

Modeling and Analysis of Cyber-Physical Manufacturing Systems for Anomaly Detection

Miguel Saez

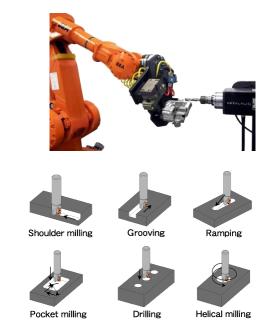
Ph.D. Candidate University of Michigan

Prof. Dawn Tilbury
Prof. Kira Barton
University of Michigan

Dr. Francisco Maturana Rockwell Automation

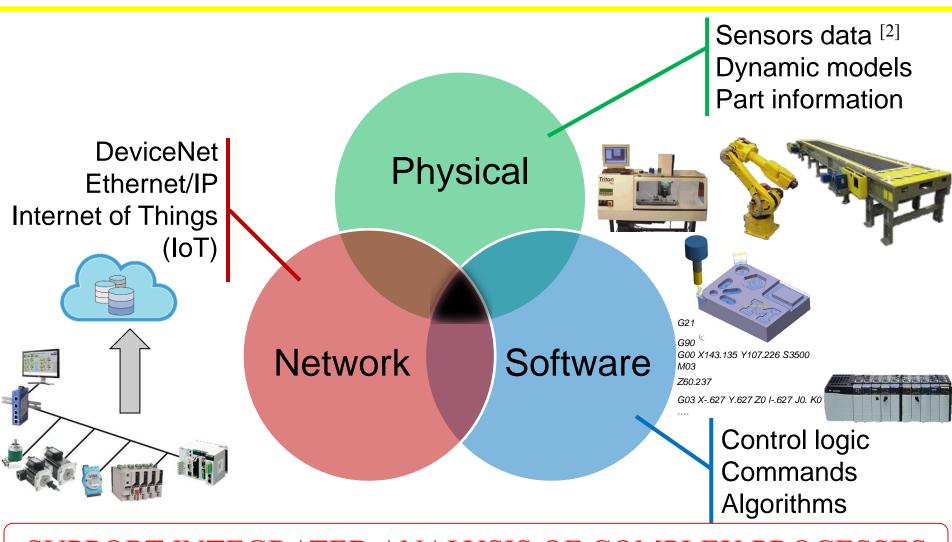
Challenges of anomaly detection

- Process variability and dynamics: Combination of transient and steady state operation [1]
- Part interaction: Changing loads due to different machine-part interactions
- Data collection: Cost and access constraints



MANUFACTURING PROCESSES ARE COMPLEX

Cyber-Physical Manufacturing Systems



SUPPORT INTEGRATED ANALYSIS OF COMPLEX PROCESSES

Objective

Improve anomaly detection and diagnosis in manufacturing processes

Solution:[3]

- ✓ Model Cyber-Physical Systems considering both, Cyber and Physical domains
- ✓ Context-specific analysis of manufacturing operation merging multiple models

Anomaly Detection

Cturing

Cause Diagnosis

CERT KNOWLEDGE

Data

collection

Pre-

process

Signal Partitionin

MERGE DATA AND INFORMATION WITH EXPERT KNOWLEDGE

Identify Operational Context

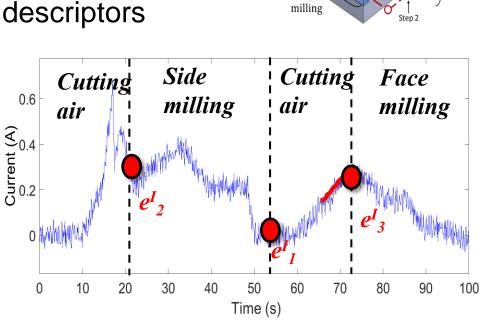
Global Operational State (GOS):

- Functional: Reduced controller model
- Dynamic: States describing machine dynamics
- Interactive: Describe the operations in the part air
- Information: Explicit process descriptors

$$G = [Y(1) \dots Y(m)]^{T}$$

$$e^{I} = [Y_{ref}(1) \dots Y_{ref}(n)]^{T}$$

$$min(DTW(e^{I}, G))$$



Face milling

Cutting

UNDERTAND THE MACHINE OPERATION AND INTERACTION

Define Context-Specific Model

Multi-model Specification:^[4]

