analyzer TiIming.t 65
5.2.2 Linker TiMiNg 67
523 Slicer Timing. 67
5.3 Analysis Summary. 69
6 References. 71
Appendix A: LIF Format 73
Appendix B: YACC Grammarottt e e e 75
B.L EXPresSiONS . . . o oot 75
B.2 Declarations. e 76
B.3 Statements. 78
B.4 External Objects. e 79

List of Tables

2-1: Slicing Example Data-Flow Set 8
4-1: Unravel System Files. 35
4-2: File.T Fields For Defined Or Called Procedures. 44
5-1: Slice Size AnalysSis. 64
5-2: Analyzer Results for simplified Example. 65
5-3: Analyzer Results for Commercial Code 65
5-4: Analyzer Results for Unravel 66
5-5: Linker ResUltS 68
5-6: Slicer Results for Unravel Code. e 69

Xi

List of Figures

2-1: Unravel Structure OVEIVIEW o ot o e e e e e e e e e 6
2-2: Slicing Examples Program. 9
2-3: Pointer State For ™ A e 11
2-4: Pointer Code Fragment 12
2-5: Pruned Pointer State For ***A 13
4-1: Unravel Analyzer Structure Design. i 34
4-2: |F Statement Control Flow 38
4-3: WHILE Statement Control Flow 39
4-4: FOR Statement Control Flow. 39

Xii

1 Introduction

This report describes the design and developmennadvel, developed at the National Institute

of Standards and Technology (NIST). Developmentiofavel was funded by both the United
States Nuclear Regulatory Commission (NRC) and the National Communications System (NCS)
under contracts RES-92-005, FIN #L24803, and DNRO46115, respectiveiyravel is a
Computer Aided Software Engineering (CASE) tool that can be used to statically evaluate ANSI
C[1] source code using program slicingdnravel may also be used to examine software code
for computer security functions. The tool can currently be used to evaluate software written in
ANSI C and is designed such that other languages can be added.

Program slicing is a static analysis technique[3] that extracts all statements relevant to the
computation of a given variable. Program slicing is useful in program debugging[4], software
maintenance[5] and program understanding[6]. Application of program slicing to evaluation of
high integrity software reduces the effort in examining software by allowing a software reviewer
to focus attention on one computation at a time. Once a software reviewer has identified a
variable for further investigation, the reviewer direatgavel to compute a program slice on the
variable. Instead of examining the entire program, only the statements in the slice need to be
examined by the reviewer. By speeding up the process of locating relevant code for examination
by the reviewer, a larger sample of the software can be inspected with greater confidence that
some relevant section of source code has not been missed.

Unravel is intended to support the understanding and evaluation of software by allowing the user
to investigate a program through program slices.

To achieve the goal of makingnravel a portable and easy to use slicing tool, the following
general requirements were met:

. The user must be able to executeravel with minimal knowledge of the platform on
which it resides.

. The user must be able to interactively specify criteria for computing program slices.
. The user must be able to view program slices on-screen.

. The user must be able to perform logical set operations (e.g., intersections) on program
slices.

. The user must be able to usaravel without needing to understand the intrinsics of the
program; hence a user manual and user interface must contain all operational information.

. The implementation must comply with the following standards: POSIX[9] operating
system interface, ANSI C, and the X Window System[10].

The source code farnravel is available and requires a UNIX or POSIX environment, an ANSI
C compiler and the MIT X Window System, version 11 release 5 or later.

Section 2 discusses slicing ANSI C. Section 3 contains the requirements for buildiagel.

Section 4 consists of the design ofravel. Section 5 provides the system evaluation and
performance report. Appendices A and B contain the Language Independent Format and the
Yacc ANSI C grammar respectively. Volume 2 is theravel user manual.

2 Slicing ANSI C

Program slicing can be used to transform a large program into a smaller one containing only
those statements relevant to the computation of a given variable. Program slices have been
shown to aid program understanding, program debugging, program maintenance, and automatic
integration of program variants[7].

This section describes the algorithms for building a program slicing tool[2] for ANSI C. Section
2.1 presents definitions and terminology; section 2.2 gives a general description of program
slicing, its limitations, and assumptions about the expected usarsrafel.

2.1 Definitions
This section contains definitions relevant to program slicing.

Active Set. The active set at statememfor slicing criterion 4, V> is a set of program
variablesactive(n) such that the value of any member of actiyg(st before execution

of statementn could influence the value oY just before execution of statemeht
Informally, the active set is the set of variables that determine the value of the criterion
variable at the criterion location.

Code Generator. See Compiler.
Code Improver. See Compiler.

Compiler. Production of an object program from a source program is often modeled with
concepts from linguistics. A source program is viewed as consisting of words from a
vocabulary. The words are assembled into valid sentences of the language that form
program statements. Each sentence is used to generate object code corresponding to each
program statement. Modern compilers are usually designed in four components:

1. Scannerreads the program source code and collects strings of characters into the
fundamental vocabulary units of the programming language called tokens. This
vocabulary contains language key words, operators, text strings and identifiers.

2. Parser takes the tokens produced by the scanner and a grammar describing the
language and checks that the sequence of tokens represents valid sentences in the
language. A sequence of tokens that is not a valid sentence of the language
grammar is asyntax error

3. Code Generator is called by theparser for each valid sentence thearser
recognizes to produce corresponding object code.

3

4. Code Improver Uses data-flow analysis to revise the produced object code so that
the run-time execution is faster or requires less memory. This step is usually
calledcode optimization

Data-Flow Analysis. Using information about program structure, variable initialization,
assignment of values to variables, and use of program variable values to answer questions
about the behavior of program variables. Data-flow analysis is often used in compiler
optimization of generated object code.

Defs(n). The set of variables defined (assigned to) at statemet data-flow analysis,
modification of a variable is called a definition of the variable.

Dependence Graph. A program representation, defined by Ferrante[8], with many
applications to program manipulation including program slicing. The Pp@gfam
dependence graphas the same nodes adlaw-graphbut the edges represent control
and data dependence within a program.

Flow Graph. A representation of the control structure of a program as a directed graph.
The nodes of the graph correspond to statements or contiguous tokens of a source
program. The edges correspond to program control flow.

Idefs(n). The set of variables specifying indirect assignment by a pointer at statement
n. Each idef entry is a pair indicating a variable and a level of indirection. Level O
represents a direct assignment to the variable. Level 1 represents an assignment to a
variable whose address is contained in the idef entry variable.

Irefs(n). The set of variables specifying indirect reference by a pointer at statament
Each iref entry is a pair indicating a variable and a level of indirection. Level O
represents a direct reference to the variable. Level 1 represents a reference to a variable
whose address is contained in the iref entry variable.

Parser. See Compiler.

Pointer. A variable that contains the address of a variable or other program object such
as a procedure.

Pred(n). The set of statements that can be executed immediately before statement
The predecessors of

Program Slice. Given a syntactically correct source program P, in some programming
language, and a slicing criterion C<t.,vV>. WhereL is a location in the program and

V is a variable in the program. S is a slice of program P for criterion C if the following
are true.

2.2

1. S is derived from P by deleting zero or more tokens from P.
2. S is syntactically correct.

3. The value of V just before control reaches location L is the same for
EXECUTE(P) as EXECUTE(S).

Program Dice. The result of application of logical set operation to two or more program
slices is a program dice. The intersection of two slices yields the statements in common
to both computations. A software fault in the common code can be a single point of
failure for both computations. The intersection of one slice with a logical complement
of a second slice yields the set of statements in the first slice that has no influence on the
second computation. This is useful when trying to isolate a fault in the second
computation.

Refs(n). The set of variables referenced at statement

Requires(n). A set of nodes that is required to also be included in a slice along with
noden. The set is used to specify control statements (éfggr while) enclosing
statementn or other tokens that are syntactically part of statemeribut are not
contiguous with the main group of tokens comprising the statement.

Scanner. See Compiler.

Slicing criterion. A slicing criterion, for a program is a tupleL,V> wherelL is a
statement in the program andis a variable. A program slice is computed V, at
statement L Where the meaning is clear from conteXt,is extended to a subset of
program variables.

Succ(n). The set of statements that can be executed immediately after statement

Token. The output of the scanner and input to the parser; the fundamental lexical units
of a language.

General Description

Unravel is divided into three main components: a source code analysis component, a link
component, and an interactive slicing component. The analysis component collects from source
files (with a.c extension) and included header files (usually witm &xtension) the information
necessary for the computation of program slices. The information is translated to a representation
independent of source language called language independent format (LIF). The analyzer is
designed like a compiler with a scanner to break the source code into tokens that are recognized
by a parser, but instead of generating object code, it produces LIF code. The analyzer also
produces a tally of objectsT file) such as procedures and variables, and a file to list global

objects (H file) declared in each included header file. The link component operates in two parts.
The first part,map, identifies for each program in the current directory its constituent files and
then saves this information in a file nam&8YSTEM. The second part of the link component,

slink, uses theSYSTEM file to merge data-flow information from thé.IF, .T and.H files

created from separate source files into a singl&K file and a single.K file. Under user
control, the interactive component extracts and displays program slices and keeps a record of user
activities in a.LOG file. The overall structure ofinravel is presented in Figure 2-1.

© a \

° Analyzer: ° Map &
° scanner & o Linker
° parser °

Slicer and

Interface

Figure 2-1: Unravel Structure Overview

2.2.1 Program Slicing Algorithm

A program slicing algorithm must locate all statements relevant to a given slicing criterion. The
essence of a slicing algorithm is the following: Starting with the statement specified in the slicing
criterion, include each predecessor that assigns a value to any variable in the slicing criterion and
generate a new slicing criterion for the predecessor by deleting the assigned variables from the

original slicing criterion and adding any variables referenced by the predecessor. The slicing
algorithm considers the following language features:

Expression statements

Compound control statements

Structure variables

Indirect assignment by pointer

Indirect reference by pointer

Dynamic structures

References to structure members by pointer
Assignment to structure members by pointer
Procedure calls

OCoOo~NO UL, WDNPEF

2211 Expression Statements

An expression statement is the primary method in ANSI C of expressing an assignment of a
computed value to a variable. For expression statemgatpredecessor of statement the
defs(n)set and the slicing criterion determine if an expression statement is included in a slice.
Statemennt is included in a slice for criterion™, \»> if statementn assigns a value to variable

V.

[l
s . ES<H,V> if v O defgn)
“my> E{ n} US 0O x O refgn) otherwise

<n,x>

Table 2-1 presents the data-flow sets used in computing program slices of the program of Figure
2-2. For example, suppose we want to know how the value of the vasaldetprinted at line

25 was computed. The specification of a slicing criterion requires a variable and a node in the
flow-graph. Node 18 corresponds to thentf statement at line 25 so, the criterion would be
Sisaeer APPlying this criterion generates a sequence of criteria:

S<18,sweet>: S<l7,sweet>: Cee = S<9, sweet>: {8} 0 S<8, red> 0 S<8,green>

Nodes 9 through 18 do not assign a valuesteeetand are not included in the slice. Node 8
assigns a value teweetbased orred andgreen and therefore node 8 (line 13) is included in
the slice along with slices ored andgreenat node 8. The slice ored consists of nodes 7 and

3; the slice ongreen consists of node 5. The slice is now complete except for some syntactic
dependencies (nodes 1, 2 and 20) that are captured bretheres setexplained in section
2.2.1.2. The nodes included in the slice are marked with an asterisk in Table 2-1.

Line Statement Node Succ Req Defs Refs
1 | main() 1* 2 - - -
211 2% 3 1, 20 - -
7 red = 1, 3* 4 2 red -
8 blue = 5; 4 5 2 blue -
9 green = §; 5* 6 2 green --
10 yellow = 2; 6 7 2 yellow --
12 red = 2*red, 7* 8 2 red red
13 sweet = red*green; 8* 9 2 sweet red, green
14 sour = 0; 9 10 2 sour --
15 i=0; 10 11 2 [-
16 while(i<red) { 11 12, 14 2,14 - i, red
17 sour = sour+green; 12 13 11 sour sour, green
18 i =i+1; 13 11 11 [[
19 } 14 15 - -- -
20 salty = blue+yellow; 15 16 2 salty blue, yellow
21 yellow = sour+1; 16 17 2 yellow sour
22 bitter = yellow+green; 17 18 2 bitter | yellow, green
24 printf("%d %d %d %d\n", 18 19 2 -- sweet, sour
25 sweet, sour, salty, bitter); salty, bitter
26 exit(0); 19 - 2 - -
27 | } 20* -- - -- -

Table 2-1: Slicing Example Data-Flow Set

main()
{

int red, green, blue, yellow;
int sweet,sour,salty,bitter;
int i;

red = 1;
blue = 5;
green = 8§;
10 yellow = 2;

OCoOoO~NOUILDWNPEF

12 red = 2*red,;
13 sweet = red*green;

14 sour = 0;

15 i=0;

16 while (i <red) {

17 sour = sour + green;
18 i=i+1;

19 }

20 salty = blue + yellow;
21 yellow = sour + 1;
22 bitter = yellow + green;

23
24 printf ("%d %d %d %d\n",
25 sweet,sour,salty,bitter);
26 exit(0);
27 }
Figure 2-2: Slicing Examples Program
22.1.2 Compound Control Statements

A compound control statement is a statement that has a condition directly controlling the
execution of another statement (possibly also a compound statement). Control statements such
asif, switch, while, for, anddo ... while should be included in a program slice whenever any
statement governed by the control statement is included in a slice. When control statasent
added to a program slice, the slice on the criteridq) refs(kp is added to the original slice
computation.

