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INTRODUCTION

The tasks of robotic grasping and manipulation have
attracted substantial interest, in both research and industry,
over the past few years. This has resulted in impressive
capabilities for robots, which are able to tackle increasingly
complex tasks [1]. One specific focus of recent research
is the ability to automatically generate grasps for unknown
objects from RGB-D input data [2]. However, there have
been few comprehensive evaluations of these algorithms, and
so their advantages and limitations are not fully understood.
We have recently addressed this problem3, by performing an
exhaustive comparison between four state-of-the-art grasping
algorithms. Each method was tested on 1500 grasps: 20
different objects, 5 different poses, and 15 repetitions. Two of
the four evaluated methods are based on Deep Learning [3],
[4], while the other two use traditional geometric compu-
tations [5], [6]. Beyond the results of our previous study,
we observed that the two Deep Learning based methods we
benchmarked were more sensitive to changes in the exper-
imental conditions than the more traditional approaches. In
this work, we quantify this phenomenon and show that only
the two Deep Learning based methods have significantly
different performance when run on modified experimental
setups. This leads us to consider a new metric evaluating the
transferability of Deep Learning based methods for grasping
and manipulation.

PREVIOUS WORK

This section summarises our previous work, and provides
a context for the new results. We carried out a benchmark
of methods that generate grasps based on depth data, in the
form of a depth map or point cloud. The selected algorithms
generate a grasp configuration as a set of either four or
six parameters. A 4D grasp configuration G is generally
defined as (x, y, z, θ) whereas a 6D grasp is represented
as (x, y, z, φ, ψ, θ). Here (x, y, z) represents the position of
the gripper in 3D space, and (φ, ψ, θ) represents the roll,
pitch and yaw angles. In particular, methods generating 4D
grasps have a smaller search space, usually corresponding to
top grasps [5], [4]. On the other hand, methods generating
6D grasps cover the entire configuration space, and thus are
theoretically able to provide a wider range of grasps [3], [6].
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Fig. 1. The robotic setup used to perform the benchmark. Note that the
image is discontinuous: the Kinect is farther from the table than it appears.
All methods were executed in the same conditions: each of the 20 objects
was grasped in isolation, in 5 different poses within a 0.5×0.5m workspace.

All the methods were evaluated on the same robot platform
and following the same protocol.

Experimental setup

We used a robotic setup that is representative of typical
industrial applications, while also being easy to replicate in
a lab. As shown in Figure 1, we use a Universal Robot 5
arm, mounted on a workbench. The manipulator used is
the EZGripper, an under-actuated two fingered gripper. It
is actuated by a position controller after which a medium
torque (EZGripper setting 200) is applied to hold the object.
The reference frame is located at the base of the robot. The
vision device used to capture data is a Kinect v2, located
at x = −0.08, y = 0.430, z = 1.86) meters from the origin
frame, and pointing perpendicular to the workbench. The
robot’s workspace is defined as a 0.5 × 0.5m area centred
at (x = 0.1, y = 0.595, z = 0) meters from the base of the
robot. For reproducibility, we used the open source and
publicly available Modular Benchmarking Framework4. This
software makes it easy to integrate and run different grasping
methods, while keeping all other parameters (e.g. robot
speed, motion planner, controller) constant.

4https://modular-benchmarking-documentation.
readthedocs.io/en/latest/
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Set of objects

The YCB dataset [7] is a well established resource for
robotic grasping research. It comprises a set of physical
objects, as well as their corresponding point clouds. The
ubiquity of this dataset is somewhat problematic, in the
present context, because it is commonly used to train learning
based models [3]. In order to avoid re-using the YCB
dataset for testing (which would unfairly benefit certain
methods), we have gathered a new set of 20 objects, with
visual and structural properties that make them challenging
to grasp. This set comprises the following items: a net of
marbles, a metallic box, a cardboard tube, a screwdriver,
a roll of duct tape, an HDMI cable, a thick plastic glove,
an empty spray bottle, a marker, a socket universal joint
(with bars), a tennis ball, a Duplo block, a soft teddy bear,
a roll of kitchen foil, a sink pipe, a brush, a spring toy, a
spool of solder, and two 3D printed adversarial objects [8].
Exact copies of these objects can be purchased online at a
reasonable cost5. We argue that this set gathers objects with
a wide range of interesting properties, including softness,
articulation, slipperiness, asymmetry and so on.

