

INTEGRATING STANDARDS EDUCATION INTO THE NANOMATERIALS ENGINEERING CURRICULUM

Stacey M. Louie¹ and Jiming Bao² University of Houston ¹Civil & Environmental Engineering ²Electrical & Computer Engineering

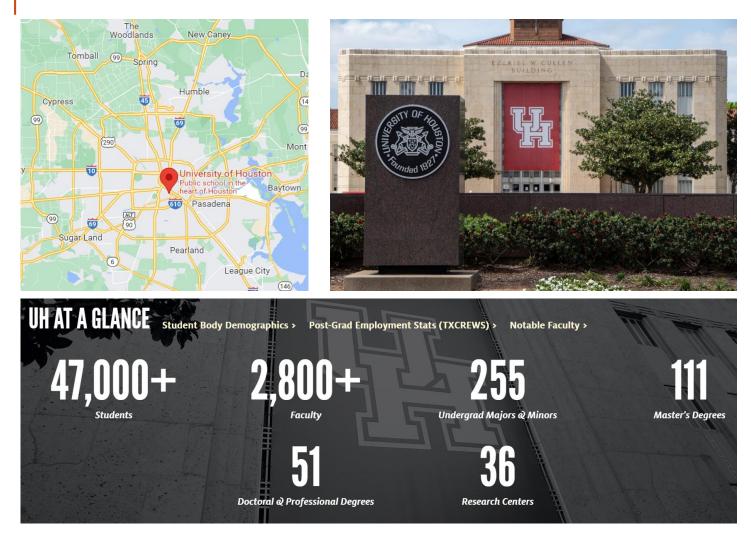
NIST Standards Services Curricula Development Program Workshop | Virtual Meeting | December 16, 2022

PROJECT OVERVIEW

Incorporate standards education related to nanotechnology into two engineering courses at the University of Houston (UH)

- CIVE 7397 (Experimental Methods in Nanomaterials Engineering)
- ECE 5320/6307 (Nanomaterials) and Solar Energy)

Dr. Louie (PI) Dr. Bao (Co-PI)

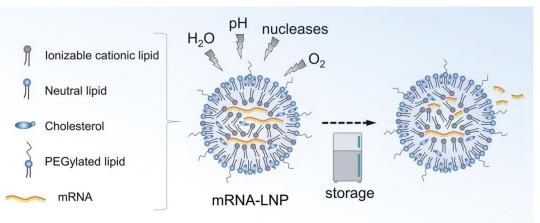

Dr. Kapral (Evaluator)

Disseminate educational modules through collaborations with partnering institutions (academic and industry)

UH Personnel

UNIVERSITY OF HOUSTON

- Carnegie Tier One research university
- Student population:
 - ≈ 80% undergraduate,
 ≈ 20% graduate /
 professional
- Hispanic Serving Institution (> 30%)


CULLEN COLLEGE OF ENGINEERING

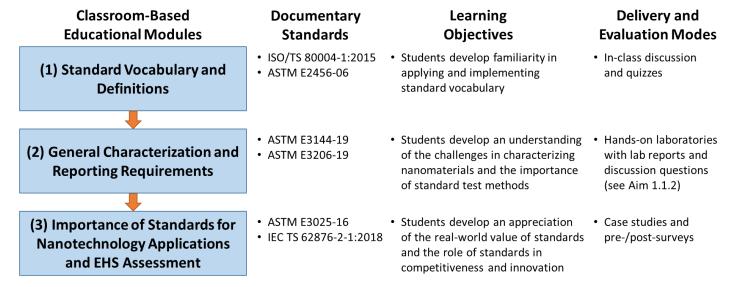
- Seven departments
 - Biomedical
 - Chemical & Biomolecular
 - Civil & Environmental
 - Electrical & Computer
 - Industrial
 - Mechanical
 - Petroleum
- Enrollment: 4,276
 - \approx 70% undergraduate, \approx 30% graduate
 - 30% Hispanic

