Towards 2λ Resolution

(Limits of Aberration Corrected Electron Microscopy)

IBM T.J. Watson Research Center

Leiden University

IBM LEEM/PEEM

R.M.Tromp, M. Mankos, M.C. Reuter, A.W. Ellis, M. Copel Surface Review and Letters **5** , 1189 (1998)

Lab-based LEEM/PEEM imaging modes

PEEM imaging Hg light source / laser	(picosecond) LEED Atomic Structure	
Mirror Microscopy Topography Work Function	Selected Area LEED Local Atomic Structure 200 nm	
Bright field LEEM Phase contrast	LEEM-IV Imaging Local Atomic Structure 2-5 nm	
Bright field LEEM Reflectivity Structure factor	LEEM-EELS Local Electronic Structure Spectroscopy + Imaging	
Dark field LEEM Structure symmetry	PEEM-ARUPS Electronic structure Spectroscopy + Imaging	0

Synchrotron-based PEEM imaging modes

PEEM-IV Imaging 20 nm resolution Local chemistry	Dynamic Imaging In-situ processing Elemental/chemical
Linear Magnetic Dichroism Antiferromagnetism	Picosecond Resolution Imaging
Circular Magnetic Dichroism Ferromagnetism	Localized Spectroscopy Elemental, chemical Magnetic, Valence
Valence Band Imaging Surface, bulk Topological	Biological Imaging Organic, Inorganic Elemental, chemical
Plasmonics Dynamics, geometry	Cryo-PEEM Solid State Bio, soft matter

Recent advances in LEEM/PEEM

Physical Review B79, 121401(R) (2009)

ARUPS

Hel / Hell

PRB

(a)

(b)

Ultramicroscopy **110** (2009) 33

Improved detector technology

MCP+CCD

Direct Electron

4x resolution improvement, 10x more data

IBM J. Res. Development **55** (2011) 1

Record Resolution in Aberration Corrected Low Energy Electron Microscopy

Aberrations of the cathode objective lens up to 5th order

Uniform field:

$$C_c = -C_3 = -L(E/E_0)^{1/2}$$

$$C_{cc} = C_5 = \frac{1}{4}L(E/E_0)^{3/2}$$

$$C_{3c} = -\frac{1}{2}L(E/E_0)^{3/2}$$

$$C_{c3} = -\frac{1}{8}L(E/E_0)^{5/2}$$

$$C_{3cc} = \frac{3}{8}L(E/E_0)^{5/2}$$

$$C_{c4} = \frac{5}{64} L (E/E_0)^{7/2}$$

E.Bauer, Ultramicroscopy 17 (1985) 51

R.M. Tromp, W. Wan, S.M. Schramm, Ultram. 119 (2011) 33

How to measure and correct aberrations?

- Aberrations of the cathode lens are energy dependent;
 measurement/correction at one energy is not good enough...
- C_c and C₃ have different energy dependence
- Aberrations contain contributions from the uniform field and from the magnetic part of the objective lens; how do we measure?
- C_c scales with M², C₃ with M⁴: must control magnification
- Would like to automatically track the energy dependence with the electron mirror

Correlation of first and higher order properties

Aberration map (right) directly correlated to focus map (left) Small error in focus setting gives large error in aberration constants

Mirror focusing: theory vs experiment

Adjustable parameter: V1 offset of 10 V (out of 16500, i.e. 0.06%)

Measurement and Correction of C_3 : $\delta = c_1 \alpha + c_3 \alpha^3$

Electron Mirror:

 $C_3 = 0.3943 + 0.0001472C_3^m$ $C_3 = C_3^o + C_3^m/M^4$

 $1/M^4 = (0.0001472)^{1/4}$ M = 9.07 (8.5, +7%)

Objective lens:

$$C_3^{\circ} = a + b/\sqrt{E_0}$$

Track spherical aberration:

$$a + b/\sqrt{E_0 + C_3^m/M^4} = 0$$

R.M. Tromp, J.B. Hannon, W. Wan, Berghaus, O. Schaff, Ultramicroscopy http://dx.doi.org/10.1016/j.ultramic.2012.07.016

