Commercial Rules for Making Money with Superconducting Applications (Does it pass the \$ test)

Use Superconductors when you cannot figure out any other way to do the application, and you really need the application (Accelerators, MRI, NMR, resistive fault current limiters).

Use Superconductors when weight and size is an issue, and you are will to pay for those advantages (fuel savings-eliminating a gear box) or offer a cost savings verses the non-superconducting approach (aircraft, ship, train, truck & bus, inductive fault current limiters, wind turbine generators)

Use Superconductors if energy (or electric) efficiency justifies higher initial equipment costs and you are willing to live with the payback (ROI) period.

Use superconductors when project is of a size, that selling price will be lower (manufacturing cost) than the non-superconducting version (generators, motors, transformers, cables

What is state of the art in superconductors that are suitable for motor applications?

Active Generator- Motor Programs -Wind (8), Aircraft (4), Ship (2), Train, (1), Land based-stationary

Variety of Designs at least (7) on Wind Turbine Generators alone

Most common - Superconducting rotor- Cu stator or reversing it with superconductor stationary on outside.

Recently all cryogenic –(stator designs with low loss MgB2 wires)

For all cryogenic machine -Trade off of stator speed superconducting (2-8000 rpm) vs non-superconducting (20,000 rpm plus)

Superconductor options NbTi, Nb3Sn, MgB2, BSCCO, YBCO

Iron based machine `1,2 or 3 T field on wire at 4K, 8K, 20K, 30K

Air core machine – starting at 6T on wire, 4K, 8K, 15K, 20K

Motivation (conduction cooled 2-10 tesla on the wire)

- In the last few years the Jc of Nb₃Sn has increased from 1000A/mm2 -12T-4K to 2500 A/mm2 -12T-4K,
- 2. The filament sizes have gotten smaller so Nb₃Sn wires are stable in the 1-10T range.
- 3. The \$/kA-m of Nb3Sn can drop below NbTi at 10T-4K
- 4. Nb3Sn can offer temperature margin 4-8 K for Conduction Cooled Large Magnets thus eliminate He bath cooling.

What is the potential for conduction cooled motors and generators using Nb3Sn ?

GE –Reported ASC -2010 . GE used ITER Nb3Sn Wire . There is now Nb3Sn wire available with 3- times the Jc at 4K-12 T. Much more margin to operate at 8K, Considerable manufacturing capacity available worldwide

Smaller Filament Size (d_{eff}) for 0.7 mm Strands

$J_c s$ Results

Future Potential for Hyper Tech's Nb3Sn APC Wires

Hyper Tech's current and future APC Nb3Sn compared to CERN's desired future specification

Patent Pending

. Red- Indicates meeting the CERN specification requirements

Manufacturer	Type Assuming 50% Cu and 50%	Jc – A/mm2 12T-4K	Jc-A/mm2 16T-4K	Jc- A/mm2 20T-4K	Diameter 0.8 mm Filament Size, microns	RRR	Length , m
Desired Specification			1500 minimum	500- 1500	Less than 20	Greater than 150	Greater than 5000
Hyper Tech	Tubular Approach Solid Sn	2000- 2600	900-1100	200-400	10-80	50- <mark>200</mark>	500-5000
Experimental							
Hyper Tech APC (1) not optimized	Binary Needs R&D funding	3050	1780	1200	20	200	5000
Hyper Tech APC (2) optimized	Ternary Calculated potential Needs R&D funding	12400	9000	5600	20	200	5000
Potential Improvement	-	4 X	6X	14X			

(1) Demonstrated –Non optimized layer Jc of 9,600 A/mm2 at 12T-4K in Binary Nb3Sn, normal layer Jc in binary is 3500 A/mm2 at 12T-4K, in ternary normal layer Jc is 5000A/mm2 at 12T-4K.

(2) Calculated- Optimized Jc in Ternary Nb3Sn

Standard 1st Gen MgB₂ wire products

- Up to 5 6 km (25 kg billets)
- C-doped B, Nb, Cu, Monel

• J_c (4K, 4T) = 200,000 A/cm²

• J_c (20K, 2T) = 140,000 A/cm²

Lock-in conductor design

2nd Generation (AIMI) MgB₂

- 2^{nd} Generation: Higher layer J_c ; lower MgB₂ fill factor.
- 1st Generation: Lower layer J_c ; higher MgB₂ fill factor.

As with 1^{st} Gen MgB₂, C doping introduces substantial B_{c2} enhancement,.

