The Influence of Realism on Congestion in Network Simulations*

K. Mills (joint work with C. Dabrowski) NIST December 1, 2015

*For more details see: NIST Technical Note 1901 <u>http://www.nist.gov/itl/antd/upload/TechNote1901-draft1.pdf</u>

Total talk is 20 slides

- Motivation 6 slides
- Research Questions and Approach 2 slides
- Models 5 slides
- Experiment Design 1 slide
- Results 5 slides
- Findings 1 slide

Congestion Spreads across Networks in Space and Time

Empty 2D Lattice Congestion Sporadic Congestion Persistent Congestion Spreading Congestion Widespread

PACKET-INJECTION RATE

IMPLICATION: SHOULD BE POSSIBLE TO DETECT THE SPREADING PROCESS AND PROVIDE EARLY WARNING OF INCIPIENT CONGESTION COLLAPSE

2D lattice animation taken from "Percolation Theory Lecture Notes", Dr. Kim Christensen, Imperial College London, October 9, 2002

Spreading Processes often Modeled as Percolation

Percolation \rightarrow **spread of some property** in a lattice (or graph) leading to the formation of a <u>giant connected component</u> (GCC), as measured by P_{∞} , the proportion of nodes encompassed by the GCC

p is probability a node has property

 p_c is known as the critical point

 $p < p_c \rightarrow$ no spread

 $p = p_c \rightarrow percolation phase transition$

 $p > p_c \rightarrow$ spread occurs, and expands with increasing p

Near a critical point, the process exhibits signals, typically attributable to increasing, systemic correlation

Academics Model Spreading Network Congestion as a Percolation Process

Year	Researchers	Location	Topology	Metrics	Precursor Signal
2001	Sole & Valverde	Spain & USA (SFI)	2D Lattice	Packet Delay, Queue Length, Throughput	Self-similarity in log-log plot of power vs. freq.
2002	Woolf et al.	ик	2D Lattice	Packet Delay, Queue Length, Throughput	Long-Range Dependence (LRD) in time-series autocorrelation
2004	Arrowsmith et al.	ик	Triangular & Hexagonal Lattice	Packet Delay, Queue Length, Throughput	LRD shown with Hurst parameter increases from rescaled range statistical (R-S) analysis
2005	Mukherjee & Manna	India	2D Lattice	Packet Delay, Queue Length, Load per Node	Self-similarity in log-log plot of power vs. freq.
2007	Lawniczak et al.	Canada	2D Lattice	Packets in Flight	LRD shown with Hurst parameter increases from R-S analysis
2007	Tadic et al.	Slovenia, Austria, UK	Generated SF & UH	Packet Delay, Queue Length, Network Load	Systemic changes in network-load time series
2009	Sarkar et al.	USA	2D Lattice	Packet Delay, Queue Length	Order parameter becomes positive
2009	Wang et al.	China	Generated ER, WS, HK	Packets in Flight/Injected	Order parameter becomes positive
2010	Rykalova et al.	USA	1D Ring & 2D Lattice	Packet Delay, Queue Length, Network Load	Increasing amplitude fluctuation in metrics

Finding that Signals Appear Near a Critical Point in Abstract Network Models

Topology Key: SF = Scale-Free UH = Uncorrelated Homogeneous ER = Erdos-Reyni Random WS = Watts-Strogatz Small World HK = Holme-Kim variant of Preferential Attachment

Penn State Researchers (Sarkar, Mukherjee, Srivastav, and Ray 2009) find increasing transit delay as $p > p_c = 0.3$

Aggregate Avg. Transit Delay (D^{*}) vs. Network Load (λ)

Sampled Avg. Transit Delays (D) for Four Network Loads (λ)

Increasing slope in time series of selected measured variables could signal crossing a critical point, allowing network managers to be alerted prior to network collapse

Boston University Researchers (Rykalova, Levitan, and Browe 2010) find increased correlation in time series of packets in transit as p nears $p_c = 0.2$

Increasing autocorrelation in time series could signal an approaching critical point, allowing network managers to be warned prior to network collapse

NIST TN 1901

Abstract Models Lack Key Traits of Real Networks

Routers & Links	1. 2. 3.	Human-engineered, tiered topologies, with propagation Router buffer sizes finite Router speeds varied to meet demands, limit losses
Computers	4. 5. 6.	Injection from sources and receivers only at lowest tier Distribution of sources and receivers non-uniform Connection of sources/receivers with few varied speeds
Users	7. 8. 9.	Duty cycle of sources exhibits cyclic behavior Human sources exhibit limited patience Sources transfer flows of various sizes
Protocols	10.	Flows use the Transmission Control Protocol (TCP) to modulate injection rate based on measured congestion

DOES LACK OF REALISM MATTER WHEN SIMULATATING NETWORK CONGESTION?

Specific Research Questions

- Does congestion spread in abstract models mirror spread in realistic models?
- Are some elements of realism essential to capture when modeling network congestion?
- Are some elements unnecessary?
- What measures of congestion can be compared, and how, across diverse network models?