A requires set is maintained for each statement to specify an enclosing control statement or to
specify other statements and tokens that should always be included with the statement in a slice.

The rules for representing C statements as flow-graph nodes and for specifying requires sets are
as follows:

1. A statement that is composed of noncontiguous tokens is divided into two or more data-
flow nodes such that each group of contiguous tokens is one or more nodes. Examples are the
matching braces of a compound statement anddthe. while statement.

2. An additional data-flow node is used to represent each C prefix)(postfix (x++) or
comma K+y, z) operator in an expression. A conditional operator uses three additional data-flow
nodes.

3. Any compound statement that is represented with more than one data-flow node has one
node designated for inclusion in requires sets. Any node controlled by the compound statement
references the designated node in its requires set. The other nodes of the compound statement
are referenced in the requires set of the designated node. This strategy reduces the size of the
requires sets.

The rule for slicing expression statements witlfi] defs(n)given in section 2.2.1.1 is actually
a special case of an empty requires set from the following rule:

_ d u g o u U U
Sae = I U5 1 retgn) SoeBY § 0 refi) k O reqn) St

The above rule states that wherl defs(n)add the following to the slice:
. statemenn,
. the slice on each member dfs(n)at statemenn, and
. for each statemenk, a member ofrequires(n) slice on each variable referenced in
statemenk.

2.2.1.3 Structure Variables
A slice on a structure variable is a slice on each member of the structure.
2214 Indirect Assignment by Pointer

Pointers interact with slices both by indirect assignments and by indirect references. To
determine if an expression statement with an indirect assignment should be included in a slice,
every possible location to which a pointer could be pointing must be known. This is often
complicated by using more than one level of indirection. Figure 2-3 shows the pointer state for
the variableA to three levels of indirection for the program fragment in Figure 2P4(n,v) is

the set of variables to whicta might point (dereference to)P,(n,v) is the set of variables to
which *--*v (where there ar& *'s) might point. Note thatP,(n,v) = v and fori > 0, P,(n,v)
={x|x 0Py(ny)0y0P,(nV)}

10

Consider the following statement with an assignment thrautgvels of indirection.
k *'s

——

n*...*A=...

—_

If a statement is included in a slice due to an indirect assignment, then all intermediate indirect
references must be sliced on and unioned with the slice. The funtigmv,x) returns the set

of intermediate pointers that might be used at lea#lindirection for an assignment at statement

n of k levels of indirection through pointer variabgo variablev. TheR function prunes away
indirect pointers that are not relevant to the slicing criterion. At a given level of indirection, say
i, Pi(n,v) is the set of variables that v might point to. The only member®,(i,v) that are
relevant to the slice are the pointers that might dereferenceatiter k-i levels of indirection.
Figure 2-5 shows the pruned sets of indirect pointers for the crif&yig. andSs, ..

RMyv,x) ={r | r OP,(n,x)&v O P (n,n}

For example, there are two sets of intermediate poinkrgn,W,A)andR, 4(n,W,A)required for
pruning Figure 2-5 foW. R, 4(n,W,A)=({B,D}) is the subset of pointer variables from *A that
can dereference @/ by two levels of indirection.R, {(n,W,A)includesB (a member oP,(n,A))
sinceW is a member oP,(n,B). D is also included irR, 4(n,W,A)sinceW [P,(n,D), butC is
not a member sinc& O P,(n,C). R,4n,W,A)=({E,l,J})is the set of variables that dereference
to W and can be reached by dereferencikgvice.

Figure 2-3: Pointer State For ***A

11

For slicing criterionS.,,. wheren O pred(m) and(a,k) O idefs(n)&x [P,(n,a) then statement
n should be included in the slice unioned with slices on variables referenced, the pruned pointer
state and the original criterion variable if the pointer could point to more than one variable.

~(n)
oJs, . OvOrefgn)
Sime = HU S,. if [P(nA)|>10 (@K O idefgn)
Us,, DyDR(nax Oi,0<i<k O(ak O idefqn)

[* integers W X Y Z
pointers to integetrsE FG H I J
pointers to pointer to integeB C D
pointer to pointer to pointer to integer: A

cond() is some condition that is true or false
K ? M : N; ANSI C conditional expression
evaluate M if K is true, otherwise evaluate N

*/

Int ***A **B **C **D *E *F *G *H *I *J-
int W, X,Y,Z;

A = cond() ? (cond() ? &B : &C) : &D;
B = cond() ? &E : &F;

C =cond() ? &G : &H;

D =cond() ? &l : &J;

E =cond() ? &W : &X;
F=&X;G=4&Y;H=2&Z | =&W,
J=cond() ? &W : &Z;

n: **A = ..

Figure 2-4: Pointer Code Fragment

12

Figure 2-5: Pruned Pointer State For ***A
2.2.15 Indirect Reference by Pointer

If a statement with an indirect reference is included in a slice, each variable that might actually
be referenced must be sliced on too. Considkrevel indirect reference such as:

k *'s

J——

nNA=...*...*B...

For slicing criterion:S., . where nlJ pred(m) and statement is included in the slice then the
following should also be unioned to the slice:

S, dvOP(nb)lh, 1<i=<k, O(bk)UO irefs(n)

13

2216 Dynamic Structures

Dynamic structures are created by obtaining a contiguous block of storage allocated to a program
by the operating system. Sinaaravel is a static (not run time) analysis tool, an exact analysis

of dynamic storage is not possible. Tharavel solution is to assume that any assignment to

a dynamic object is also a reference to the dynamic object. This reflects the possibility that
although one object instance may be changed by some statement, other instances of the object
are unchanged and may still be relevant to some computation.

Each storage allocation statement creates a pseudo-variable for the allocated block of memory
that might contain a scaler, an array or a structure. It is assumed that storage is allocated more
than once and the pseudo-variable represents several instances. Each pseudo-variable has an
implicit type attribute that is determined by usage. If the pseudo-variable is used as a structure,
additional pseudo-variables are created for each structure field used.

2.2.1.7 References to Structure Members by Pointer

A reference such as: y = - - -v->a - - - to a field of a structure when statemenis being
included in a slice generates slices on the variatded on the accessed field of each structure
(each variable returned y(n,v) is assumed to be a structure). A mapping frorfvariable,
field) pair to a structure member variabtesF(v,f), must be maintained. This gives the following
modification to the slicing algorithm for references to structure members by pointer (v->a):

0
"
—_— D : . -
ST Us,,,, v, the pointer variable
ous O x O P(n,v), the member a

<nx.a>

A pointer chain expressiois defined as a pointer variable followed by one or more structure
field names separated by the token "->".

n:y:...v_>fl_>..._>fi_>..._>fk...

To generalize to an arbitrary reference through a pointer chain, the following three functions are
useful:

1. crefs(n) is the set of pointer chain expressions in statenment
2. clength(n,x) is the length of (number of fields referenced in) pointer chain expression Xx.
3. field(n,x,i) is thei™ member of pointer chain expressigrin statement.

When a statement containing a pointer chain expression is included in a slice, in addition to
generating slicing criteria for all variables the entire chain might reference, criteria must be

14

generated for each intermediate link in the pointer chain. For example, consider the following
typedefs andstructs:

typedef struct alpha alpha_rec, *alpha_ptr;
typedef struct beta beta_rec, *beta_ptr;
struct alpha {

int value;
beta_ptr b;
2

struct beta {
int C;
%
alpha_ptr a;

alpha_rec r,s,t,u;
beta rec w,x,y,z;

n:.... a>b->x...

Suppose that at statememthe pointer state is such that:

P(n,a) = {st}
P(nr.b) = {wxz
P(n,s.b) = {wy}
P(nit.b) = {y,z
P(n,u.b) = {wx\y}

If statementn is included in a slice, then slicing criteria basedafb->c must be generated
for any variable thab->b->c might designate to account for variables that the entire chain
might reference. Sinca points tos ands.b points tow then one of the criteria iS,,,, ... The
other criteria are for the variablgsc andz.c This example chain has one intermediate link,
a->b that must also be accounted for by generating criterig.bmnds.t

Generating criteria for an arbitrary chain generalizes as follows:

{n
i
S VS, OtOw,w =Fzf) DzOPMNr), Or 0w,
-~ 4 f = fieldnci) Di O01<i<Kk
O where w = field(n,c,0), k = clengti{n,c), O ¢ O crefgn)
2218 Assignment to Structure Members by Pointer

A statement that assigns a value to a structure member by a pointer should be included in a slice
if there is at least one variable in common between the active set and the set of variables to
which the pointer chain points.

15

2.2.1.9 Procedure Calls

When procedure calls are included in a slice, the called procedure needs to be sliced. Procedure
calls are included in a slice for the following reasons:

1.

2.

The procedure call assigns a value to a variable in the active set at the call site.

The call site is part of a statement included in a slice and a value returned by the called
procedure is used in the statement at the call site.

The procedure is a member of the call tree of the procedure containing the slicing
criterion.

To slice procedures lower in the call tree, the following steps are required:

1.

2.2.2

Introduce statements before the procedure entry to assign each actual parameter to the
corresponding formal parameter.

Slice the procedure at the last node using the variables in the active set of the procedure
call.

Algorithm Limitations

There are a number of limitations to the current slicing algorithm:

If the program to be analyzed is not ANSI C, tparser is not able to produce the
various data structures needed for program slicing. This is likely to happen if a C
compiler is used that has implemented extensions to the ANSI C specification. This
limitation is the most likely to causanravel to fail to analyze a program. The only
recourse is to modify the program being analyzed to remove the non-standard code
without changing the program semantics.

Asynchronous UNIX system calls such signal andfork are beyond the state of the art
of program slicing and are ignored.

Variables declared as an ANSI @ion are treated as separate variables.
Pointers to functions are ignored.
The statementgoto, break andcontinue are ignored.

Arrays accessed by pointer instead of indexing are not recognized as arrays and therefore
an assignment to a single array element is treated as an assignment to the entire array.

16

Aliasing, multiple variables referencing the same memory location, is treated as distinct
variables rather than a single variable.

Functions must have a fixed number of formal parameters. vVemnargs and stdargs
variable length parameter lists are ignored.

2.2.3 Assumptions About Users

The users ofinravel are assumed to be knowledgeable about computers and ANSI C, but they
may not be familiar with UNIX, POSIX or program slicing.

2.2.4 General Constraints and Assumptions

Unravel assumes a UNIX environment with an ANSI C compiler, the X Window System,
Version 11, Release 5 and the MIT Athena widget library.

Programs to be analyzed ljpravel are assumed to be syntactically correct ANSI C with
no language extensions.

Programs are assumed to use the standard ANSI C library[1] and no other libraries.

Programs are assumed to be a single process, i.e., no multitasking, no asynchronous code,
no forks and nosignals

An ANSI C preprocessor is assumed to exist to procegs@mmands (e.g#defineand
#include) and to remove comments. The ANSI C preprocessor should itdied
directives to indicate location and file of included statements fé#nelude directives.

Files included £include header.h) by the ANSI C preprocessor contain only ANSI

C preprocessor directives or ANSI C declarations. Files included by the ANSI C
preprocessor do not contain procedure bodies or executable statements.

17

18

3 Unravel Requirements

The functional requirements are divided isicanner, parser, LIF, slicing algorithm, system map,
linker, user interface, and help systemquirements. The function of thaicer is to extract
program slices for theiser interfaceto display. Theslicer depends on information about the
program collected by thecannerandparserthat is bound together by tHaker.

Requirements that would enhanoeravel (i.e., nice to havg but would not makeunravel
unacceptable if absent are labeledlasirable Requirements that may not be worthwhile to add

to unravel or that might be added tonravel if time permits are labeledptional All unlabeled
requirements are mandatory.

3.1 Scanner Requirements

Input is ANSI C source program files. Output is a token stream tqo#rser.

R1.1 Recognize all ANSI C keywordsuto, break, case, char, const, continue,
default, do, double, else, enum, extern, float, for, goto, if, int, long, register,
return, short, signed, sizeof, static, struct, switch, typedef, union, unsigned,
void, volatile, while.

R1.2 Recognize all ANSI C operators>= <<= += -= *=
>> << ++ - > && || <= =+ ===+ .., =[].&! ~ -

%< > A2} ()

R1.3 Recognize ANSI C numeric constants with optional suffix: decimal, octal,
hexadecimal and float.

R1.4 Recognize ANSI C character constants with optional prefix.

R1.5 Recognize ANSI C octal escapes, hex escapes and character escape¥:
\n \r \t v VA2

R1.6 Recognize ANSI C string constants with optional prefix.
R1.7 Merge multiple string constants into a single constant.
R1.8 Recognize ANSI C identifiers.

R1.9 Recognize ANSI C programmer defingghe names

R1.10 Remove white space (blank, tab and new line characters).

19

3.2

R1.11 Each character not recognized as a keyword, identifier, type name, constant,
operator or string is passed to tparser as a token.

R1.12 (Desirable) Be able to optionally trace each token recognized.
Parser Requirements

Input is a string of tokens from the scanner. Output is a language independent
representation of the program.

R2.1 Recognize ANSI C grammar.

R2.2 If the parser detects a syntax error, report the file and line within the file
containing the error.

R2.3 Keep mapping of source code line and column to statement.
R2.4 Assign a statement number for each statement.
R2.5 Generate successor relation to add a statement to a statement list.