Protocol

We used a procedure similar that of GRASPA [9], which
was designed to evaluate the success rate and stability of
grasps. For each repetition, the system starts from a pre-
recorded state, from which the robot moves into the defined
workspace. The following steps are then performed, on each
trial:

• Pre-grasp and grasp pose are generated by the algorithm
• Robot arm moves to the generated pre-grasp pose
• Gripper opens to a predefined and constant posture
• Robot arm moves to the generated grasp pose
• Gripper closes completely
• Robot moves to a predefined stable position and waits

for 2 seconds
• Robot executes a predefined and constant trajectory

shaking the object (stability test)
• Robot moves back to the previously generated pose
• Gripper opens to release the object
• Robot moves back to the starting pose

The shaking motion is designed to test the stability of the
grasp, bearing in mind that the gripper is not squeezing with
the highest torque possible. In addition, we parameterised
the trajectory to reach successive way-points within 0.3
seconds, pausing at each one for 0.2 seconds. This leads
to an energetic shake, unlike the one performed in [9].

Performance evaluation

The definition of a good grasp remains an open question
in the robotics community. Some works define a good
grasp as a configuration that successfully picks and lifts the
object. Others are slightly stricter and wait for five seconds
before taking a decision. We argue that the definition of

5www.eecs.qmul.ac.uk/˜bdd30/benchmark_
presentation

Fig. 2. Setups used for the second set of experiments. The cropping areas
were the same for both camera pose. Pose 1 is illustrated on the left and
Pose 2 on the right. We evaluated each method based on 30 grasps, 10 for
each object (brush, cardboard tube and tennis ball).

a good grasp is closely related to the application. Unlike
our previous work5, we consider here that a grasp can have
only three mutually exclusive outcomes: Failure (the object
is not grasped before the shaking trajectory is executed),
Unstable (the object falls during the shaking motion) and
Success (the object is deposited on the table after the shaking
motion). These metrics define the ability of a grasp to keep
the object even after a set of quick movements. Although
the object might not be deposited at the same location,
such grasp configurations are still valid for a wide range
of applications. We can for instance think of the classical
problem of automatically clearing a table, for which once
grasped, the object will be dropped inside a crate, regardless
of its pose.

RESULTS

In order to perform our benchmark, each method had to be
integrated into the same experimental setup. Before follow-
ing the above protocol, we evaluated the different methods
on a subset of objects (screwdriver, tennis ball, and marker)
in order to make sure that all methods worked properly on
our setup. The performance of the geometry based methods,
in this preliminary test, was broadly as expected. However,
the performance of the Deep Learning based methods was
somewhat lower than reported. We attribute this to the larger
size of our workspace (0.7× 0.7m), with respect to the final
setup (0.4×0.4m). These results are summarized in Table I.

TABLE I
DISTRIBUTION OF GRASP OUTCOMES FOR TWO DIFFERENT CROPPING

AREAS, OVER 30 GRASPS.