NANOTECHNOLOGY EDUCATION

- Established research field (since the 1980s)
- Applications in research and industry are rapidly growing
 - Electronics/semiconductors
 - Nanomedicine (e.g., COVID vaccine)
 - Environment, health, & safety (EHS)
- Active standards development
 - ISO TC 229 Nanotechnologies
 - ASTM Committee E56 Nanotechnology
 - IEC TC 113 Nanotechnology for electrotechnical products/systems

Schoenmaker et al., 2021, Int. J. Pharmaceutics, 601: 120586

NIST SSCD PROGRAM: TEACHING GOALS


- Develop an understanding of standards pertaining to vocabulary, classifications, and characterization related to nanomaterials
- Develop student skills and confidence in implementing and critically evaluating standard test methods
- Promote an appreciation for the value of standards and the standards development process

COURSE OVERVIEW

- CIVE 7397 (Experimental Methods in Nanomaterials Engineering)
 - New lecture- and laboratory-based course on analytical methods
 - Graduate students in engineering
- ECE 5320/6307 (Nanomaterials and Solar Energy)
 - Existing course (> 10 years), cross-listed with Materials and Chemical Engineering
 - Combined undergraduate and graduate students

CLASSROOM-BASED COURSE CONTENT

Course modules to introduce standards for nanotechnology

 Scale bar = 100 nm

 Scale bar = 100 nm

Phornano Holding GMBH. Nano Gold, 2022, https://www.phornano.com/4ngold

- Demonstration activities (Gold nanoparticle synthesis and behavior)
- Standards development (Guest lectures – NIST and industry scientists)

LABORATORY-BASED COURSE CONTENT

Implement and evaluate standards for nanomaterial characterization

- Four shared laboratories between CIVE/ECE courses
- One application-specific laboratory per class

UV-Vis Spectroscopy (ISO/TS 17466)

Fourier Transform Infrared Spectroscopy (ISO/TS 14101) Dynamic Light Scattering (ASTM E3247) Zeta Potential Measurement (ASTM E2865) Field Flow Fractionation (FFF) (ISO/TS 21362)

Single Particle Inductively Coupled Plasma Mass Spectrometry (ISO/TS 19590)

(Shimadzu, UV-2600i, https://www.shimadzu.com/an/products/ molecular-spectroscopy/uv-vis/uv-vis-nirspectroscopy/uv-2600i-uv-2700i/index.html)

(ThermoFisher Scientific, Nicolet[™] iS[™] 10 FTIR Spectrometer, https://www.thermofisher.com/order/cat alog/product/IQLAADGAAGFAHDMAPC)

(Malvern Panalytical, ZetaSizer Nano ZS, https://www.malvernpanalytical.com/en/suppo rt/product-support/zetasizer-range/zetasizernano-range/zetasizer-nano-zs)

Wyatt Technology, Eclipse AF4/DAWN HELEOS II / Thermo iCAP RQ ICP-MS (Photo from UH Environmental Engineering laboratories)

EVALUATION AND DISSEMINATION PLAN

Evaluator: Dr. Andrew Kapral, UH Hewlett Packard Enterprise Data Science Institute

Spring 2023

• External advisory board (EAB): NIST, industry, academic collaborators

- Review course content, provide guest lectures
- Graded coursework and laboratory reports: Instructors/TAs
- Pre-post self report surveys: Dr. Kapral
 - Student familiarity with standards
 - Student confidence (Likert scale) in understanding/implementing specific standards

Summer 2023 to 2024

- Share assessments with EAB for feedback on the process
- Distribute modules to other IHEs for evaluation
- Develop webinars and open educational resources (OER)

PROJECT TIMELINE

Milestone		Semester	
Pls attend and present in NIST workshops	Fall 2022	Fall 2023 or 2024	
Pls develop courses and coordinate all staff/TAs	Fall 2022	Fall 2023	
Courses delivered and evaluated at UH	Spr 2023	Spr 2024	
EAB and collaborating IHEs evaluate course	Spr/Su 2023	Su 2	2024
content, implement labs, and provide feedback			
Course outcomes shared at conferences		Fall 2023 / Spr 2024	
Open course materials produced/disseminated		Spr 2024 / Su 2	2024
Final Summary Paper submitted to NIST		Su 2	2024