$$M = (GOS, U, X, Y, F, H)$$

GOS: Global Operational State

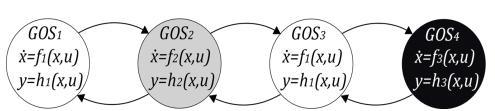
U: Continuous inputs

X: State variables

Y: Output variables

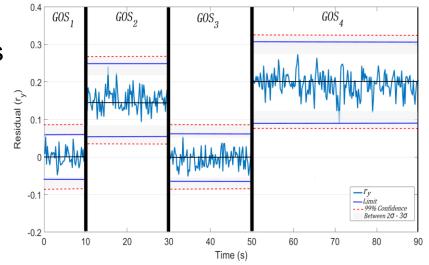
F: Mapping of state variable functions

H: Mapping of output variable functions

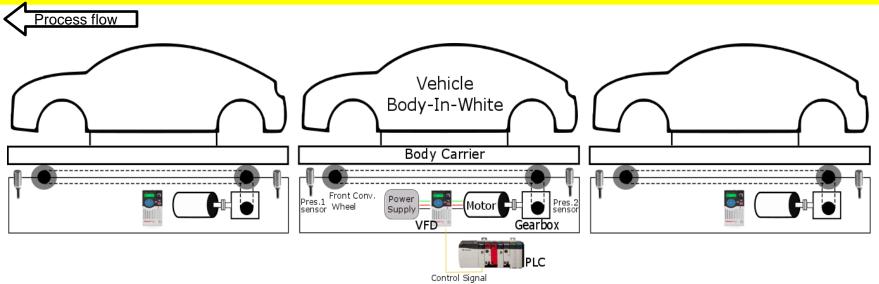


Adaptive Threshold Limits:

$$\Delta r_{GOS} = \mu \pm \psi_R Z \sigma$$



Case Study: Conveyor



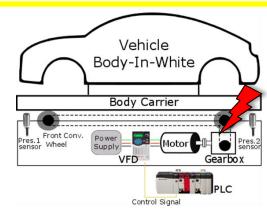
Available controller data

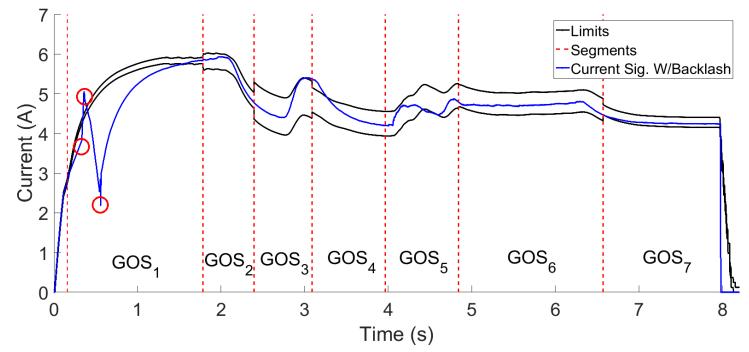
Туре	Variables
Categorical	Vehicle model
Functional state	Ready, Processing, Down
State-space	Velocity, Torque
Energy	Current, Voltage, Frequency

Case Study: Conveyor

Anomaly detection: Adaptive threshold limits (Snapshot measurements)

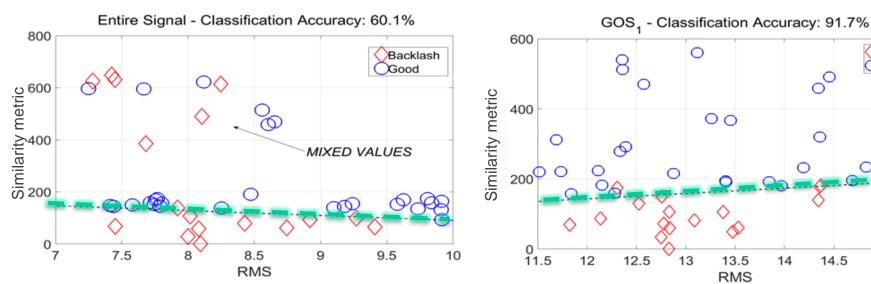
State	GOS ₁	GOS ₂	GOS ₃	GOS ₄	GOS ₅	
Functional	Proc	Proc	Proc	Proc	Proc	
Dynamic	Accel	Accel	Const	Const	Const	
Interactive	Part.Out Front/Rea	Part.Out r Front	Part.Out Front	Part.In Rear	Part.In Front	