0.7× 0.7m 0.5× 0.5m
Succ Unst Fail Succ Unst Fail

PointNetGPD∗ [3] 0.4 0.466 0.133 0.7 0.266 0.033
GGCNN2∗ [4] 0.4 0.167 0.433 1.0 0 0

Suzuki [5] 0.8 0.133 0.067 0.9 0.067 0.033
Makhal [6] 0.533 0.333 0.134 0.666 0.266 0.0666

∗ Deep Learning based method

If we consider the success rate as a performance met-
ric, then the Chi-Square tests show a significant difference
(α = 0.05) between the two conditions only for the Deep
Learning based methods (χ2 = 22.9, p-value=1.67× 10−6

for [4] and χ2 = 4.31, p-value=0.0379 for [3]), whereas we
cannot conclude to any difference for the geometry based
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methods (χ2 = 0.523, p-value=0.470 for [5] and χ2 = 0.625,
p-value=0.429 for [6]). This first experiment seems to show
that the two selected Deep Learning based methods tend to be
less robust to input data changes. We wanted to confirm this
assumption and carried out similar experiments in a different
setup. In this configuration, the cropping area (0.5 × 0.5m)
remains the same but the camera pose changes between
Pose 1 (Figure 2 left hand side) and Pose 2 (Figure 2 right
hand side). The results are shown in Table II. The results
of Chi-Square tests (χ2 = 4.39, p-value=0.0362 for [4] and
χ2 = 3.89, p-value=0.0486 for [3] and χ2 = 4.04× 10−33,
p-value=1 for both [5] and [6]) indicate that the camera
pose has a significant effect on the performance of the Deep
Learning based methods.

TABLE II
DISTRIBUTION OF GRASP OUTCOMES FOR TWO DIFFERENT CAMERA

POSES OVER 30 GRASPS.

Pose 1 Pose 2
Succ Unst Fail Succ Unst Fail

PointNetGPD∗ [3] 0.566 0.333 0.1 0.833 0.1 0.066
GGCNN2∗ [4] 0.733 0.266 0 0.433 0.433 0.133

Suzuki [5] 0.7 0.3 0 0.733 0.266 0
Makhal [6] 0.766 0.133 0.1 0.8 0.166 0.033

∗ Deep Learning based method

DISCUSSION

It is important to note that the results shown in the
previous section are not meant to be used to compare the
success rates of the four methods, but rather to evaluate the
impact of the vision based parameters. In particular, we can
see that the performance variability, observed in this work,
is wider for Deep Learning based methods than for more
traditional methods. We can infer that the learning based
methods have encoded certain properties of the training
scene or environment, such as the size or shape of the
workspace, which may not generalise to other setups. This
is problematic, because it is very likely that such properties
will differ between labs or industrial setups. Although re-
training the model for each setup would be ideal, it would
require detailed knowledge of the data collection process,
and a substantial amount of time.

For this reason, we argue that we need a metric to assess
how transferable a learning-based grasping algorithm is,
without re-training. One approach would be to create a
YCB-like protocol to evaluate the deployment of grasping
and manipulation methods. Instead of evaluating a newly
developed method on a single configuration, this protocol
could contain several prototypical viewpoints that corre-
spond to real-world scenarios (e.g. wrist-mounted camera,
perpendicular top view, tilted side view). The details of
the performance evaluation for each configuration would
allow us to identify the shortcomings of a given method,
which could then be addressed in future work. For example,
the training dataset may need to be re-balanced, or the

regularization parameters may need to be adjusted. To go
further, a global metric could be computed from these tests,
in order to estimate the likelihood that a given method would
maintain a certain level of performance, when integrated with
a new setup. A simple metric would be the variance of the
recorded performance across the different possible camera
poses. In this case, the smaller the variance is, the more
transferable the model is without re-training. Although such
a protocol and metric could be extended to geometry-based
methods, our results indicate that it would be particularly
valuable for Deep Learning based methods.

CONCLUSION

This work is an exploration of the results from a re-
cent benchmark of vision-based grasping algorithms. We
performed two sets of experiments, both of which indicate
that the two Deep Learning based methods show significant
performance differences, when parameters affecting the input
data are modified. Although our results are based on a small
number of algorithms (two geometry based and two Deep
Learning based), they highlight the need for a metric that
can quantify the generality of pre-trained grasping methods.
We believe that such a transferability metric, of the kind
envisaged here, would help to advance the use of robotic
grasping in real-world scenarios.
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