Application of IEEE 1588 in Industrial Automation and Motion Control Systems

Anatoly Moldovansky Rockwell Automation October 10, 2005

Using time for control...

...not just network-based events!

Į.

IEEE 1588 Provides Time Synchronization Services

- Synchronization Services
 - The industrial market is driving the need for synchronization to a common time-base with sub-microsecond accuracy, node-to-node.
- IEEE 1588
 - Nanosecond Clock Resolution
 - +/- 100 nanosecond, or better, clock synchronization between distributed devices

Applications for Time Synchronization

- Sequence of Events
 Measurements
- Scheduled Outputs
- Synchronized Actuation

- Time-Stamped Data Logging
- Coordination with GPS Time

Applications for Time Synchronization

- Sequence of Events
 Measurements
- Scheduled Outputs
- Synchronized Actuation

- Time-Stamped Data Logging
- Coordination with GPS Time

 Today's distributed motion control applications are founded in mechanical line shafting designs. A single mechanical line shaft drives multiple subsystems using belts, pulleys or gear boxes.

 Typically, these applications are characterized as phase locked - or "lineshaft" applications. Like a large music box, all mechanical elements are timed and phased through mechanical means.

- Mechanical Lineshafts are inflexible
 - Single product design
 - Long product change-over
 - Run-time adjustments for re-phasing were non-existent or required expensive differential gear-boxes.
 - Wear and tear of mechanical components
- Much power was expended on moving machinery and not product.

• Mechanical designs have given way to electronic design control schemes

And the Result is an Electronic LineShaft!

• And the Result is an Electronic Lineshaft!

Why is Time Synchronization Required?

 Each Motion Controller Controls <u>Position over</u> <u>Time</u>

CIP Motion[™]

• There are Two Types of Connections that are Typically Used for Distributed Motion Control

CIP Motion[™]

• There are Two Types of Connections that are Typically Used for Distributed Motion Control

Control to Drive

CIP Motion Architecture

CIP Motion[™] Demo