Case Study: Conveyor

Anomaly diagnosis: Supervised learning (SVM) to separate Backlash from Good



Entire signal: 60%

Only GOS₁: 92%

Backlash

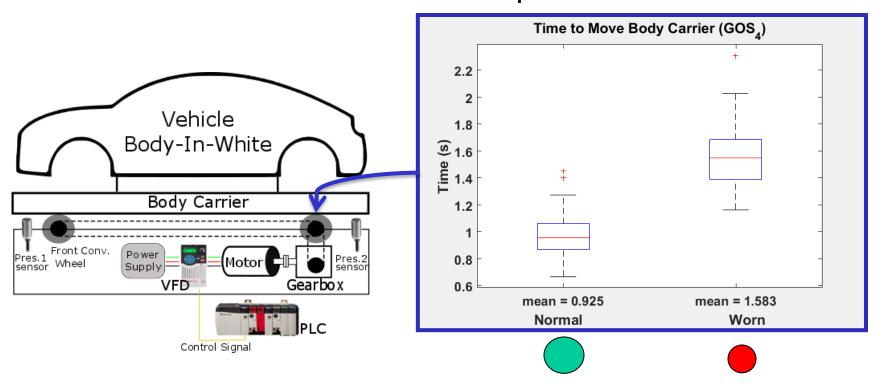
15.5

Good

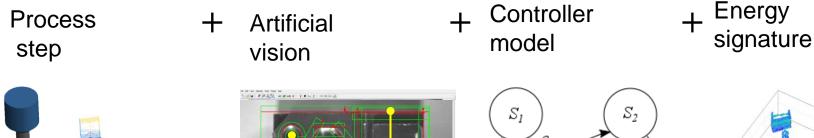
14.5

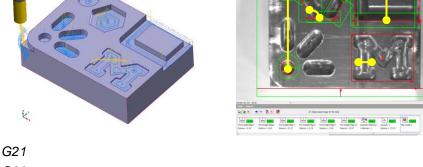
Case Study: Conveyor

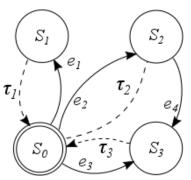
Productivity analysis: Monitoring time of sub-tasks
Mean increase in time in GOS₄ when wheels are worn

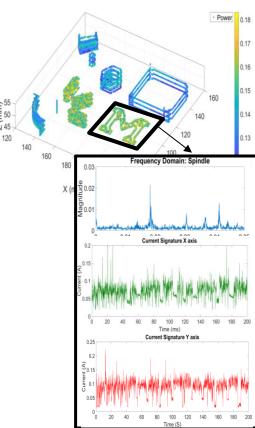


Merge sensor data and context information



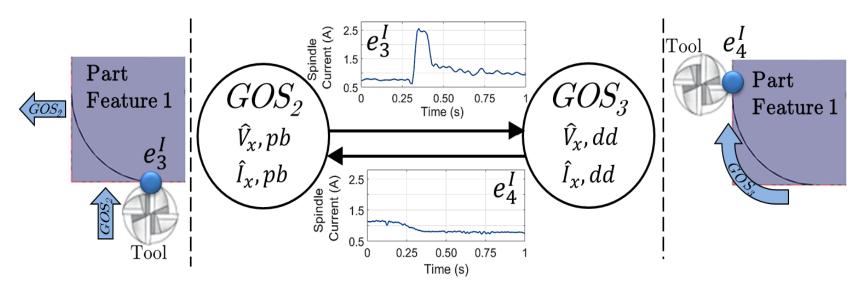






G90 G00 X143.135 Y107.226 S3500 M03 Z60.237 G03 X-.627 Y.627 Z0 I-.627 J0. K0 . G00 X155 Y108.54

Multi-Model Framework:



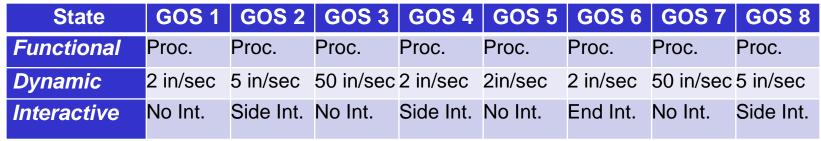
Single Mass dynamic model

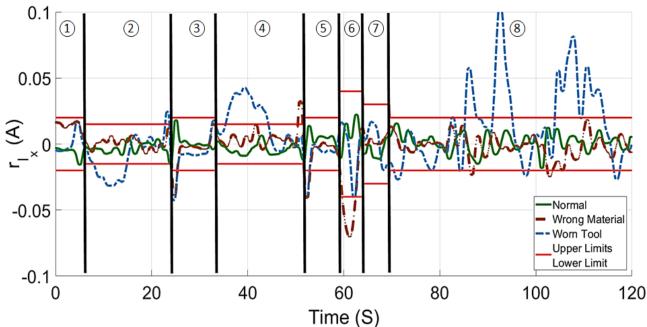
$$\hat{I} = Jq + M_{F1}\dot{q} + M_{F0}\sin(\dot{q})/\psi$$