R2.6 Generate branching flow for the following statemeiftselse, while, do, for,
switch, case, return

R2.7 Generate requires sets of syntactic components for the following staterfients:
else, while, do, for, switch, case, break, continue, return

R2.8 Generate a statement node for each statement label.

R2.9 Generate flow to target label gbto.

R2.10 Switch should branch to default case.

R2.11 Continue should branch to bottom of loop.

R2.12 Break should exit loop or case.

R2.13 Assign each identifier a unigque id number.

R2.14 There is a separate name space for each of: 1) statement labels, 2) tags (struct
tags, union tags, and enum tags), 3) members of each structure or union, and 4)

other identifiers.

R2.15 Recognize type definitions.

20

R2.16 Keep the type of each identifier.

R2.17 Recognize the four kinds of scope: function (statement labels), block (within
braces), file and function prototype.

R2.18 Create stacked local symbol table on block or procedure entry.
R2.19 Remove top symbol table on block or procedure exit.

R2.20 Recognize external declarations.

R2.21 Recognize references to external objects.

R2.22 Generateefs sets for each variable referenced.

R2.23 Generatéefssets for each variable assigned.

R2.24 Generatédefsandrefs for each compound assignment.

R2.25 Prefix operators generate a node for each operator that is before the current
statement.

R2.26 Postfix operators generate a node for each operator that is after the current
statement.

R2.27 Structure assignment generatefs and defsfor the members.

R2.28 Assignment to a structure member is a define of the member and a reference and
define to the structure.

R2.29 Assignment to an array element is a reference and define to the array.

R2.30 Resolve references of the foref _chain . identifieror ref _chain -> identifier
For a structure or pointer to structure reference find the type definition for the
ref_chain structure type to resolve the identifier.

R2.31 ldentify operations that may create an alias to an area of memory.

R2.32 (Optional) Recognize that union members are aliases to the same area of memory.

R2.33 (Desirable) Identify C preprocessor token substitutions for identification of defines
used.

21

3.3

R2.34 (Desirable) ANSI C syntax errors should be tolerated and noted but should not
prevent the analyzer from continuing.

R2.35 (Optional) Try to determine if code to be analyzed contains common extensions
to ANSI C that can be ignored for slicing (e.far pointers).

Language Independent Format Requirements

The Language Independent Format (LIF) is the output ofahalyzer and, with some
modifications from thelinker, input to theslicer. The LIF file should capture all
information necessary to compute a program slice for the ANSI C source program input
to the analyzer.

R3.1 LIF should identify procedure start.

R3.2 LIF should identify a procedure end.

R3.3 LIF should identify formal procedure parameters.

R3.4 LIF should identify procedure calls.

R3.5 LIF should identify actual procedure parameters.

R3.6 LIF should identify a flow graph node for each arithmetic expression.

R3.7 LIF should identify flow graph nodes necessary to represent each statement.

R3.8 LIF should identify the flow graph nodes that are direct successors of each flow
graph node.

R3.9 LIF should identify each program variable.

R3.10 LIF should identify variables that aegtern, pointer, static or array.

R3.11 LIF should identify each program variable referenced (used) at each statement.
R3.12 LIF should identify each program variable assigned at each statement.

R3.13 LIF should identify level of indirection for references and assignments to pointer
variables.

R3.14 LIF should identifyreturn statements.

R3.15 LIF should identifygoto statements.

22

3.4

R3.16 LIF should maintain a mapping between each flow graph node and source
statements.

Slicing Algorithm Requirements

The following requirements refer to the slicing algorithm described in section 2.2.1. The
background for requirements R4.1 - R4.4 is sections 2.2.1.1 and 2.2.1.2 (Expression
Statements and Compound Control Statements), R4.5 - R4.10 refer to sections 2.2.1.3 -
2.2.1.8 (pointer expressions) and R4.11 - R4.14 refer to section 2.2.1.9 (procedure calls).
The output of the slicing algorithm is the set of statements relevant to the computation
of the variables in a given slicing criterion. The input to the slicing algorithm is:

- LIF representation of an ANSI C program.
- slicing criterion

R4.1 Given expression statememtand statementn, a successor tm, and slicing
criterion §,, ., for variablev the slicing algorithm includes expression statement
n if n assigns a value te.

R4.2 If anexpression statemeis included in the slice by the slicing algorithm, the
following slicing criteria are generate&,,,. [x O refs(n)

R4.3 Given statement and statement, a successor to, and slicing criterion §, ..,
for variablev if n does not assign a value to (the slicing algorithm does not
include expression statememin the slice) then the following slicing criterion is
generated: §,.

R4.4 If a statemem is included in a slice then all statements in the set requiyesé
included in the slice with the following generated critei$y;,. 0 x 0 refs(y) O
y U requires(n)

R4.5 Thepointer state functio®,(n,v) is a function that returns the set of addresses to
which * - - - *v (where there ar& *'s) could point.

R4.6 Given expression statementvith a k level indirect assignment through variable
a, and statement, a successor to, and slicing criteriors,, ., for variablev, the
slicing algorithm includes expression statemert v [J P(n,a).

R4.7 If statement with a k level indirect assignment through varialageis included
in a slice for slicing criteriors,, .., then the following criteria are generated (to
capture relevant assignments of addresses at each level of indirection):
Say- Oy O Ry(nv,a)01, 0 <i <k, O(ak) 0 idefs(n)
Where:R (n,v,d = {r|r OP(n,a)&v 0 P (n,n}

23

R4.8 If statement is included in a slice the following criteria are generated:
Sy Ov O P(n,b)di, 1 < i <k, O(b,k) O irefs(n)

R4.9 |If statemenn is included in a slice and the set crefsfs not empty then the

following criteria are generated for each pointer chain,f,—~ - - - - f in
crefs(n):
N
o
s -0US,. Otww=Fzf)O0z0Pn Or0w,
' E f = field(nci) Oi O1<i <Kk,
0 where w = field(n,c,0), k = clengti{n,c), O ¢ O crefdn)
R4.10 For a slicing criteriofs,, , 4~ and statement wherem = succ(n) with cdefs(n)
not empty, nv- f,» - -- - f, = - -if x.f, O w,_, where:
w = {F(zf) Oz0OPnr)and rdw_}
where vy = {v}

then include statememtin the slice and generate the following criteria:

S, OtOw,for0<i<Kk
w = {F(zf) OzOPMnr)andrOw,
where vy = {v}

R4.11 Given the set of procedure call sites, where a call site is represented as an ordered
triple (statement, calling procedure, called procedurd)et p, be the procedure
containing the user supplied slicing criterion. Let C be the set of procedure call
sites.

Let Q = {T(No,%.Yo) U C Uy, = po or LnyYoyy) U Q '}
The setQ represents the tree of procedure calls that invoRgdhe procedure
containing the slicing criterion. The statements containing each call si@eaire
included in the slice and the following criteria are generated:

S, U(pa OQ

0 t actual parameter to q corresponding to a formal parameter of g
or a non-local variable in the active set of nod@ of g

R4.12 If a statement, is included in a slice and statemeanincludes a function call,
f, that returns a value, then the following slicing criteria are generated:
S, Ox0Orefs(r) O r return statement irf
S..- Ual formal_to_actual(v)dv O f.begin
S,g> g (global variable)O f.begin
where f.begin is the set of generated criteria at statement O in procedure
f

24

3.5

R4.13 If a statement, includes a function calf(a,,a,, - -), with slicing criteria S, .,
generate the criterion:_S, .~ wheref.lastis the last statement of the procedure,
and include statemem in the slice if the generated criterion includes any
statements in the slice.

R4.14 If a statement, includes a function callf(a;,a,,- -), with slicing criterion
S Where&x is one of thea, generate the criteriorg; . .. wheref.lastis the
last statement of the procedure. If the generated criterion includes any statements
in the slice, then include statementn the slice and generate the criterigg ;.
where f.last is the end of the procedure.

System Map Requirements

The link component operates in two parts. The first pargp, identifies for each
program, in the current directory and its constituent files and then saves the information
in a file namedSYSTEM. The goal ofmap is to identify the files containing the
procedure definitions of all procedures required to link each program in a given file
system directory. A program is defined to benain procedure and the set of procedures
that must be defined for the programliiok. This set of procedures is called trexjuired
procedure setRPS, and the set of files containing the definitions of the RPS is called the
required file set RFS.

The input tomap is the set of LIF files and T files produced by tparser. The output

of map, a file namedSYSTEM, defines the RFS of each program &ink to link the

.LIF, .H and.T files together. Th&&YSTEM file contains a list of programs, identified

by the file containing thenain procedure for the program. For each program there is a
list of files (the RFS) that contain the definitions of procedures called by the program
either directly or by a sequence of intermediate calls. Any procedures that are not defined
within the directory are classified as library functions.

If a procedure used by the program (i.e., in the RPS) is externally defined in more than
one file,map fails for the given program sinamap cannot determine the file that should

be used. The procedure is identified as ambiguous ISHBTEM file entry for any
programs that try to use that procedure.miép fails, the list of required files contains

a partial list of the RFS and a patrtial list of library procedures corresponding to the stage
of computation wherenap discovered a called procedure defined in more than one file.
The SYSTEM file entry for thismain must be built manually.

Map is limited to assuming that main procedure is used for a single program.
R5.1 By defaultymap operates on the current directory.

R5.2 A directory may optionally be given on the command line.

25

3.6

R5.3 Map should make g@rogram entryin the SYSTEM file for eachmain procedure
found in a LIF file.

R5.4 Aprogram entryconsists of three sections: required source files, library functions
and ambiguous functions.

R5.5 The source file containing thmain procedure should be listed in the required
source files.

R5.6 The required file set (RFS) for program M is the set of source files that contain
the definitions of procedures (but not library procedures) called somewhere in the
program. In addition to the source file containing thein procedure, a source
file, F, that meets the following conditions should be in the required source files
for program M.

1. P is a member of RPS of M and definedtern only in F.
2. F does not contain main procedure.

R5.7 Procedure P is included in the library procedure section of program M if there is
at least one call to P that meets the following conditions:

1. P is a member of RPS of M.
2. P is not defineextern in any RSF file of M.
3. There is no static definition of P visible at the call site.

R5.8 Procedure P is included in the ambiguous procedure section of program M if the
following conditions are met:

1. P is a member of the RPS of M.

2. P is definecextern in at least two files, G and H.

3. Neither G nor H contain anain procedure.
Linker Requirements
After map has produced &YSTEM file, the second part of the linkeslink, uses the
SYSTEM file to merge data-flow information from thé.IF, .T, and.H files created
from separate source files into a singldNK file and a singleK file. Items such as

object addresses, chains of pointers to structure fields, global variables or procedures must
be resolved by the linker. The following files are input to the linker:

26

SYSTEM The SYSTEM file identifies all source files required for eaamain program
in the current directory. This file is an output of theap component.

.LIF There is oneLIF file for each source file. All theLIF files are combined into one
.LINK file.

.T There is oneT file for each source file. All theT files are combined with theH
files into one.K file.

.H There is oneH file for each source file. All theH files are combined with theT
files into one.K file.

R6.1

R6.2

R6.3

R6.4

R6.5

R6.6

R6.7

Each of the following records (see sec. 4.2) inLE file should be passed
unchanged to theLINK file:

PROC_END FORMAL_ID ACTUAL_SEP
CALL_END RETURN GOTO

succ REQUIRES SOURCE_MAP
LOCAL_ID

Each named procedure is given a unique procedure idenpifier)f two .T files

each refer to a procedure with the same name, the procedures are assigned the
same pid if neither one istatic. If at least one istatic, then each procedure is
assigned a different pid.

For each unique pid th& file should contain one line with the following
information: pid, entry statement, exit statement, number of local variables, flag
indicating static or extern and the procedure name.

A procedure that is not defined in any of the source files should have an entry
statement of -1.

Each PROC_START record input fromLaF file yields a PROC_START record
in the .LINK file with the pid field updated to contain the unique pid assigned to
the procedure.

Each CALL_START record input from.&lIF file yields a CALL_START record
in the outputLINK file with the unique pid corresponding to the pid in theF
file.

REF or DEF records that refer to an identifier that has a LOCAL_ID record with

an X flag are replaced in thelINK file with a GREF or GDEF record referring
to the corresponding global id. The node field stays the same.

27

R6.8 Other REF or DEF records are passed to.th€K file unchanged.

R6.9 Each GLOBAL_ID record with a unigue name not found in any other LIF file is
assigned a unique id number and a GLOBAL_ID record using the new id number
is output to the.LINK file. All other fields in the GLOBAL_ID record are
unchanged.

R6.10 For a GLOBAL _ID record that does not have a unique name, but is fladggec
a new unique id is assigned and a GLOBAL_ID record is output for etetc
id.

R6.11 For a GLOBAL_ID record name that appears in multiple records, the instances
that are not flaggedtatic are considered to refer to the same object and a single
GLOBAL_ID record with a unique id is generated to théNK file.

R6.12 GREFS, GDEFS, GCHAIN, ADDRESS and STRUCT records are passed from the
LIF files to the.LINK files with the id field updated to the assigned unique id.

R6.13 Duplicate chains should be eliminated and a unique new chain id assigned. A
single CHAIN or GCHAIN should be generated to theéNK file.

R6.14 CREF, CDEF and FIELD records should be updated with the new chain id in the
LINK file.

R6.15 Duplicate ADDRESS records should be eliminated and reassigned unique address
ids for the.LINK file.