2nd Generation (AIMI) MgB₂

Increasing B_{c2} at 20 - 30 K

Comparing PIT (1st Gen) to AIMI (2nd Gen)

- C-doping increases B_{c2} at 4 K
- Dy₂O₃ does at 20-30 K

G Li, APL 105 (2014) 112603

Strand	10 K	15 K	20 K	25 K	30 K
Dy ₂ O ₃ /C co- doped, F3	14.7	11.4	8.2	4.9	2.0
C-doped, I2	14.4	10.9	7.0	3.4	0.4

What is the present performance when compared to today's cost optimized Nb₃Sn (i.e., price in \$/kA-m)?

Price Performance Comparisons at 2T (considering iron in machine)

Price – Performance \$/kAm	Present	Projected future	Projected Future		
for motors and generators	\$/kAm	3 years- \$/kAm	6 years \$/kAm		
MgB2 4K-2T	7	0.5-1.5	0.5		
MgB2 10K-2T	10	0.7-2.30	0.7		
MgB2 15K -2T	15	1-3	1		
MgB2 -20K -2T	20	1.5-5	1.5		
YBCO -4K-2T	50	25	10		
YBCO -20K -2T	100	50	20		
YBCO -30K -2T	150	75	40		
BSCCO 2223 30K-2T	125	125	125		
Nb3Sn 4K-2T-ITER type	3.50	3.50	3.50		
Nb3Sn 8K-2T-ITER type	7	7	7		
Nb3Sn 4K-2T – high Jc tube type	1.42	1.42	1.42		
Nb3Sn 8K-2T – high Jc tube type	2.84	2.84	2.84		
Nb3Sn 8K-2T- optimized APC tube type			1.40		
NbTi 4K-2T	0.5	0.50	0.50		

Hyper Tech

What is the present performance when compared to today's cost optimized Nb₃Sn (i.e., price in \$/kA-m)?

Price Performance at 6T and 10T – air core machine

Price – Performance \$/kAm	Present	Projected future	Projected Future
for motors and generators	\$/kAm	3 years- \$/kAm	6 years \$/kAm
MgB2 4K-6T	50	3.5-10	3.5
MgB2 10K-6T	70	4.9-15	4.9
YBCO -20K -6T	80	40	16
YBCO -30K -6T	120	60	25
BSCCO 2223 4K-6T	125	125	125
Nb3Sn 4K-6T-ITER type	4.90	4.90	4.90
Nb3Sn 8K-6T-ITER type	9.80	9.80	9.80
Nb3Sn 4K-10T ITER type	11.70	11.70	11.70
Nb3Sn 4K-6T – high Jc tube type	2.17	2.17	2.17
Nb3Sn 4K-10T- high Jc tube type	4.68	4.68	4.68
Nb3Sn 8K-6T – high Jc tube type	4.34	4.34	4.34
Nb3Sn 4K-6T- optimized APC tube type			0.60
Nb3Sn 8K-6T – optimized APC tube type			1.20
Nb3Sn 4K-10T optimized APC tube type			0.75
NbTi 4K-6T	1.00	1.00	1.00
NbTi 4K-10T	10	10	10

What is/are the key performance metrics (in the order of importance) if this technology is to be considered in base (land based, stationary?) industrial motors?

<u>Argument and projections</u> that there is a high probability that in 5, 10, or 15 years, that a superconducting motor of XX MW(hp) and larger, is less expensive manufacturing than non-superconducting approach, and life cycle costs (O&M) are equal or less than non-superconducting options.

Metrics:

Cost projections (multiple option to reduce risk),

Proven reliability – need commercial high end motors and generator s (Aircraft, ships) in market place

Once the high end motors are in the marketplace, price will come down for basic industrial motors.

Magnesium Diboride enables <u>all cryogenic</u>

Low cost 5-10 MW plus wind turbines for land and offshore

Design of a 10MW all cryogenic machine with both a superconducting rotor and stator at 15-20K

Estimate for 10 MW is a total weight of <u>50 metric tons</u> and <u>\$2.0 million</u> U.S. if build in volume of 12 or more per year- see article

Hyper Tech

All Cryogenic Superconducting Aircraft

NASA FW/AATT HEP Technology Roadmap

Fine Filament Wires Can Enable Low AC Loss Stators

 NASA is funding the development of finer filament MgB₂ wire for superconducting stators. The goal is for an all-electric aircraft that uses all cryogenic motors and generators. Achieving 10 µm filaments for stators in the 1-200 Hz range.

MgB₂ rotor coils have been made for NASA 2 MW 15,000 rpm generator

Hyper Tech

Low AC loss MgB₂ conductor development

Successful strand design recipe:

- small *d_{eff}* and resistive matrix
- higher \tilde{T}_{op} (e.g. 20K);
- Small twist pitch
- Non-magnetic sheaths

 J_c measured with 10 µm filaments at 0.29 mm. Work progressing to get obtain 10 µm filaments with larger wire diameters.