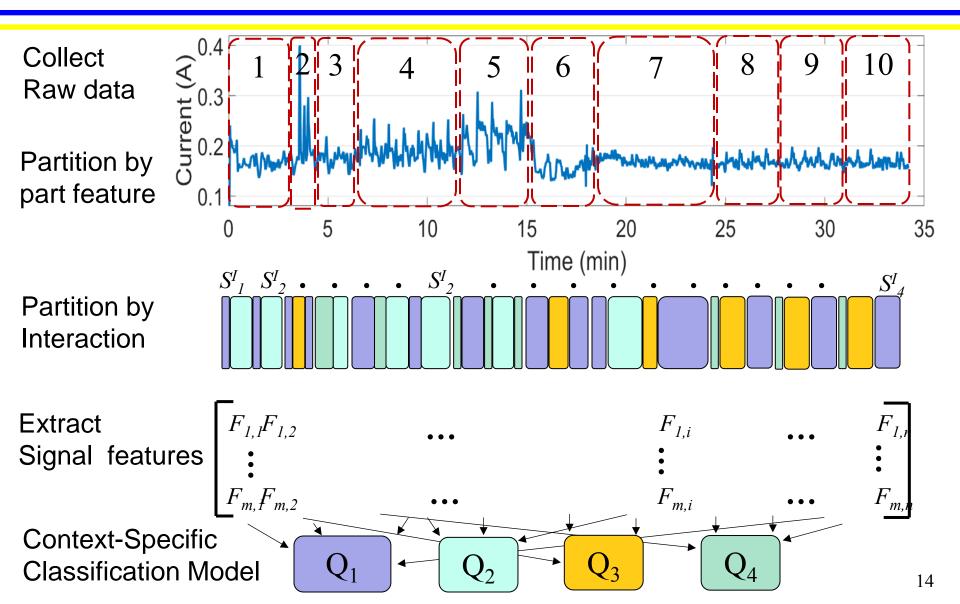
Autoregressive model

$$\hat{I} = Jq + M_{F1}\dot{q} + M_{F0}\sin(\dot{q})/\psi$$
 $\phi_I(B)\hat{I} = \phi_{I1}(B)q + \phi_{I2}(B)\ddot{q} + \varepsilon$

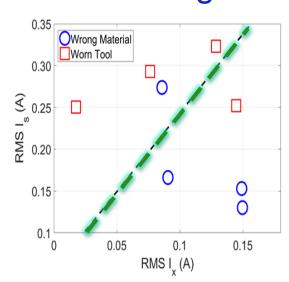
Multi-Model Framework:

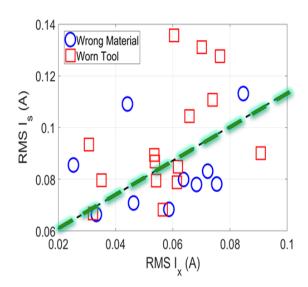


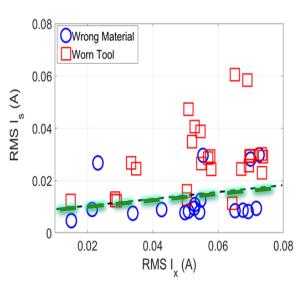




Use supervised learning (SVM) to separate worn tool from wrong material







Entire signal: 75%

Partition by part feature: 81.2%

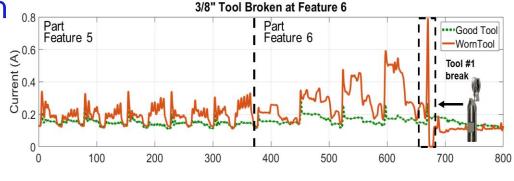
Partition by part feature

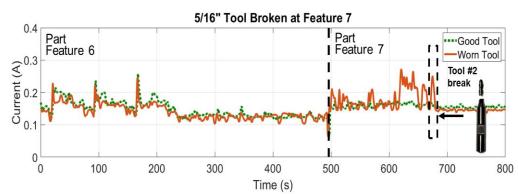
and GOS: 93.6%

Develop context-specific diagnosis rules:

- Extract context information
- Identify fault patterns
- Define classification rules