R6.16 AREF records should be updated with the new address ids ihlt file.

R6.17 FILE records should be inserted in théNK file just before records from the
correspondingLIF file are inserted into theLINK file.

R6.18 The.H files should be merged together into the file as header file groups
consisting of the header file name and a list of variable ids and variables for each
variable declared in a header file.

R6.19 A header file group name should appear only once inkhide.

R6.20 The.K file should contain the following information for each source file: file id

number (starting from 0), number of procedures, number of statements, number
of lines, number of characters and file name.

28

3.7

R6.21 The.K file should contain a count of the number of each of the following items:
global variables, procedures, object addresses, pointer to structure field chains,
header file groups and source files.

User Interface And Help System Requirements

The function of theuser interfaceand help systemis to provide controlled access to
unravel components by thanravel user. The goals of the user interface are to insulate
the user from detailed knowledge of the underlying software and hardware, assist the user
in saving the results obtained, give the user feedback on progress for lengthy tasks and
provide access to additional information on usimgravel. The user interface uses a
mouse driven window system that provides a set of control panels (windows with buttons
and other objects) to allow the user to invak&avel components and display the results.

R7.1 The user interface shall display the following information about the current
directory: directory name, number of source files, number of ANSI C source files
analyzed, number of main programs analyzed, number of main programs linked
and number of procedures that appear in more than one file.

R7.2 The user shall be able to change directories.

R7.3 The user interface shall allow the user to select from all source files in the current
directory a subset for operations (analyze or clear analysis results).

R7.4 The user shall be able to specify command line options foCtlpeeprocessor
and theanalyzer

R7.5 The user shall be able to invoke the analyzer on the selected set of files (see
above).

R7.6 The user shall be able to remove any analysis files created by the analyzer on the
selected set of files (see above).

R7.7 The user interface shall display the name of the file currently being analyzed when
a set of source files is analyzed.

R7.8 The user interface shall display a summary of analysis results indicating any
non-ANSI source files.

R7.9 The user interface shall allow the user to display all messages produced by the
analyzer for each analyzed source file.

R7.10 The user interface should update displayed information about source files after
analysis of a set of source files is completed.

29

R7.11 After the analyzer is run on a set of source files,ntag program shall be run,
(map identifies main programs).

R7.12 The user shall be able to select a main program for slicing.

R7.13 The user interface shall automatically invoke the linker when a main program is
selected.

R7.14 The user shall be able to select a slicing criterion (program variable and location)
for slicing from all program variables and statements.

R7.15 The user interface shall be able to display all the source files linked with a
selected main program.

R7.16 If the entire program cannot be displayed at one time, the user interface shall
display a contiguous block of statements such that any given statement is
displayed in at least one block of statements (i.e., every statement can be
displayed somehow in a scrollable window).

R7.17 The user interface shall be able to display statements identified for user attention
in a manner easily identified by the user (e.g., reverse video or contrasting color).

R7.18 The following statements are identified for user attention:

. Statements in a slice.

. Statements in an operation on two slices.

. Statements marked to indicate the location of a procedure.

. Statements marked to indicate the location of a procedure’s call tree.

R7.19 The user interface shall display an indication of progress during the slice
computation.

R7.20 Each computed slice shall be saved to a file.
R7.21 The user interface shall allow the user to select and display a saved slice.

R7.22 The user interface shall allow the user to select two previously computed slices
for display of the intersection, union and program dice of the two slices.

R7.23 The user interface shall allow the user to halt the computation of a slice and
display the partial results.

30

R7.24 The user interface shall display a visual summary of the set of statements
identified for user attention that indicates the approximate set size and statement
location relative to the entire program (e.g., an object like a scroll bar with tick
marks at the location corresponding to each identified statement).

R7.25 The user interface shall provide for the display of information describing each
control panel, the function of each interface object on the control panel and
guidance in using the control panel (i.e.help button.

R7.26 The user interface shall always display a brief description of the interface object
currently under the mouse pointer.

31

32

4 Unravel Design

This section describes the designusiravel. The description of procedures and data structures
is a high-level abstraction of the actual implementation presented in an informal pseudo-code.

Unravel is divided into three main components: a source code analysis component to collect
information necessary for the computation of program slices into a source language independent
format; a link component to merge flow information from separate source files; and, an
interactive slicing component that the user can use to extract program components and statements
to answer questions about the software being examined.

4.1 Analyzer

The analyzer is similar to a compiler with a scanner, a parser and a code generator. The analyzer
translates each ANSI C source code file into a language independent format (LIF) file. The
UNIX compiler writing toolslex andyacc handle the scanning and parsing of the source code.
The code generator is a collection of semantic action routines, code fragments suitable for
insertion as aasein a switch statement. Each semantic action routine is attachedytaca
grammar production and is called to output LIF when a grammar production is recognized
(reduced). Figure 4-1 presents the structure of the analyzemaif procedure calls the parser
(yyparse(), which returns zero if the parse is successful, and one if the parse is unsuccessful.
The semantic actions for declarations record information about variables and types in the symbol
table and theLIF file. The semantic actions for expressions, statements and external objects
using the symbol table and information passed up from grammar productions already recognized
also generate entries in thielF file.

4.1.1 Scanner

The scanner, coded inlex, is called by theparser to read the source code and return tokens to

the parser. The source code is assumed to have been already processed by an ANSI C
preprocessor. The major difficulty for the scanner is to correctly recognize IDENTIFIER and
TYPENAME tokens. The problem comes up when a name declared as a TYPENAME in an
outer scope is redeclared in an inner scope. The name must be recognized as an IDENTIFIER
token in the inner scope when it is redeclared. This is somewhat ambiguous since the context
determines if the name is used as a TYPENAME or an IDENTIFIER.

33

read characters until pattern match
set yytext to matching characters
if matched pattern is IDENTIFIER then
if yytext is found as a typename then

if typename expected return TYPENAME token

else return IDENTIFIER token
else return IDENTIFIER token
else return token found

end if
Main
p

YACC parser Sourcefile
Exter naIsJ Symbol table Expressions
< LIFfile
Figure 4-1: Unravel Analyzer Structure Design

4.1.2 Parser

The flow of yyparse()is to call yylex() (the lex scanner) for a token, then either shift the token
onto a stack or reduce the stack by a matching grammar productionyaBicgrammar (given
in Appendix B) productions are arranged in four groups: declarations, statements, expressions and

external objects.

34

do
get token from scanner
if no match then
shift token to parse stack
else
pop parse stack
reduce production
switch (production)
case expression:
output to LIF: variables referenced
output to LIF: variables defined
output to LIF: procedure calls
case statement:
output to LIF: flow graph node
case declaration:
output to LIF: variables declared
save declaration in symbol table
case external objects:
output to LIF: external variables declared
output to LIF: procedures defined
output to LIF: formal procedure parameters
end switch
end if
while not EOF

4.2 Language Independent Representation
The language independent representation captures the details of the program required for the

slicing algorithm to compute program slices. The program representation is contained in several
files as shown in Table 4-1.

File Contents Produced o . . .

file.c source code to be examined (source file) programmer

file.h declarations for C preprocessor to include programmer or ANSI C
file.LIF translation of source code analyzer

file.T count of objects in file.LIF analyzer

file.H mapping of variable names to header (.h) files analyzer

SYSTEM summary of all programs in directory map

file.LINK merged LIF from all modules linker

file.K merged T and H files linker

Table 4-1: Unravel System Files

35

The language independent formegpresents the program as an annotated flow graph of nodes
and edges. Nodes are generated to represent semantic or syntactic units of the program that
correspond to statements or parts of statements. Edges are of two ¢cppésl flow and
requires A control flow edgebetween two nodes indicates the flow of control from one node

to the other. Theequiresedges from a node indicate other nodes that should be included in any
slice containing the node the edges are from. fdwiresedges are a general mechanism for
specifying control dependence between nodes, pieces of required source code, or other slicing
dependencies. The annotations specify location of corresponding source code, variables
referenced or assigned and special statements sugbtasindreturn.

The following subsections describe the format of each file.
4.2.1 File.c

The source code as produced by the programmer.

4.2.2 File.h

The source file is assumed to use theclude preprocessor directive to include only header files
containingdeclarations, typedefanddefines No procedure bodies should be in a header file.

4.2.3 File.LIF

The general form of theLIF file is a sequence of one line records. Each record is one of the
LIF codes followed by a comma separated list of parameters in parenthesis. The LIF codes,
found in Appendix A, can be grouped in codes for flow-graph, procedure headers, declarations,
expressions, procedure calls and structure fields.

4231 Flow-Graph

The following LIF codes are used to specify the flow-graph:

#define LIF_REQUIRES 17 /* 17(node,required_node) */
#define LIF_SOURCE_MAP 18 /* 18(node,from_In,from_cl,to_In,to_cl*/
#define LIF_RETURN 14 /* 14(node,1|0) */
#define LIF_GOTO 15 /* 15(node,G|B|C) */
#define LIF_SUCC 16 /* 16(from_node,to_node) */

For producing LIF code, ANSI C source statements are classified as declarative, expression,
compound control and branch. Each flow-graph node produced is annotated by
LIF_SOURCE_MARo provide a mapping from flow-graph nodes to source code statements.

The declarative statements are declarations and procedure headers. Declarations generate no

flow-graph nodes. Procedure headers generate an entry node corresponding to the procedure
header and an exit node corresponding to the closing brace of the procedure.

36

An expression generates one flow node for the expression plus one flow node for each postfix,
prefix or comma operator in the statement.

The compound control statements aik: switch, while, do ... while, for and compound
statement{(... }). Any nodes directly within the scope of control of a compound control
statement specify the control statement withl& REQUIRES entry in the LIF file. When
control statements are nested, only the next layer of control out from a node is specified with a
LIF_REQUIRES entry.

The compound statement generates a flow-graph node for the beginning bracket and one for the
ending bracket.

An if statement without arelse generates at least two nodes: first a node for ithdeft
parenthesis token and the condition expression, second a node for the right parenthesis to serve
as an exit point from the statement. The nodes for the controlled statement must exit through the
right parenthesis node. The controlled statement generdtés &EQUIRES entry for theif

node. Thef node requires the parenthesis node.

An if statement with arelsegenerates an additional node for telse Nodes of the second
controlled statement require tieésenode. Theelsenode requires thé& node. The flow-graph
of anif statement is presented in Figure 4-2.

A switch statement generates two nodes, one forsivéch token and expression and one for
the right parenthesis token. The right parenthesis token is used as an exit point foaseich
the controlled statement. The controlled statement generatés REQUIRES entry for the
switch node.

A while statement generates two nodes, one forwhée, left parenthesis and expression and
one for the right parenthesis. The right parenthesis node is a successomtbiltn@ode and
the last node of the controlled statement. The controlled statement genetiite REQUIRES
entry for thewhile node. Thewhile node requires the right parenthesis node. The flow-graph
of awhile statement is presented in Figure 4-3.

The do . . . while generates three nodes: tlde, the while and condition, and the right
parenthesis. The successor of tihe node is the first node of the controlled statement. The
while node is the successor of the last node of the controlled statementwvhileenode has two
successors: thdo node and the right parenthesis. Tde node is required by the controlled
statement, and thdo node requires thevhile node and the right parenthesis.

The for statement generates three nodes. The first node contaidierthleft parenthesis, and

the initialization. The second node encompasses the test expression, and the third node contains
the increment and the right parenthesis. The test is a successorfof #ued initialization. The
statement is a successor of the test, and the increment is a successor of the statemént. The
and the initialization expression require the test, the increment and the statement. The statement

37

and increment are both required by the test and the right parenthesis requit@s thée flow-
graph of afor statement is represented by Figure 4-4.

Nodes corresponding teturn statements are identified ifF RETURN The second field of
the LIF_RETURN indicates areturn with expression byl and areturn without expression by
0. The statementgoto, break and continue are identified by a corresponding Bor C code
in aLIF_GOTO entry.

— IF(... J) L STMT

—{ IE(... —) = STMT J

ELSE STMT — =

Figure 4-2: IF Statement Control Flow

38

¢ K |
—= WHILE(...) STMT

—= DO STMT WHILE(... [
) ——
Figure 4-3: WHILE Statement Control Flow
—= FOR (INIT; TEST; [[] INC) J
STMT
Figure 4-4: FOR Statement Control Flow
4.2.3.2 Procedure Headers

A procedure headefunction_name (f1,f2,...fn) uses the following LIF codes:

define LIF_PROC_START 1 /* 1(node,pid,name) */
define LIF_PROC_END 2 [* 2(node[,S][,R]) */
define LIF_FORMAL_ID 3 /* 3(id,name[,A][,P]) */

The LIF_PROC_ENDindicates astatic declared procedure with a8 flag. Procedures that
return an expression are indicated with Rrflag.

For formal parameters, the variable attribytegnterandarray are indicated by the codeB:and
A in the LIF_FORMAL_ID record.

39

All local variable declarations| (F_LOCAL_ID), and flow graph node related LIF codes appear
between the.IF_PROC_STARTand theLIF_PROC_END The following is an example of a
procedure header and generated LIF codes:

add_to_result(int a, int *b, int c[]){ ... body ...}

1(13,5,add_to_result)
3(1,a)
3(2,b,P)
3(3,c,A)
... body ...
2(30)
The procedure starts at node 13 in the flow graph.
The last node of the procedure is 30.
There are three formal parameters.
Formalb is a pointer.
Formalc is an array.