Measurement and Correction of C_c : $E_f = E_0 + E$

Uniform field (LEEM):

$$I=I_0+a\sqrt{E_0}$$

$$dI/dE_0=a/(2\sqrt{E_0})$$

Magnetic field + mirror (Hg PEEM):

$$dI/dE = c - s.C_c^m$$

Correction:

$$dI/dE_0 + dI/dE = 0$$

Track chromatic aberration:

$$C_c^m = (c + a/(2\sqrt{E_0}))/s$$

R.M. Tromp, J.B. Hannon, W. Wan, Berghaus, O. Schaff, Ultramicroscopy http://dx.doi.org/10.1016/i.ultramic.2012.07.016

Experiments conform very closely to theory

- Excellent agreement focusing properties <0.1%
- C_c and C₃ of the electron mirror can be set quantitatively, independent of each other, and at fixed mirror focal length
- C_c and C₃ of the objective lens are in good agreement with theory, and can be measured routinely with simple experimental procedures
- Electron mirror can seamlessly track C_c and C₃ aberrations of objective lens as E₀ is changed:

Automatic Tracking Aberration Correction (ATrAC)

But... every ointment has its fly...

R. Hooke, Micrographia, 1665

How does the resolution depend on the degree to which we correct? Does it make a big difference if we are a few percent off? How stable is the corrected state?

TEM Stability I

Lifetime of the corrected state is just a few minutes. Enough for a focus series, but problematic for longer experiments.

TEM Stability II – TEAM I

P. Ercius, M. Boese, Th. Duden and U. Dahmen (2012). Operation of TEAM I in a User Environment at NCEM. Microscopy and Microanalysis, **18** (2012) pp 676-683

Intrinsic Instability of Corrected Electron Optics

Image = FT⁻¹ (FT(object) x Contrast Transfer Function x MTF)

1

1

1

Object

Objective lens aberrations

Detector

$$W = e^{i2\pi\chi} = \cos(2\pi\chi) + i\sin(2\pi\chi)$$

$$\delta = 1/q_r \propto C_3^{1/4}$$

$$\chi = -\frac{1}{2}\lambda q^{2}\Delta z + \frac{1}{4}C_{3}\lambda^{3}q^{4} + \frac{1}{6}C_{5}\lambda^{5}q^{6}$$

$$\delta = 1/q_r \propto C_5^{1/6}$$

$$E_c(q) = \exp(-\frac{(\pi C_c \lambda q^2)^2}{16 \ln 2} \varepsilon^2)$$

$$\delta = 1/q_i \propto C_c^{1/2}$$

 $\partial \delta / \partial C = 1/C^{n/(n+1)}$ diverges to ∞ as $C \rightarrow 0$

intrinsically unstable....

Aberration correction in LEEM

3D contrast transfer function

Contrast transfer function is given by $e^{i2\pi\chi}$ where χ is the aberration function.

$$\chi(q) = C_1 \lambda q^2 / 2 + C_3 \lambda^3 q^4 / 4 + C_5 \lambda^5 q^6 / 6 + \dots$$

Optimization of χ

Working parameters AC-TEM, AC-LEEM

Operating margins are razor-thin.

 $\phi = \pi/4$:

Range of defocus < 0.3 nm

 $\Delta C_3 < 0.25 \mu m$

Further 2x resolution improvement is probably impossible.

Situation for LEEM will be the same below 1 nm.

What does this mean in practice?

Highly sensitive to:
Defocus
Z-drift
Astigmatism
Voltage fluctuations
T-variations
etc

Trade resolution vs stability...

At 0.1 nm resolution system is very stable At < 0.05 nm resolution life becomes difficult, and lifetime of the corrected state becomes very short. Pick where you want to be.

The hunt for 1 nm in AC-LEEM

- Improve power supplies (< 0.1 ppm)
 - reduction of AC ripple
- New sample stage
 - improved stability and shielding
- Improve acoustic/vibration isolation
 - improvements to pump isolation
 - active damping installed
- Improve electromagnetic shielding
 - integrated shielding in new stage
 - more μ-metal
- Improve MTF of detector
 - Medipix detector tested (2x)
 - Direct Electron detector (4x)
- Don't lose patience

Jim Hannon
Art Ellis
Oliver Schaff
Andreas Berghaus
Weishi Wan
Sebastian Schramm
Sense Jan van der Molen
Robert Bilhorn
Liang Jin