Research Approach

Models

- Abstract EGM Model→high abstraction
- Realistic MesoNet Model→high realism
- Flexible FxNS Model→combinations of realism from low to high

The Abstract (EGM) Model

P. Echenique, J. Gomez-Gardenes, and Y. Moreno, "Dynamics of Jamming Transitions in Complex Networks", *Europhysics Letters*, 71, 325 (2005)

Simulations based on 11,174-node scale-free graph, $P_k \sim k^{-\gamma} \& \gamma=2.2$, taken from a 2001 snapshot of the Internet Autonomous System (AS) topology collected by the Oregon Router Server (image courtesy Sandy Ressler)

NIST TN 1901

Details of the EGM Model

Node Buffer Size: ∞ for EGM, all packets buffered, no packets dropped Injection Rate: p packets injected at random nodes (uniform) at each time step Destination Node: chose randomly (uniform) for each packet Forwarding Rate: 1 packet per node at each time step Routing Algorithm: If node is destination, remove packet; Otherwise select next-hop as neighboring node *i* with minimum δ_i

System Response: proportion ρ of injected packets queued in the network

Computing δ_i

h is a *traffic awareness* parameter, whose value 0 ... 1.

 $\delta_i = hd_i + (1-h)c_i,$

where *i* is the index of a node's neighbor, d_i is minimum #hops to destination via neighbor *i*, and c_i is the queue length of *i*. h = 1 is shortest path (in hops)

Measuring ρ

$$\rho = \lim_{t \to \infty} \frac{A(t+\tau) - A(t)}{\tau p}$$

A = aggregate number of packets t = time

- τ = measurement interval size
- *p* = packet inject rate

Comparative Simulation Results

The Realistic (MesoNet) Model

K. Mills, E. Schwartz, and J. Yuan, "How to Model a TCP/IP Network using only 20 Parameters", WSC 2010, Dec. 5-8, Baltimore, MD.

Comparisons of MesoNet Simulations vs. FxNS Simulations (all realism elements enabled) for eight MesoNet responses are available in **NIST TN 1901 – Appendix A**

December 1, 2015

NIST TN 1901

FxNS Combinations

34 Valid FxNS Combinations

Seq	Cmb	ТСР	FL	SR	DE	VS	NC	PD
1	c0	0	0	0	0	0	0	0
2	c1	0	0	0	0	0	0	1
3	c2	0	0	0	0	0	1	0

• • •

32	c123	1	1	1	1	0	1	1
33	c126	1	1	1	1	1	1	0
34	c127	1	1	1	1	1	1	1

Dependencies among Realism Elements

Experiment Design

	Enabled	Disabled		
PD	buffers = $250 \times router$ speed	buffers = ∞		
NC	3-tier 218-node topology as in Fig. 2 with routers labeled as core, PoP, D- class, F-class or N-class	flat 218-node topology as in Fig. 2 but with routers unlabeled		
VS	core 80 p/ts; PoP 10 p/ts; D-class 10 p/ts; F-class 2 p/ts; N-class 1 p/ts; fast source/sink 2 p/ts; normal source/sink 0.2 p/ts	all routers and sources/sinks 9 p/ts		
DE	core links have propagation delays	no propagation delays		
SR	51,588 sources & 206,352 sinks deployed uniformly below access routers	no sources or sinks deployed		
FL	transfers are packet streams: sized randomly from Pareto distribution (mean 350, shape 1.5) - streams set up with TCP connection procedures	transfers are individual packets		
ТСР	packet transmission regulated by TCP congestion-control including slow-start (initial $cwnd = 2 \ sst = 2^{30}/2$) and congestion avoidance	packet transmissions not regulated by congestion- control		

FIXED PARAMETERS

- 218-Router Topology (Fig. 2)
- Routing (SPF propagation delay)
- Duration (200,000 ts per *p*)

VARIABLE PARAMETERS

- Packet-Injection Rate *p* (up to 2500)
- FxNS Combination

RESPONSES

- Congestion Spread $\chi = |G_{\chi}| / |G_N|$
- Connectivity Breakdown $\alpha = |G_{\alpha}| / |G_N|$
- Proportion of Packets Delivered π
- Scaled (0..1) Latency of Delivered Packets δ

Only concepts in common among all 34 combinations: graph and packet

Results^{1,2}

[1] 136 xy-plots (34 FxNS combinations × 4 responses) are available at: <u>http://tinyurl.com/poylful</u>

[2] Related FxNS simulation data can be explored interactively using a multidimensional visualization created by Phillip Gough of CSIRO: <u>http://tinyurl.com/payglq6</u>

Results I – Abstract (CO) vs. Realistic (C127)

Plots for all responses and all 34 combinations available: <u>http://tinyurl.com/poylful</u>

Results II – Congestion Spread χ All Combinations

Results III – Connectivity Breakdown α All Combinations

Results IV – Packet Delivery π All Combinations

Results V – Scaled Packet Latency δ All Combinations

Findings

- Congestion spreads differently in abstract and realistic models
- Hierarchical Router Speeds and TCP very important to model
- Packet dropping important to model for accurate packet latencies
- Propagation delay not important to model in a continental US network, but would be important to model in topologies where propagation delays exceed queuing delays
- Congestion spread, connectivity breakdown and the effectiveness and efficiency of packet delivery can be measured using only two concepts: graphs and packets