42.3.3 Declarations
Declarations generate the following:

define LIF_LOCAL_ID 4 [+ 4(id,namel,S][,P].X][,A]) */
define LIF_GLOBAL_ID 5 /* 5(id,name[,S][,P][,X][,A]) */

Declarations generate a positive, id-code for each variable. Each global variable (declared
outside a procedure) is allocated a unique id-code. Each procedure has a separate set of id-codes
for local variables and formal parameters, starting from 1. All local variable declarations,
(LIF_LOCAL_ID), appear between thHdF_ PROC_STARTand theLIF_PROC_END Global

variable declarations, L{F_GLOBAL_ID) may appear anywhere outside of a
LIF_PROC_STARTandLIF_PROC_ENDpair. The variable attributes, static, pointer, external,

and array are indicated by the cod&s:P, XandA. An example of LIF codes generated for
declarations follows:

static int a,*b,c[10];
extern Xx:

fun(int y)

{

int u,v,w,x;

}
proc(int *z)

int a,w;

40

1(1,1,fun)
3(Ly)
4(2,u)
4(3,v)
4(4,w)
4(5,x)
2(2)
1(3,2,proc)
3(1,z,P)
4(2,a)
4(3,w)
2(4)
5(1,a,S)
5(2,b,S,P)
5(3,c,S,A)
5(4,x,X)

4234 Expressions

Expressions generate the following LIF codes for variables referenced and variables assigned at
a node.

define LIF_AREF 24 [* 24(node,addr) */
define LIF_ADDRESS 25 [* 25(addr,pid,id) */
define LIF_REF 7 I* T7(node,id[,level]) */

define LIF_DEF 8 [* 8(node,id[,level]) */

define LIF_GREF 9 /* 9(node,id[,level]) */

define LIF_GDEF 10 /* 10(node,id[,level]) */

An expression generates one flow node for the expression plus one flow node for each postfix
(x++), prefix (++x) or comma operatorxgy,z) in the statement. The nodes are ordered in the
flow-graph as follows: prefix operators from left to right, the expression flow node, and the
postfix operators from left to right.

LIF_REF code is generated for local variables whose values are ut#d. GREF code is
generated for global variables whose values are used. Variables that are assigned a new value
generate IF_DEF for assignment to local variables ahtF GDEF for assignment to global
variables.

The level indicates the level of indirection of the ref or def. A level of zero, no indirection, is
omitted. A level of -1 indicated thaddress obperator (&). AnLIF_ADDRESSIis generated

for each object of theaddress ofoperator, indicating the variable, the procedure where the
variable is declared (zero for global declaration) and a unique address id. Address ids are
assigned sequentially from 1. An example of expressions and corresponding LIF codes follows:

41

int x,y; /* global ids 23 (x) and 24 (y) */
int a,b,*c; /* local ids 18(a), 19(b) and 20(c) */

&X; /* node 46, x is address 14 */
y - (b++) + *c; /* nodes 47 and 48 *

c
X

16(46,47)
9(46,23,-1)
8(46,20)
25(14,0,23)
24(46,14)
16(47,48)
7(47,19)
8(47,19)
9(48,24)
7(48,19)
7(48,20,1)
10(48,23)

4235 Procedure Calls

Procedure calls are handled as part of an expression and use the following LIF codes:

define LIF_CALL_START 11 /* 11(node,pid) */
define LIF_ACTUAL_SEP 12 /* 12 *** yoid *r */
define LIF_CALL_END 13 /* 13 ***oyoid *r* */

The actual parameters are listed as expressions in order separai€éd BLZTUAL SEP entries.

int X,y,z; /* local ids x(72) y(73) z(74) */
x = fun(x+y,*z); /* node 47, fun is pid 18 */

11(47,18)

7(47,72)

7(47,73)

12

7(47,74,1)

13

8(47,72)

4236 Structure Fields

Structure fields generate the following LIF codes:

define LIF_CHAIN 19 /* 19(node,chain,id) */
define LIF_GCHAIN 20 /* 20(node,chain,id) */
define LIF_FIELD 21 [* 21(node,chain,seq,fid,field) */

42

define LIF_CREF 22 [* 22(node,chain) */
define LIF_CDEF 23 [* 23(node,chain) */
define LIF_STRUCT 26 [* 26(pid,id,offset) */

At an expression node, each reference or assignment through a pointer to the fields of a structure
generates a chairLiF_CHAIN or LIF_GCHAIN). The chains of a node are given a chain
number sequentially from 1. The variable at the head of the chain is specified ith fileéd of
theLIF_CHAIN for local variables and in thiel field of theLIF_GCHAIN for global variables.

LIF_CREF andLIF_CDEF indicate if the chain specifies a reference or a defing:_FIELD
is used to specify each field of a chain by sequence number.fidhe the sequence number of
the field within the data structure arfiegld is the field name.

LIF_STRUCT indicates that the variable identified by thel andid is a structure with
offsetmembers. For example, consider the following:

typedef struct a_struct a_rec,*a_ptr;
typedef struct b_struct b_rec,*b_ptr;
struct a_struct {a_ptr al; b _ptr a2; int a3};
struct b_struct {b_ptr b1l; int b3};

a rec ar; /[* Global ID 9(ar) 10(ar.al) 11(ar.a2) 12 (ar.a3)*/
a ptr a; /* Global ID 13(a) fields 1(al) 2(a2) & 3(a3) */

b ptr b; /* Local ID 7(b) fields 1(b1) 2(b2) & 3(b3) */

a->a3 = b->b3 + a->al->a2->bl1->b3; [* node 88 */
26(0,9,3) structure ar has 3 fields
20(88,1,13) a->a3
19(88,2,7) b->b3
20(88,3,13) a->al->a2->b1->b3
23(88,1)
22(88,2)
22(88,3)
21(88,1,1,3,a3) ->a3
21(88,2,1,3,b3) ->bh3
21(88,3,1,1,al1) ->al->
21(88,3,2,2,a2) ->a2->
21(88,3,3,1,b1) ->pl1->
21(88,3,4,3,b3) ->bh3

43

424 File.T

The .T file is produced by the analyzer at the same time aslthe file. The purpose of the
.T file is to provide for sizing of dynamic objects by the linker and slicer. The format offthe
file is as follows:

1. The first line has two fields, the number of procedures defined or referenced and the
number of flow-graph nodes in the source file.

2. One line for each procedure either called or defined within the source file. Each line has
6 fields as shown in Table 4-2.

3. One line with three fields: number of global variables declared, number of pointer chains
(i.e., expressions using>), and number of address objects (i.e., & operator applied).

4. The last line has four fields, number of lines, number of words, number of characters and
the file name (i.e., the output of the UNIX command).

Field Contents

unique procedure id number

entry statement number if defined, else -1

exit statement number if defined, else 0

number of local variables

an X if extern, anS if static

OO || W|IN]|EF

procedure name

Table 4-2: File.T Fields For Defined Or Called Procedures

Example source and files:

----- > 2.0 <-----
include "a.h"
int zed,zulu;
main (n,p)
int n;
char *pIl;
{
int kappa,lambda,mu;
zircon (kappa+lambda-zed,zulu,z2->zeta,z1.zeta,&z1);
}

44

int alpha,beta,omega;
typedef struct zeta_struct zeta rec, *zeta_ ptr;
struct zeta_struct {

int zeta;

zeta_ptr za,zb,zc;

ieta_rec z1,*z2;
zeta_ptr z3;
----- > 72T <-----

2 4

1 1 4 5 X main

2 -1 0 0 X zircon
12 11

10 17 155 z.c

425 FileH

A program may have global variables either declared directly in the source files or declared in
included header files. If a program has many include files then a large number of global

variables could be declared. If the useruniravel needs to select a global variable then the set

of global variables should be organized so that it is easy to locate global variables declared in
source files and global variables declared in included files.

The purpose of theH file is to partition the set of global variables according to the location of
the variable declaration. Thél file consists of two types of records, file name records and
variable name records. Thel file is organized as a series of file name records followed by
variable name records for each global variable declared in the file. The same file name may
appear more than once in thid file. A variable may be declared in more than one file.

The format of a file name record @& file_name with @ in columns one and two and the
file name starting in column 3 and extending to the end of the line. The file name is as produced
by the C preprocessor for a change of file fror#fiaclude statement.

The variable record is a tab character in column 1 followed by the variable name extending to
the end of the line. Example, .h and.H files follow:

----- > ¢ File (yy.c) <-----
int atip;
include "a.h"
int rip, TRIP,sip;

----- > h File (a.h) <-----
int alpha,beta,omega,z1,z2,z3,;

45

----- > H File (yy.H) <-----

@ vyy.c
a
tip
@ a.h

alpha
beta

omega

z1
z2
z3

@ yyc
rip

TRIP

sip

42.6 SYSTEM

The SYSTEM file is the output of the linker componemap using the.T and.LIF files as

input. The purpose of thBYSTEM file is to describe each main program in a directory in terms

of required source files, library functions called and called procedures defined in more than one
source file. TheSYSTEM file consists of 6 kinds of records (one record to a line) described in

Table 4-3.
| Record name Format
1 | main file MAIN file_name file_count
2 | file separator FILE
3 | ambiguous procedure separatoAMBIG
4 | library separator LIB
5 | file name tab charactefile_name
6 | procedure name tab characterproc_name

The arrangement of records in t8YSTEM file to describe a single program divided among

Table 4-3: SYSTEM File Records

several files is as follows:

1 main file record
2 file separator

3 source () files required by the given main file
4 ambiguous procedure separator

46

5 zero or more procedure name records
6 library separator
7 zero or more procedure name records

The above organization is repeated for additional programs in the current directory.

The following example has two main programs (oneekil.c the other inb.c). The main in
ex-1.cuses four library functions and the entire program is contained in one file. The main in
b.c uses procedures defined in three other files. One proceadris, ambiguously defined since

it has a procedure body defined in more than one source file.

MAIN ex-1.c 1

FILES
ex-1.c
AMBIG
LIB
scanf
printf
exit
MAIN b.c 4
FILES
b.c
bb.c
bbb.c
abc.c
AMBIG
a4
LIB
exit
4.2.7 FileK

The linker merges theH and.T files for all the files of a program into on& file. The .K file
is organized into 4 sections:

1. The first line of the file gives counts for number of global variables, number of
procedures, number of address objects, number of pointer chains, number of header files
and number of source files. Each value is preceded by an identifying string.

2. One line of procedure description for each procedure. The content is similar d the
file. Each line contains, procedure id, entry statement, exit statement, number of local
variables,static or extern flag as anS or an X, and procedure name.

3. One line of description for each file. Each line contains a file id, number of procedures,

number of statements, number of lines, number of characters and file name minus
extension.

47

4. The last section is the merge of th# files. There should be a file record for each file
where global variables are declared. Each file with declared global variables should have
only one file record. A file record has two fields, a count of the number of globals
declared in the file and the file name. Each file record is followed by a set of global
records. A global record has two fields, the id number assigned to the global variable by
the linker and the variable name.

4.2.8 File.LINK

The .LINK file contains the merged.IF files from all the files that are required the main
program infile.c.

One LIF codeLIF_FILE , not found in.LIF files is added to theLINK file to indicate the
source file associated with each procedure.

define LIF_FILE 6 [* 6(file_id,file_name) */
4.3 Slicer

This section presents by informal pseudo-code the procedures and data structures of the program
slicing component. There is one procedwskgce that serves to control invocation of the other
procedures that are used to compute program slices.slidegprocedure is invoked from a user
interface component that obtains the slicing criterion from the user and displays the program slice
to the user.

The data structures fall into two categories, representation of the program being sliced and
dynamic support for slice computation.

4.3.1 Procedures
slice This procedure controls computation of a program slice and is called by the user interface
after the slicing criterion has been obtained. The slice is returned to the caller as a set of flow-

graph nodes.

slice (criterion c, set slice_set)

{
clear criteria for each node
clear slice_set
set initial criterion
call main_slice (c, slice_set)
}

main_slice Sweep over the program applying the slicing criteria until no more changes occur
(and no more statements are added to the slice.