Diagnose tool breakage under different operational context





Case Study: Electro-Pneumatic Systems

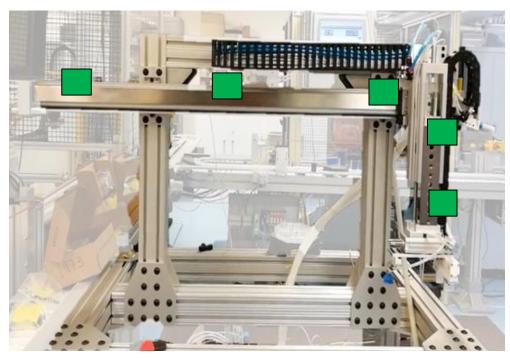
Common automation applications:

Examples:

- Welding fixtures
- Gantry systems
- Assembly stations

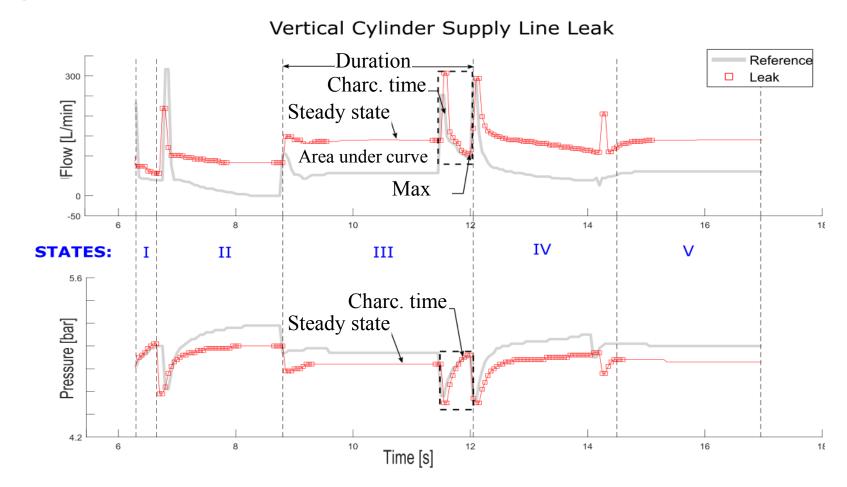
Approach:

- ✓ Monitor data from:
 - Position sensors
 - Pressure and flowmeters
- Study discrete states

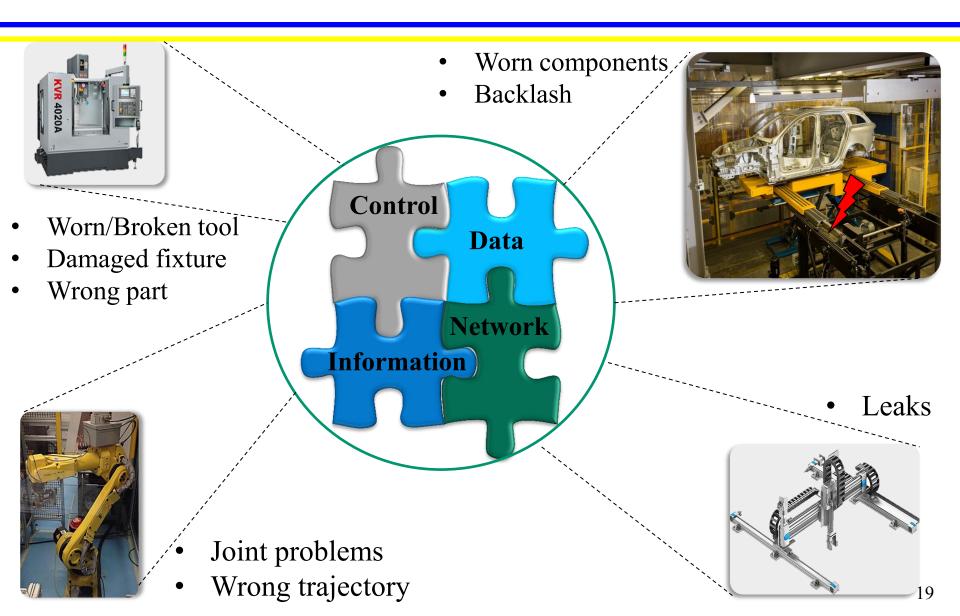


Case Study: Electro-Pneumatic Systems

Merge sensor data and controller model to detect leaks in multiple location and sizes



Cyber-Physical Manufacturing Systems



Conclusion

- Merging sensor data with context information help to understand the machine operational context
- Feature extraction of a non-stationary signal can be improved by adding information of the cyber domain
- Modeling requires merging expert knowledge and machine data into process analysis algorithms

Thanks