78 filaments

Benefit is Fuel Savings

National Aeronautics and Space Administration

Mission Fuel/Energy Consumption

	Weight Ibs (kg)	Mission Fuel Consumption Ibs (kg)	Mission Energy Consumption BTU(MJ)	Mission Energy Reduction	
777-200LR Class	768,000	280,000	5.2E+09		
Aircraft	(348.400)	(127.000)	(5.5E+06)		
N3-X	515,000	85,000	1.6E+09	700/	
BSCCO/Cryocooler	(233.600)	(38.560)	(1.67E+06)	10%	
N3-X MgB ₂ /LH ₂	496,000 (229.800)	76,000 (34.470)	1.5E+09 (1.55E+06)	72%	

www.nasa.gov

What is an acceptable return on investment (ROI) for superconducting machine at MW range (cost and time)?

ROI -5 years or less is business standard (short term view)

ROI- 20 years electricity savings (long term view)

Need to see superconducting motor for transportation first

You have fuel savings and increased cargo & freight capacity Over the lifetime of the mode of transportation –plane, ship, Train, bus, and truck.

What are the key challenges in improving wire performance and/or the manufacturing process to reduce price close to Nb₃Sn (i.e., improve in critical current, increase in yield, waste reduction etc.)?

For MgB2

1st generation wire – manufacturing volume and lower cost barrier material 2nd generation wire – improving uniformity over length

For (Re)BCO

Increasing manufacturing capacity per \$ of capital equipment Increasing processing speeds of all the steps in the manufacturing Increasing pinning and increasing superconductor thickness

For Nb3Sn (high performance Nb3Sn) Low Jc Nb3Sn (ITER) wire- has settled out on price Finer filaments to be more stable at lower fields 0-6 T fields High Jc thru grain size refinement and artificial pinning

For BSCCO (2223 or 2212)

Have to dramatically reduce the Ag content (70%), this is tough because O2 needs to get in and out during heat treatment

Are there any other pre-requisites that need to be addressed prior to demonstrating the technology readiness for industrial motors?

Single cryostat vs multiple cryostats (depends on size) Rotating seals if cryogenic portion is rotating (depends on speed) All cryogenic or partial cryogenic (depends speed and low AC loss conductor

What would be a good power level for prototype demonstration (i.e., 1 MW or larger)?

For land based industrial, if size and weight is not an issue, commercial machine needs to be high power.

But as a stepping size demo, pick a size that has commercial benefit for transportation. Get dual use out of demonstration 1-2MW medium speed motor or generator, all cryogenic. This has immediate commercial potential.

What would be a good component level demonstration for the technology?

Depends on size, and purpose

Items to de-risk,

Cryogenics (rotating couplings -low speed and high speed)

Stator Coil fabrication (non metal, high thermal conduction materials)

Method of cooling (liquid cryogen vs conduction cooling)

Deciding on a design? Many design options to choose from in literature based on the application

Cryostat (single or each coil in own cryostat –depends on size and application).

Figure 3: Overall generator configuration

SUPERCONDUCTING WIND TURBINE GENERATOR EMPLOYING MGB_2 WINDINGS BOTH ON ROTOR AND STATOR

Swarn S. Kalsi¹, Fellow, IEEE

¹Kalsi Green Power Systems, Princeton, NJ 08540 USA

Table I

SPECIFICATION FOR THE 10 MW GENERATOR DESIGN

Parameter	<u>Value</u>
Rated output, MW	10
Rated speed, RPM	10
Rated power factor	0.99 lag
Number of phases	3
Number of poles	24
Maximum diameter, m	\$
Maximum axial length, m	<2

Table VII

SUMMARY OF LOSSES AND EFFICIENCY AT RATED LOAD

Parameter	Rotor	Stator
Winding conduction loss, W	24	216
Current lead loss at 55K, W	80	160
Radiation through MLI at 55K, W	117	124
Conduction along torque transfer components		
First stage at 55K, W	64	6
Second stage at 15K, W	21	
Safety margin for calculated losses	50%	50%
Load on the 1 st stage (including safety margin), W	392	440
Load on the 2 nd stage (including safety margin), W	68	324
Number of cryocoolers needed (including one spare)	9	20
Total input power to cooler compressors, kW	68	150
Iron yoke losses, W		60
Total losses at rated load, kW	218	
Efficiency at rated load	98%	

Table IX

GENERATOR AND COMPONENT COST

Component	Cost, 1000\$
ROTOR	
MgB ₂ winding,	746
Current leads	1.0
Cryogenic instruments	6.0
MLI insulation	0.4
Mechanical components (including iron yoke)	300
STATOR	
MgB ₂ winding	142
Iron yoke	136
Torque links	12
MLI insulation	0.4
ACCESSORIES	
Brushless exciter	14
Vibration pickup	2
Cryocoolers	693
Coolant transfer system	36
ASSEMBLY & TESTING	20
COST OF POWER ELECTRONICS	1000
TOTAL GENERATOR COST	3168