48

main_slice (criterion c, set slice_set)

change = 1
while (change) {
change = 0

for each node, n, {
for each successor, m, of n{ _
change += include_or_not (n,m,slice_set)

}

include_or_not Test a statement for inclusion in a slice and return a count of changes. The
change count is the sum of number of statements added to the slice and number of new criteria
generated. If the statement changes a variable in the criteria for the statement’s successor then
the statement should be added to the slice and additional criteria should be generated.

int include_or_not (node_index n, node_index m, set slice_set)

change = false
if (defs(n) intersects criteria(m)){
change += add_to_slice (n, slice_set)

if (idefs(n) intersects criteria(m)){
change += add_to_slice (n, slice_set)
change += add_idef_criteria(n)

if (cdefs(n) intersects criteria(m)){
change += add_to_slice (n, slice_set)
change += add_cdef_criteria(n)

return change

}

add_to_slicelf statement n is not in the slice add n to the slice and adjust slicing criteria. Add
any statements in the requires set and return the count of changes.

int add_to_slice (node_index n, set slice_set)
{

count = 0

if n already in slice then return O

add n to slice_set

count = 1 + add_criteria(n)

for each node, r, in requires(n){

count += add_to_slice(r)

return count

49

add_criteria Add the criteria generated by inclusion of any statement in a slice.

int add_criteria (node_index n)

add refs(n) to criteria(n)

add criteria implied by irefs(n)
add criteria implied by crefs(n)
return change count

}

add_idef criteria Add criteria for variables referenced in the specification of the variable
indirectly defined (assigned).

int add_idef_criteria (node_index n)
add criteria implied by idefs(n)

return change count

}

add_cdef criteria Add criteria for variables referenced in the specification of the variable
indirectly defined (assigned).

int add_cdef_criteria (node_index n)

add criteria implied by cdefs(n)
return change count

}

4.3.2 Data Structures

The following data structures, built from the files produced bydhalyzerandlinker, are used
to represent the program being sliced.

typedef struct source_file_struct source_file_rec,*source_file_ptr;
typedef struct flow_node_struct flow_node_rec,*flow_node_ptr;
typedef struct proc_struct proc_rec,*proc_ptr;

typedef struct ptr_state struct ptr_state rec,*ptr_state ptr;

typedef struct {

int start_line;

int start_col;

int end_line;

int end_col;
} src_map;

struct source_file_struct {
proc_ptr procsl];

50

struct flow_node_struct {

set refs,defs,irefs,idefs,crefs,cdefs;
set successors,requires;

src_map source;

set criteria;

chain chainsl];

ptr_state ptr p;
}

struct proc_struct {
flow_node_ptr nodes|];

set globals_defed,globals_refed;
set formals_defed,formals_refed;
}
struct ptr_state_struct {
set state[];
}
4.4 Linker

Thelinker component operates in two parts. The first parap, identifies for each program in
the current directory its constituent files and then saves the information in a file fa&OEM

as discussed in sec 4.2.6. The second part of the link compatiait, uses theSYSTEM file

to merge data-flow information from thelF, .T and.H files created from separate source files
into a single.LINK (sec. 4.2.8) file and a singl& (sec. 4.2.7) file.

4.4.1 Map

The task ofmap is to identify all the source files that make up each main program. While this
is not solvable in general, it is possible for most situations the user is likely to encounter. It is
also possible to identify a situation whemeap cannot complete its task and the user must
provide assistance.

The input tomap is the set of all.LIF, .T and.H files in the current directory.

The output is 8SYSTEM file that identifies each main program and its associated soutke (
files.

4.4.2 Slink

The input toslink is a file name (to identify the main program), t8& STEM file and the.LIF,
.T and.H files that theSYSTEM file indicates belong to the main program.

The output is the mergedIF files in a.LINK file and the mergedT and.H files in a.K file.

51

4.5 User Interface and Help System

The user interface displays four control panels and two pop-up information windows. The four
control panels are the following:

The Main Control Panel is used to invokeAnalyzer Control Panel andSlicer Control Panel
and provides relevant information about the current directory.

The Analyzer Control Panel allows the user to select files, run the analyzer and automatically
run map to scan formain programs.

The Selection Control Panelallows the user to selectraain program and runs thiénker on
the selectednain program followed by invoking thélicer Control Panel for the selected
program.
The Slice Control Panelgives the user access to the program slicer, accepts a slicing criterion
interactively and displays the source program text in a scrollable window with slice statements
highlighted.
All control panels have the following features:

. Control buttons on top row of the panel

. Leftmost button pops-down (exits) the panel

. Rightmost button pops-up theelp display for the panel

. Help button sticks to right window edge on resize

. Other buttons keep same distance from left edge on resize

. Panel name in the window title bar

. Last line of panel displays a brief description of the object under the mouse pointer

. Help button short cuts (accelerators): pressing anywhere on the panel outside a text
window h, H or ? invokes help

. Exit button short cuts (accelerators): pressing anywhere on the panel outside a text
window q or Q exits the panel

. All top level control panel windows are created with an X Windows application class
name ofUnravel so that X resources can be set for all panels at once (e.g., to set the

52

foreground color tored give the following resource specification tordb:
*Unravel*Foreground: red).

Two application resourcesunningFG and runningBG, are defined. These resources are a
foreground and a background color that are used to indicate a lengthy operation is in progress.

The two information pop-ups display a history of user activities and help text for each panel.
An information pop-up window consists ofdmne button to dismiss (pop-down) the window and

a scrollable text window.

The user interface keeps the following log files:

1. The file HISTORY.LOG is a log of user analysis and slicing activity in the current
directory for past invocations afnravel. TheHISTORY.LOG is updated with current
activity when theMain Control Panel exits.

2. The fileHISTORY s a log of user analysis and slicing activity in the current directory
for the current invocation ofinravel. The HISTORY file is updated with current
analysis activity when thénalyzer Control Panel exits and is updated with slicing
activity when theSlicer Control Panel exits.

3. The fileHISTORY-A is a log of user analysis activity for the current invocation of the
Analyzer Control Panel. Results of analysis of each file is recorded, including syntax
errors found in the source code.

4. The file HISTORY-S is a log of user slicing activity for the current invocation of the
Slicer Control Panel

4.4.1 Main Control Panel
The function of theMain Control Panel is to respond to user interaction with the panel.
The Main Control Panel is invoked by running the prograomravel. The input tounravel is
a single directory name on the command line to specify a working directory. If the command
line is empty, the current directory is used as the working directory. After a working directory
is obtainedunravel makes the working directory the current directory.
Invoking theMain Control Panel does the following initializations:
1. Change to the directory specified on the command line.

2. Initialize HISTORY-S to No slices computed this session

3. Initialize HISTORY-A to No analysis done this session

53

4. Initialize HISTORY to UNRAVEL directory namecurrent date and time.
The Main Control Panel displays the following information:

. Current directory name.

. Number of source files. This is a count of files with@extension.

. Number of files analyzed and up to date. The number of C source files that lbi&ve
and.T files such that the C file is older than thelF and.T files.

. Number of source files not analyzed. This is a count of files with.¢hextension that do
not have either arLIF, .T or an.H file.

. Number of files analyzed and out of date. The number of C source files that have either
.LIF or.T files such that the C file is younger that either th& or the.T file or both.

. Number of main program files analyzed, i.e., the number of main program files identified
in the SYSTEM file.

. Number of main program files linked. This is the number of main program files
identified in theSYSTEM file that also haveLINK and.K files.

. Number of duplicate procedures found. This is the number of procedures identified in
the SYSTEM file as ambiguous (appearing in more than one file).

. Last line of panel displays a brief description of the object under the mouse pointer.
The Main Control Panel buttons invoke the following actions:
Exit The Exit button does the following:

1. Append the fileHISTORY to HISTORY.LOG

2. DeleteHISTORY

3. Exit
Run Analyzer The Run Analyzer button does the following:

1. Invokes theAnalyzer Control Panel, passing the window id of theun Analyzer button
as a command line parameter.

54

2. When theRun Analyzer button receives a non-maskable event (i>send from
Analyzer Control Panel) the displayed counts are updated.

Review History The Review History button pops-up a four item menu, and display the
indicated file.
Last Analysis HISTORY-A

Last Slice HISTORY-S
This Session HISTORY
All History HISTORY.LOG

Run Slicer The Run Slicer button invokes the&Selection Control Panel
Help The Help button runshelpu with the file unravel.help as command line parameter.
Current Directory The following is done when the directory is changed:
1. Append the fileHISTORY to HISTORY.LOG
2. DeleteHISTORY
3. Initialize HISTORY-S to No slices computed this session
4. Initialize HISTORY-A to No analysis done this session
5. Initialize HISTORY to UNRAVEL directory namecurrent date and time
4.4.2 Analyzer Control Panel
The Analyzer Control Panel presents the user with:

. Buttons to control file selection, running thanalyzer clearing analysis files and
popping-up a help window.

. A status line to give the user feedback on progress of the analysis of a set of files.

. Two text windows for specifying command line options to the C preprocessor and to the
unravel parser.

. A list of selectedsource files from the current directory.

. A list of other source files in the current directory.

. Last line of panel displays a brief description of the object under the mouse pointer
The Analyzer Control Panel buttons invoke the following actions:

55

Exit Analyzer This button appends the fildISTORY-A to HISTORY and then exits.

File SelectionThe File Selectionbutton pops-up a menu with the following four choices and
actions:

All Files: All source file names are placed in teelectedist window. Thenot selected
list window will be empty.

No Files: All source file names are placed in thet selectedist window. Theselected
list window will be empty.

Analyzed Files: All source file names of files that have oldadF, .T and.H files are
placed in theselectedist window. The remaining source file names are placed imtite
selectedist window.

Files Not Analyzed: All source file names of files that have oldaiF, .T and.H files
are placed in theot selectedist window. The remaining source file names are placed
in the selectedist window.

Analyze Selected Files/Stop Analysighis button runs the analyzer on each selected file,
adding the contents of the C preprocessor options window to the C preprocessor command line
and adding the contents of the parser options window to the parser command line. When the
Analyzer Control Panel button is pushed the button label is changed franalyze Selected

Files to Stop Analysis If the Stop Analysisbutton is pressed, do not analyze any more of the
selected files after the file currently being analyzed is finished. As each file is analyzed, the file
name currently being analyzed is displayed on the status line along with a progress indication.
The progress indication is defined by the following: number each file in sequence starting from
1 in the order that the files will be analyzed. Display the file’s sequence number and the total
number of files. The status line should be set to the foreground and background colors specified
in the application resourcesinningFG andrunningBG.

After all selected files have been analyzed, map.

Clear This button deletes the analysis file&lf, .H and.T) for each selected file and delete
the SYSTEM file.

Help The Help button displays the fileanalyzer.help
4.4.3 Selection Control Panel
The Selection Control Panelpresents the user with:

. Exit andHelp buttons

56

. A status line

. A list of main program source files from the current directory

. Last line of panel displays a brief description of the object under the mouse pointer
The Exit button pops-down the panel with no further action.

If a file from the list is selected, the file is linked, tt&election Control Panelis popped-down
and the slicer is called.

The status lineinitially indicates thatselectis waiting for the user to make a selection. After
a file is selected, the status line indicates that a file is being linked.

If there is exactly one main program file, the file is linked and the slicer is called without
bringing up the selection panel.

The Help button displays the fileselect.help

HISTORY-S is updated with a message indicating the file to be linked before the linker is
called. Any linker output (e.g., error messages) is appendéti$GORY-S.

4.4.4 Slice Control Panel
The slicer accepts slicing criteria from the user, computes a program slice for each criterion
given, saves each slice for later recall and displays the program in a scrollable window. The
slicer presents the user with:

. Buttons to exit, to pop-up help and interrupt a lengthy slice calculation.

. A display indicating slice size and slice calculation progress.

. A display of the currently selected slicing criterion variable.

. Menu of selection options for selecting slicing criterion variables, or previously computed
slices.

. Menu of operations that can be performed on two selected slices.
. Display describing the contents of the scrollable window.

. Display of program source text in a scrollable window.

57

. The last line of the panel displays a brief description of the object under the mouse
pointer.

. Clicking a mouse button in the text window specifies the statement for the slicing
criterion and initiates the slice computation.

Primary sliceandsecondary slicéas no significance other than being convenient names for two
slices when an operation such as intersection is performed on two slices.

In addition to interaction with the user through the window interface, the slicer has the following
inputs and outputs:

Command Line The slicer takes one command line argumdii¢.c, the name of a main
program file.

Summary Counts The slicer looks for aK file, file.K, that matches the main program file on
the command line wherfle is the name of the main program file without any extension.

Linked .LIF File The slicer looks for aLINK file, file.LINK , that matches the main program
file on the command line wherfde is the name of the main program file without any extension.

Computed SlicesEach slice that is computed is savedfile.Y as a criterion and set of flow
graph node numbers. The file format is as follows:

1. Ciriterion (four integers): variable id number, procedure id number that variable is local
to or zero if global, file id number containing statement and statement number.

2. Partial slice flag (integer): value 0 if slice computation was not interrupted, value 1 if
interrupted.

3. File entries (one per file): consists of file id number followed by zero or more statement
numbers, terminated byl. The last file entry is followed by a file id ofl (i.e., slice
entry is terminated by twel entries, one to end the statements of the last file of the main
program and one to mark end of files in the program for the slice).

HISTORY-S The slicer records information in the following format for each slice computed is
placed inHISTORY-S to record the criterion, the slice size in flow graph nodes and the wall
clock time to compute the slice:

slice on var name(in procedure namge at line nnnin file name (nnnstmts in
mm:ss)

If the variable is global then the womglobal replaces the procedure name.

58

The Slice Control Panelbuttons do the following:

Exit This button appendslISTORY-S to HISTORY and then exits.

Interrupt The Interrupt button does the following:

1. Stops computation of the slice and displays partial results.

2. Marks the slice as partial and saves.

Help This button pops-up the panel help filehelp.

There are six information display windows on t8&ce Control Panel

1.

Slice Progress Windowdisplays the current size of the slice being computed (or last
computed) in units of flow graph nodes. This window is located betweentkeerupt
andHelp buttons on the top line of the panel.

Criterion Variable Window displays the currently selected criterion variable, the file
where the variable is declared and the declaration scope. If the variaplebisl then

the scope is the wordlobal; otherwise, it is the name of the local procedure containing
the variable declaration. If an element is not defined, the wamdke is displayed. This
window is the second line of the panel.

Primary-Secondary Window displays the criteria for the current primary and secondary
slices. If there is no such sliceapneis displayed. This window is the third line of the
panel.

Text Description Window describes the contents of theext Window using one
message from Table 4-4. This window is the fourth line of the panel.

