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Challenges of anomaly detection 

• Process variability and dynamics: 

Combination of transient and steady 

state operation [1] 

 

• Part interaction: Changing loads 

due to different machine-part 

interactions 
 

• Data collection: Cost and access 

constraints 
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[1] C. Cempel, and M. Tabaszewski. "Multidimensional condition monitoring of machines in non-stationary operation."  

MANUFACTURING PROCESSES ARE COMPLEX 
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[2] Lee, Jay, Behrad Bagheri, and Hung-An Kao. "A cyber-physical systems architecture for industry 4.0-

based manufacturing systems." Manufacturing Letters 3 (2015): 18-23. 3 SUPPORT INTEGRATED ANALYSIS OF COMPLEX PROCESSES 



Improve anomaly detection and 

diagnosis in manufacturing processes 

Solution:[3] 

  Model Cyber-Physical Systems considering 

both, Cyber and Physical domains 
 

  Context-specific analysis of manufacturing 

operation merging multiple models 

Pre-

process 

Signal 

Partitionin

g 
 

Anomaly 

Detection 

 

Cause  

Diagnosis 

Data 

collection 

 

Objective 

Intro CPS Approach Case1 Case2 Case3 Conclusion 

[3] Saez, Miguel, et al. "Anomaly detection and productivity analysis for cyber-physical systems in 

manufacturing." In Automation Science and Engineering (CASE), 2017 4 

MERGE DATA AND INFORMATION WITH EXPERT KNOWLEDGE 



Global Operational State (GOS): 

• Functional: Reduced controller model 

• Dynamic: States describing machine dynamics 

• Interactive: Describe the operations in the part 

• Information: Explicit process descriptors 
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5 UNDERTAND THE MACHINE OPERATION AND INTERACTION 



• Multi-model Specification:[4] 

 

 

 

 

 

 

• Adaptive Threshold Limits: 

 

 

 

 

 

𝑀 = 𝐺𝑂𝑆, 𝑈, 𝑋, 𝑌, 𝐹, 𝐻  

GOS: Global Operational State 

U: Continuous inputs 

X: State variables 

Y: Output variables 

F: Mapping of state variable functions 

H: Mapping of  output variable functions 

 

Δr𝐺𝑂𝑆 = 𝜇 ± 𝜓𝑅𝑍𝜎 

Define Context-Specific Model 
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[4] Saez, Miguel, et al. "Context-Sensitive Modeling and Analysis of Cyber-Physical Manufacturing Systems for 

Anomaly Detection and Diagnosis“, Transactions in Automation Science and Engineering (TASE), 2018 (Submitted) 
6 



 

 

 

 

• Available controller data 

 

 

 

 

 

 

Type Variables 

Categorical Vehicle model 

Functional state Ready, Processing, Down 

State-space Velocity, Torque 

Energy Current, Voltage, Frequency 

Process flow 

Case Study: Conveyor 
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Anomaly detection: Adaptive threshold limits 

(Snapshot measurements) 
 State  GOS1  GOS2  GOS3  GOS4  GOS5 

 Functional Proc Proc Proc Proc Proc 

 Dynamic Accel Accel Const Const Const 

 Interactive Part.Out  

Front/Rear 

Part.Out  

Front 

Part.Out 

Front 

Part.In 

Rear 

Part.In 

Front 

Case Study: Conveyor 

Intro CPS Approach Case1 Case2 Case3 Conclusion 

8 



Anomaly diagnosis: Supervised learning (SVM) to 

separate Backlash from Good 
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Entire signal:  60% Only GOS1:  92% 

Case Study: Conveyor 

Intro CPS Approach Case1 Case2 Case3 Conclusion 

9 
32% IMPROVEMENT IN ROOT CAUSE DIAGNOSIS 



Case Study: Conveyor 

Productivity analysis: Monitoring time of sub-tasks 
 

     Mean increase in time in GOS4 when wheels are worn 
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DETECT 0.6 SEC INCREASE IN SUB-TASKS TIME 



• Merge sensor data and context information 

Process 
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+ + 

Case Study: CNC Machine 
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• Multi-Model Framework: 

 

𝐼 = 𝐽𝑞 +𝑀𝐹1𝑞 + 𝑀𝐹0 sin 𝑞 /𝜓 𝜙𝐼 𝐵 𝐼 = 𝜙𝐼1 𝐵 𝑞 + 𝜙𝐼2 𝐵 𝑞 + ε 

Single Mass dynamic model Autoregressive model 

Case Study: CNC Machine 
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• Multi-Model Framework: 

 
 State GOS 1 GOS 2 GOS 3 GOS 4 GOS 5 GOS 6 GOS 7 GOS 8 

 Functional Proc. Proc. Proc. Proc. Proc. Proc. Proc. Proc. 

 Dynamic 2 in/sec 5 in/sec 50 in/sec 2 in/sec 2in/sec 2 in/sec 50 in/sec 5 in/sec 

 Interactive No Int. Side Int. No Int. Side Int. No Int. End Int. No Int. Side Int. 

Case Study: CNC Machine 
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13 DEFINE CONTEXT-SENSITIVE ADAPTIVE THRESHOLD LIMITS 
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Context-Specific 

Classification Model Q1 Q2 
Q3 Q4 

Case Study: CNC Machine 
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Entire signal: 

75% 

Use supervised learning (SVM) to separate worn tool 

from wrong material 

 

Partition by  

part feature: 81.2% 

Partition by  

part feature  

and GOS: 93.6% 

Case Study: CNC Machine 
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DEFINE CONTEXT-SPECIFIC CLASSICATION MODELS 



Develop context-specific diagnosis rules:  

• Extract context information 

• Identify fault patterns 

• Define classification rules 

 

 

 
Diagnose tool breakage 

under different operational 

context 

Case Study: CNC Machine 
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CONTEXT KNOWLEDGE CAN SIMPLIFY DIAGNOSIS 



Case Study: Electro-Pneumatic Systems 

Common automation applications: 

Examples: 

 Welding fixtures 

 Gantry systems 

 Assembly stations 

 

Approach: 

 Monitor data from: 

 Position sensors 

 Pressure and flowmeters 

 Study discrete states 

 

 

 

 

 

 

 

 

Intro CPS Approach Case1 Case2 Case3 Conclusion 

17 



Case Study: Electro-Pneumatic Systems 

Merge sensor data and controller model to detect leaks in 

multiple location and sizes 
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Duration 
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0 

Control 

Data 

Network 

Information 

• Worn components 

• Backlash 

• Leaks 

• Worn/Broken tool 

• Damaged fixture 

• Wrong part 

• Joint problems 

• Wrong trajectory 

Cyber-Physical Manufacturing Systems 
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Conclusion 

• Merging sensor data with context information help 

to understand the machine operational context 

 

• Feature extraction of a non-stationary signal can be 

improved by adding information of the cyber domain 

 

• Modeling requires merging expert knowledge and 

machine data into process analysis algorithms 
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