Hyper Tech Hyper Tech Generator features- 5MW design expandable to 20MW using superconducting rotor and copper stator

Designed in modules to transportable and be assembled in the field

No component weight is more than 14 tons for a 5MW -76 ton generator

Power (MW)	5.0
RPM	10
Configuration : Synchrono	us
Voltage (kVrms)	1,350
Number of Poles	24
Diameter (M)	4.87
Length (M)	1.74
Weight (Tons)	76.5
Superconductor	MgB ₂
Rotor Coolant LHe/GHe	
Stator ConductorC	opper
Stator Coolant Water or	EGW

Cryogenics

Hyper Tech

HyperTech Lightweight Superconducting Generator Technology

Generator	Generator Weight (Tons)				
Technology	5MW	10MW 15MW		20MW	
Hyper Tech Superconducti ng Generator (Preliminary)	76.5	123.3	162.3	205.9	
Km of MgB ₂ wire	30	60	90	120	

24 poles, one rotor coil was driving 2 poles Each superconducting rotor coil (12 total) for 5 MW generator contains a single 2,293 meter long piece of MgB₂ superconducting wire (27.5km total per generator) operating at 20K-3T

For 10 MW – 55 km. 2nd generation wire

Novel Rotor Coil Configuration Eliminates Half the Typical Rotor Coils...High Reliability

<u>Traditional Rotor Configuration</u> One Small Radially Oriented Coil Around each Pole

Our Equivalent Configuration One Large Peripherally Oriented Coil on <u>Half</u> the Poles

5-20 MW Modular Generator Components

Completely Assembled Generator

Specifications

Power (MW) 5	.0
RPM 1	0
Configuration Synchrono	us
Voltage (kVrms) 1,35	0
Number of Poles	24
Output Frequency (Hz) 2	.0
Diameter (M) 4.8	87
Length (M) 1.7	74
Weight (Tons) 76	.5
Superconductor Mg	3 ₂
Rotor Coolant LHe/GHe or L	.H₂
Stator ConductorCopp	er
Stator Coolant Water or EGV	N

Generator Repair Procedures

Remove Defective Rotor Pole/Superconducting Coil Assembly

11 MW @ 150 RPM MARINE STAR TOROIDAL TECHNOLOGY (GL)

Power Total	11 MW	11 MW
Torque	700 kNm	700 kNm
Rated Rotor Speed	150 RPM	150 RPM
Rotor		
Maximum Rotor Current Density	5 A/mm ²	3 A/mm²
Rotor Tip Speed	9.4 m/s	9.4 m/s
Rotor Diameter	1200 mm	1200 mm
No. of Independent Rotor Windings	6	6
Rotor Material	Copper Wire	Copper Wire
Rotor Weight – Copper @ 3 A/mm ² Current Density	3300 kg	1980 kg
Rotor Weight – Copper @ 5 A/mm ² Current Density	1980 kg	1188 kg
Rotor Weight – Copper @ 10 A/mm ² Current Density	990 kg	594 kg
Rotor Heat Loss @ Rated Rotor Current Density	280 kW	100 kW
Estimated Efficiency - Resistive Loss Only	97.5%	99.09%
Toroid Coils		
Super Conducting Wire	NbTi	Nb35n
SC Wire Length based on Ø 0.76 mm wire (NbTi) or Ø 0.85 mm wire (Nb3Sn)	251 km	281 km
SC Wire Weight	788 kg	1100 kg
SC Packing Factor	0.6	0.6
Maximum Coil Current Density	273 A/mm ²	304 A/mm ²
Peak Field on Wire	5.96 T	9.95 T
Operating Temperature	5 K	5 K

Rotor Speed: 150 RPM 1220 2378 **8 POLE**

Note: Efficiency is quoted at maximum load and rated speed.

LEGAL NOTICE: All material disclosed in this publication is intellectual property protected by copyright, trademarks and various patents pending. All rights reserved. © Copyright Guina Energy Technologies Pty Ltd ACN 604 140 552.

150 MW @ 150 RPM INDUSTRIAL STAR TOROIDAL TECHNOLOGY

Note: Efficiency is quoted at maximum load and rated speed.

LEGAL NOTICE: All material disclosed in this publication is intellectual property protected by copyright, trademarks and various patents pending. All rights reserved. © Copyright Guina Energy Technologies Pty Ltd ACN 604 140 552.

Hyper Tech is also working in the area of electrical conductors that are better than copper or aluminum

Funding from Air Force (SBIR Phase I & 2)

Working on improved copper conductors using carbon nanotubes Using a process of aligning the CNTs and electroplating.

Also working on a program funded by NASA (SBIR Phase I)

Working on Cu wires with aligned and functionalized CNTs inside the copper wires