59

Contents Message

None Source Filefile_name

Slice Slice oncriterion

Intersection Intersection ofprimary_criterion & secondary_criterion
Union Union of primary_criterion & secondary_criterion
Dice primary_criteriondiced bysecondary_criterion

Dice S-P secondary_criteriordiced byprimary_criterion

Marked proc Location ofprocedure_namén file_name

Call tree Call tree ofprocedure_name

Table 4-4: Text Description Windows

5. Text Window displays the program text with a scroll bar for navigation. Statements can
be designated for highlighting by the text window. Highlighting is used to indicate sets
of statements such as the statements that are members of a slice. The right margin of the
text window contains aick bar that is used to visually indicate the location of
highlighted statements throughout the entire program. The vertical length of the tick bar
is scaled to the length of the program in source file lines. A tick (horizontal line) in the
tick bar indicates that at that relative position in the display there are one or more
highlighted lines. The tick bar is adjacent to the scroll bar to facilitate scrolling to
highlighted regions of the text.

6. Current Object Window describes the function of the object currently under the mouse
pointer. This window is the last line of the panel.

The Selectmenu has the following selections:

Local Variable This entry is a two-step selection. First, a list of procedure names is popped-up
for the user to select one item. The list consists of all procedures that are defined somewhere
in the main program. Procedures such as library routines that are used, but not defined, are not
included in the list. The first entry in the list Mo Selection If a procedure is selected, the
procedure header, opening brace and closing brace are highlighted, a list of variables declared
local to the selected procedure is popped-up and the list of procedure names is popped-down.
If no procedure is selected, the list of procedure names is popped-dowrCriféeon Variable

Window is updated with the selected items.

Global Variable This entry is a two-step selection. First, a list of file names is popped-up for

the user to select one item. The list includes all source filgsir{ the program and all header
files (.h) that are included in the program. The first entry in the lisNs Selection If a file

60

is selected, a list of global variables declared in the selected file is popped-up and the file list
is popped-down. If no file is selected, the file list is popped-down. Thigerion Variable
Window is updated with the selected items.

Mark Proc A list of procedure names is popped-up for the user to select one item. The first
entry in the list isNo Selection If a procedure is selected, the procedure header, opening brace
and closing brace are highlighted. The list is popped-down.

Show Call Tree A list of procedure names is popped-up for the user to select one item. The
first entry in the list isNo Selection If a procedure is selected, the procedure header, opening
brace, closing brace and all the call sites for the selected procedure are highlighted. The
highlighting continues for each procedure containing a highlighted call site until no more
unhighlighted procedures are found. If a call site in controlled by a conditional statement (e.g.,
if or while), the conditional statement is highlighted. The list is popped-down.

Primary This selection pops-up a list of previously computed slices. The first entry in the list
is No Selection If a slice is selected, it becomes themary sliceand is displayed. The list is
then popped-down.

SecondaryThis selection pops-up a list of previously computed slices. The first entry in the list
is No Selection If a slice is selected, it becomes thecondary slicand is displayed. The list

is then popped-down.

The Operation menu has the following selections:

The selectiorDice highlights the statements of thgimary slice that are not members of the
secondaryslice and updates thEext Description Window.

The selectiorDice S-Phighlights the statements of tlecondaryslice that are not members of
the primary slice and updates theext Description Window.

The selectiorintersection highlights the statements in both themary andsecondarslice and
updates théext Description Window.

The selectionUnion highlights the statements in either tipeimary or secondaryslice and
updates théext Description Window.

The selectiorClear removes all highlighting and updates thext Description Window.
The Text Window has four actions triggered by the mouse.

1. Clicking a mouse button in the tick bar area scrolls the window to the corresponding area
of the program text.

61

2. The leftmost mouse button computes a primary slice.

3. The middle mouse button computes a secondary slice.

4. The rightmost mouse button highlights the current line.
The source program line under the mouse pointer when the mouse button is clicked specifies the
statement for the slicing criterion. If the specified slicing criterion has already been used to

compute a slice (without interruption), then the slice is not computed, but is retrieved and
displayed.

62

5 System Evaluation & Performance

Unravel was evaluated in the context of reviewing safety system software for quality. The
evaluation considered the size of slices produced, time to compute slices and usability by a
novice user.

The objectives of the evaluation were to determine the following:

1. Are program slices smaller than the original program to an extent that is useful to a
software reviewer evaluating a program?

2. Can program slices be computed quickly enough to be useful?
3. Isunravel usable by a novice user?
Program slicing can help automate two tasks performed by reviewers:

1. A thread checktraces a variable chosen for evaluation through the software. This
includes reviewing relevant sections of program source code that currently must be
manually located.

2. Evaluation of functional diversity is accomplished by attempting to determine if two
application functions share source code. If source code is shared by two diverse
application functions, then the reviewer must carefully evaluate the shared code for errors.
The concept ofunctional diversityis used to defend againsbmmon mode failurén
digital systems.

Two examples of typical safety system code were used to test and vefiaeel. Demonstration

of unravel using these and other examples were given to software reviewers. The
demonstrations provided useful results that resulted in improvements to the user interface and in
the identification of features to be explained in more depth in the user manual or to be included
in a later version otinravel.

5.1 Capability Analysis

The first example a simplified safety system was developed in three versions. One version was
written to conform to safety system diversity requirements while the other two were deliberately
seeded with common codéJnravel was able to verify and display the presence of the common
code in the seeded versions and show the absence of common code in the diverse version. Only
the conforming version of the example is used in the size and timing analysis.

63

The second example, a commercial sample of safety related code, presented a realistic evaluation
for unravel. While the code was not ANSI Gjnravel was used after a few simple changes
brought the commercial code into ANSI compliance. The commercial code was used by a
software reviewer to evaluate the utility ohravel.

Slice Size Ex-1 Example Commercial Example
Size< 1% 147 76% 155 37%
1% < Size< 25% 26 14% 135 32%
25% < Size< 50% 10 5% 129 31%
50% < Size 10 5% 0 0%
Total 193 100% 419 100%

Table 5-1: Slice Size Analysis

Table 5-1 presents an analysis of slice sizes for the two example programs. The sizes are
clustered in terms of number of statements in a slice relative to the total program size. For each
example, the number of slices in a category and the percentage of the total slices are given. The
table shows that the user oifiravel can expectinravel to eliminate a significant portion of code

from consideration when using program slicing to extract a given computation for examination.

The reviewer directednravel to compute six slices for both safety and nonsafety related process
variables. The reviewer was able to identify several unanticipated connections between

subsystems. The following observations by the reviewer are relevant to the evaluation of
unravel:

1. Use ofunravel in a review should significantly enhance the ability to perform and
analyze string checks

2. Unravel is easy to operate for a person with computer skills.

3. Unravel can disclose subtle relationships between safety related and nonsafety related
code that would requira C expert to discover.

5.2 Timing Analysis

This section reports on empirical tests to estimate the time necessamprirel to compute
program slices for programs of 1000 lines, 10,000 lines and 100,000 lines. The tests are divided

" A string checkis a method for software evaluation that includes locating all source code
statements involved in some computation.

64

into three areas: analyzer, linker and slicer. The tests were performed on three sets of source
code: a simplified safety system, a commercial example, andih&vel source code. Times
are in seconds for the analyzer and linker except as noted. Times for the slicer are in minutes.

5.2.1 Analyzer Timing

Table 5-2 presents the timing results for the simplified example. Results for the commercial code
are presented in Table 5-3 and tineravel source code results are presented in Table 5-4. The
first column is the file name. The next three columns represent three different measures of the
file size. Column two, labeletines is the number of source lines in the file; this is the number

of lines the programmer sees when editing the file. The next column, laB&&dLOC is the
number of lines in the file after expansion by the C preprocessor to insemelge files This

is the actual input that the slicing componenuofavel receives. The last of the three columns,
labeled NCLOC (Non-Commentary Lines Of Codé the size of the expanded file after
comments and blank lines are removed. The column labelEds the size in bytes of the
analysis files. The data are sorted REZLOC

File Lines CPP LOC NCLOC Time LIF
main.c 193 256 143 1 30,595
coolant.c 467 704 320 1 65,161
pressure.c 510 747 342 1 69,529
Total 1270 1707 805 3 165,285
Table 5-2: Analyzer Results for simplified Example
File Lines CPP LOC NCLOC Time LIF
filel.c 545 282 475 1 19,424
file2.c 672 409 587 1 30,292
prog.c 707 1764 638 2 20,981
file3.c 668 1405 651 2 32,221
filed.c 552 1521 655 2 30,178
file5.c 888 1625 703 2 41,754
Total 4032 9006 3709 10 174,850

Table 5-3: Analyzer Results for Commercial Code

File Ver Lines CPP LOC NCLOC Time LIF

visit-filter.c 11 17 192 48 1 1,825
visit-ctrl.c 1.1 38 213 52 1 2,381
pss-driver.c 1.1 30 532 238 1 3,179
tsummary.c 11 198 518 251 1 9,341
summary.c 12 185 505 252 1 11,994
err.c 1.1 23 613 264 1 3,355
const.c 1.1 30 620 277 1 3,340
slice_driver.c 1.3 143 500 296 2 11,361
call-tree.c 11 94 613 302 1 8,684
sets.c 1.1 302 592 323 1 22,699
parser.c 1.6 141 815 390 1 12,204
history.c 11 227 669 411 1 16,487
mem_alloc.c 11 167 842 431 1 12,436
auto-slice.c 14 216 1,099 471 2 20,088
chain.c 1.3 375 1,025 540 1 27,163
map.c 14 614 1,355 711 2 42,176
pss.c 1.3 871 1,373 838 3 58,607
stmt.c 1.7 846 1,401 946 2 57,003
Xpr.c 1.3 778 1,513 965 4 63,532
kgram.c 1.6 1,950 2,590 1,872 5 108,902
kscan.c 14 2,017 2,734 1,884 6 65,433
slice-load.c 15 1,390 2,349 1,351 5 105,134
slice.c 1.6 1,691 2,108 1,642 4 141,898
slink.c 1.3 1,176 1,496 1,131 3 98,524
sym_tab.c 13 1,359 1,999 1,279 4 95,638
helpu.c 1.1 76 12,815 5,646 15 8,970
MultiSlice.c 1.2 793 12,723 6,353 32 92,807
analyzer.c 1.2 1,216 14,980 6,673 25 66,713
select.c 1.3 601 14,576 6,208 20 36,968
u.c 15 1,383 14,742 6,839 32 86,455
unravel.c 14 709 14,089 6,210 59 35,904
Total 19,656 112,191 55,095 3:21 1,330,192

Table 5-4: Analyzer Results for Unravel

66

These data indicate that it is practical to run tneravel analyzer on programs of at least
100,000 lines of code. Since the definitionlfes of codas often controversial, three file size
measures are given. In this analysis we consiMiet. OCthe most reasonable measurdinés

of codeand the most accurate predictor of run time. For the simplified example and the
commercial code, analyzer run time is about 3 or 4 seconds for a thousand lines of NCLOC, a
rate of 250-330 lines per second. Since the analyzer does a single pass over the source code and
linear performance is expected, 100,000 lines of code should be analyzed in about 6:40 minutes
(at 250 lines per second). The 55,095 linesuofavel source code were analyzed in 3:21
minutes; this time agrees with the expected value.

5.2.2 Linker Timing

The unravel linker has two main componentsiap which scans the analysis files fonain
procedures andlink which merges theIF files of a program into a singleINK file. The
map component of the linker ran in less than 2 seconds onutiravel source files (55,000
lines) and should run in less than 5 seconds on 100,000 lines of code.

The timing results of linking each main program are presented in Table 5-5. The column labeled
Program contains the program name. The source files that must be linked together for the
program are given undétiles. TheLink Timecolumn gives the time in seconds for the linker

to run on each program. Two programs famravel are typical. The program represents
17,000 NCLOC and is linked at the rate of 1,700 lines per second. The progaaser
represents about 7,500 NCLOC and is linked at the rate of about 950 lines per second. Since
the linker is a single pass algorithm, and a linear timing relationship is expected, the linker
should be able to link 100,000 lines of code in about 2 minutes.

5.2.3 Slicer Timing

To evaluate the times to compute program slices, criteria were automatically generated by slicing
on the last statement of tmeain procedure for each global variable and the last statement of the
procedure where a local variable is declared for each local variable. Usually the timing results
produce clusters of slices with similar times. It should be noted that we use these examples as
performance benchmarks asravel evolves. These results are famravel version 2.1, different

results are obtained as improvements are made to the slicing algorithm or as bugs are fixed.

The example code provided 193 slicing criteria. Most slices (183) were completed in under 1
second. The remaining ten slices were completed in less than ten seconds.

The commercial example provided 419 slicing criteria. The slicing times divided into four
clusters, 354 slices were completed in under 1 minute. Fifty-eight slices required more than 1
minute but under 5 minutes. Six slices required between 35 minutes to one hour. One slice took
3 hours and 9 minutes.

67

Program Files Link Time Link Size
main main.c coolant.c pressure.c 1 160,341
prog prog.c filel.c file2.c file3.c file4d.c file5.c 3 148,479
visit-filter visit-filter.c 1 1,343
visit-ctrl visit-ctrl.c 1 1,901
unravel unravel.c 1 33,104
u u.c MultiSlice.c slice.c sets.c history.c 10 480,886
slice-load.c pss.c
tsummary tsummary.c 1 8,760
summary summary.c 1 11,396
slink slink.c 1 96,898
slice_driver slice_driver.c slice.c slice-load.c sets.c pss.c 6 307,815
select select.c 1 33,956
pss-driver parser.c sym_tab.c mem_alloc.c xpr.c 8 417,953
chain.c stmt.c kgram.c kscan.c err.c
map map.c 1 40,940
helpu helpu.c 6,277
call-tree call-tree.c 5 305,616
analyzer analyzer.c 1 63,800

Table 5-5: Linker Results

68

Cluster Time N Slices Percent
1 <1 104 36
2 1<t<12 113 40
3 23 <t< 25 15
4 45 <t < 60 13
5 60 <t 40 14

Table 5-6: Slicer Results for Unravel Code

The unravel source code generated 834 slicing criteria, 155 global variables and 679 local
variables. Slices were computed for 285 of the criteria, the 155 global variables and 130 local
variables. Table 5-6 presents the results for each cluster size. Times are in minutes.

5.3 Analysis Summary

The software review process as currently implemented is a manual process that is slow, tedious,
and prone to human errors. Witimravel, once a software reviewer has identified a variable for
further investigation, the reviewer direatsravel to compute a program slice on the variable.
Instead of examining the entire program, only the statements in the slice need to be examined
by the reviewer. By speeding up the process of locating relevant code for examination by the
reviewer, a larger sample of a commercial product can be inspected with greater confidence that
some relevant section of source code has not been missed.

Once two computations that could be vulnerabledonmon mode failurbave been identified,
program slices can be computed to find statements relevant to each computation. Functional
diversity of the two computations can be evaluated by intersecting slices to show any statements
in common. Source program statements that have potential to cause common mode failure would
be present in the intersection of the program slices. Without any tool, a software reviewer
evaluates the software until it is determined that there is no common code, or that the common
code present will not compromise the mission of the safety critical software.

The analyzer and linker components can process source code of up to 100,000 lines of code in
less than 10 minutes. The linear behavior of the analyzer and linker leads to stable run time
performance. The slicer component does not use a linear algorithm, but rather uses a quadratic
algorithm that can have significant run time variability. The slicer performed well on the
simplified example. Larger programs, suchp@sser with 7,500 lines, have slices (14%) that

69

can take longer than one hour. It should be noted that there is potential for significant algorithm
improvement. The slicer makes repeated passes over the program until no more changes occur.
The slicer is sensitive to the order in which program statements are analyzed. For example, after
one small change in the slicer code that controls the order of visiting nodes during the slice
computation, the longest time to compute a slice on the commercial code dropped from 10 hours
to 3 hours. Other areas that can be improved include loop analysis and procedure calls.

70

6 References

1. ANSI. American National Standard for Information Systems - Programming Language - C.
Technical Report ANSI X3.159-189/FIPS PUB 160, American National Standards Institute, 1430
Broadway New York, New York 10018, December 1989.

2. M. Weiser. Program slicindEEE Transactions on Software Engineer;jrig:352-357, July
1984.

3. K. Kennedy. A Survey of Data Flow Analysis Techniques. In Steven S. Muchnick and Neil
D. Jones, editorRrogram Flow Analysis: Theory and Application®rentice-Hall, Englewood
Cliffs, New Jersey, 1981.

4.J. R. Lyle and M. D. Weiser. Experiments in slicing-based debugging aids. In Elliot Soloway
and Sitharama lyengar, editor&mpirical Studies of Programmers Ablex Publishing
Corporation, Noewood, New Jersey, 1986.

5. K. B. Gallagher and J. R. Lyle. Using Program Slicing in Software MaintenanE&E
Transactions on Software Engineerjn/(8):751-761, August 1991.

6. M. Weiser. Programmers Use Slicing When Debugg@8CM, 25(7):446-452, July 1982.

7. S. Horwitz, J. Prins, T. Reps. Integrating Non-Interfering Versions of PrografAGM
Transactions on Programming Languages and Systém®):345-387, July 1989.

8. J. Ferrante, K. Ottenstein, and J. Warren. The Program Dependence Graph and Its Use In
Optimization. ACM Transactions on Programming Languag@63):319-349, July 1987.

9. FIPS PUB 151-2, "Portable Operating System Interface (POSIX)-System Application Program
Interface [C Language],” U.S. Department of Commerce/National Institute of Standards and
Technology, 1993 May 12.

10. FIPS PUB 158-1, "The User Interface Component of the Application Portability Profile,”
U.S. Department of Commerce/National Institute of Standards and Technology, 1993 October 8.

71

72

Appendix A: LIF Format

#ifndef _Iif_h

#define _Iif_h

#define LIF_ H SCCS_ID " @@#)lif.h 1.8 5/23/94 "
*
i***
*

LIF FORMAT

id - variable id

node - source program statement (or fragment)
pid - procedure id

name - variable or procedure name

level- indirection level

addr - address number

chain- chain number of pointer chain on a node
field- sequence number of field in chain

fid - field offset in struct

offset number of fields in a declared structure variable
- is an array

- is a pointer

- static object

- is declared extern

iSs a goto statement

- is a break statement

IS a continue statement

returns an expression value

TOWHXNT>

% % %k 3k o F X Xk Sk X X X X 3k F F X X

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk

*/

define LIF_PROC_START 1 /* 1(node,pid,name)

define LIF_PROC_END 2 [2(node[,S][,R])

define LIF_FORMAL_ID 3 [3(id,namel[,A][,P])

define LIF_LOCAL_ID 4 [* A4A(id,namel[,S][,P]1[.X]I[,A])
define LIF_GLOBAL_ID 5 /> 5(id,namel[,S][,P1[.X][,A])
define LIF_FILE 6 [* 6(file_id,file_name)

define LIF_REF 7 [T7(node,id[,level])

define LIF_DEF 8 [* 8(node,id[,level])

define LIF_GREF 9 /* 9(node,id[,level])

define LIF_GDEF 10 /* 10(node,id[,level])

define LIF_CALL_START 11 /* 11(node,pid)

define LIF_ACTUAL_SEP 12 /* 12 ¥k oyoid R

define LIF_CALL_END 13 /* 13 **xoyoid *r*

define LIF_RETURN 14 /* 14(node,1|0)

define LIF_GOTO 15 /* 15(node,G|B|C)

define LIF_SUCC 16 /* 16(from_node,to_node)

73

*/

define
define
define
define
define
define
define
define
define
define

HHEHHHFFFEFERHHR

#endif /*

LIF_CHAIN 19 /* 19(chain,id)
LIF_GCHAIN 20 /* 20(chain,id)
LIF_FIELD 21 /* 21(chain,field,fid,name)
LIF_CREF 22 [* 22(node,chain)
LIF_CDEF 23 [* 23(node,chain)
LIF_AREF 24 [* 24(node,addr)
LIF_ADDRESS 25 [* 25(addr,pid,id)
LIF_STRUCT 26 [* 26(pid,id,offset)
_lif_h */

74

LIF_REQUIRES 17 [* 17(required_node,nodel,to node])*/
LIF_SOURCE_MAP 18 /*18(node,fr_I,fr_c,to_l,to_c)

*/

*/
*/

*/
*/
*/

Appendix B: YACC Grammar

B.1 Expressions
%%

primary_expr
. identifier
| CONSTANT
| string_literal_list
| 'C exprXX’y

string_literal_list
: STRING_LITERAL
| string_literal_list STRING_LITERAL

postfix_expr
. primary_expr
| postfix_expr [exprXX T
| postfix_expr '(" ")’
| postfix_expr '(" argument_expr_list *)’
| postfix_expr .’ identifier
| postfix_expr PTR_OP identifier
| postfix_expr INC_OP
| postfix_expr DEC_OP

argument_expr_list
. assignment_expr
| argument_expr_list ’,” assignment_expr

unary_expr
. postfix_expr
| INC_OP unary_expr
| DEC_OP unary_expr
| unary_operator cast_expr
| SIZEOF unary_expr
| SIZEOF '(’ type_name ')’

75

unary_operator : ‘&’ | %71 | 4 | 1 | " | e

binary_operator : & | ¥ | '+ | -7 | '~ |
’!’ | 1/1 | 10/01 | l<<1 | 1>>’ | 1<1 | 1>1 |
l<:1 | l>:1 | l::1 | l!:1 | IN? | l&&l | 1||1

cast_expr
: unary_expr
| 'C type_name ')’ cast_expr

binary_expr
. cast_expr
| binary_expr binary_operator cast_expr

conditional_expr
. binary_expr
| binary_expr'?’ expr’:’ conditional_expr

assignment_expr
: conditional_expr
| unary_expr
assignment_expr

assignment_operator

assignment_operator
:’=" | MUL_ASSIGN | DIV_ASSIGN
| MOD_ASSIGN
| SUB_ASSIGN | LEFT_ASSIGN
| RIGHT_ASSIGN
| XOR_ASSIGN | OR_ASSIGN
| ADD_ASSIGN | AND_ASSIGN

expr

: exprXX

exprxxX
. assignment_expr
| expr’,” assignment_expr

constant_expr
. conditional_expr

B.2 Declarations

declaration
. declaration_specifiers ’;’

| declaration_specifiers init_declarator_list

declaration_specifiers

. storage_class_specifier

| storage_class_specifier
declaration_specifiers

| type_specifier

| type_specifier declaration_specifiers

init_declarator_list
. init_declarator
| init_declarator_list *," init_declarator

init_declarator
. declarator
| declarator "= initializer

storage_class_specifier
: TYPEDEF | EXTERN | STATIC
| AUTO | REGISTER

type_specifier

76

: CHAR | SHORT | INT | LONG

| SIGNED | UNSIGNED

| DOUBLE | CONST | VOLATILE
| FLOAT | TYPE_NAME

| struct_or_union_specifier

| enum_specifier | VOID

struct_or_union_specifier
. struct_or_union identifier
{’ struct_declaration_list '}
| struct_or_union
{’ struct_declaration_list '}
| struct_or_union identifier

struct_or_union
: STRUCT | UNION

struct_declaration_list
. struct_declaration

| struct_declaration_list struct_declaration

struct_declaration

: type_specifier_list struct_declarator_list

struct_declarator_list
. struct_declarator

| struct_declarator_list’,” struct_declarator

struct_declarator
. declarator
|’ constant_expr
| declarator "’ constant_expr

enum_specifier
: ENUM '{’ enumerator_list '}’

| ENUM identifier '{" enumerator_list '}
| ENUM identifier

enumerator_list
: enumerator
| enumerator_list ’,’” enumerator
| enumerator_list ’;’

enumerator
. identifier
| identifier '=" constant_expr

declarator
. declarator2
| pointer declarator2

parms_next : /* empty */

declarator2
. identifier
| 'C declarator)’
| declarator2 ['T
| declarator2 '[' constant_expr ']
| declarator2 parms_next (" ’)’
| declarator2 parms_next
'(" parameter_type_list’)’
| declarator2 parms_next
'(" parameter_identifier_list *)’
pointer
L
| '*" type_specifier_list
| *" pointer
| '*" type_specifier_list pointer

type_specifier_list
. type_specifier

77

| type_specifier_list type_specifier

parameter_identifier_list
- identifier_list

identifier_list
. identifier
| identifier_list ’," identifier

parameter_type_list
. parameter_list
| parameter_list ', ...

parameter_list
. parameter_declaration
| parameter_list ’,’ parameter_declaration

parameter_declaration

. type_specifier_list declarator

| REGISTER type_specifier_list
declarator

| type_name

type_name
. type_specifier_list
| type_specifier_list abstract_declarator

abstract_declarator
. pointer
| abstract_declarator2
| pointer abstract_declarator2

abstract_declarator2
. '(" abstract_declarator)’

I'TT

| T constant_expr ']

| abstract_declarator2 ' ']

| abstract_declarator2 [constant_expr’]’
|°C)

| 'C parameter_type_list)’

| abstract_declarator2 parms_next '(" ')’
| abstract_declarator2 parms_next

‘(" parameter_type_list’)’

initializer
. assignment_expr
| '{ initializer_list '}’
| {" initializer_list ’; '}

initializer_list
- initializer
| initializer_list *,” initializer

B.3 Statements

statement
: labeled_statement
| compound_statement
| expression_statement
| selection_statement
| iteration_statement
| jump_statement

labeled_statement
. identifier .’ statement
| CASE constant_expr "’ statement
| DEFAULT ;" statement

decl_end
. declaration_list

78

decl_start
[empty */

compound_statement
Y
| '{ statement_list '}
| '{’ decl_start decl_end '}
| '{ decl_start decl_end statement_list '}’

declaration_list
. declaration
| declaration_list declaration

statement_list
. statement
| statement_list statement

expression_statement

| expr’y

selection_statement
- IF (" expr’)’ statement
| IF’(expr’) statement ELSE statement
| SWITCH ’(" expr ')’ statement

oexpr : /[* optional */
| expr

iteration_statement
: WHILE ’(" expr ')’ statement
| DO statement WHILE '(" expr ")’}
| FOR (" oexpr ’; oexpr ’; oexpr ')
statement

: identifier
: IDENTIFIER
jump_statement ;
: GOTO identifier '}’
| CONTINUE ' %%
| BREAK ’;
| RETURN ’}’
| RETURN expr 'y

B.4 External Objects

program :
| file

file
. external_definition
| file external_definition

external_definition
- function_definition
| declaration

function_start
[empty */

function_definition
. declarator function_start ;"
| declarator function_start function_body
| declaration_specifiers declarator
function_start function_body

function_body
: compound_statement
| declaration_list compound_statement

79

