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FOURIER TRANSFORMATION OF THE NONLINEAR VOR
MODEL TO APPROXIMATE LINEAR FORM

by

Dominic F. Vecchia

This technical note describes a method for transforming a
particular nonlinear regression model to a form which is approxi-
mately Iinear in the unknown parameters. The technique involves
computation of the Fourier coefficients for a set of sample data
and uses phase variables to estimate the parameters. The phase
spectrum transformation is employed to obtain bearing angle esti-
mates for a model associlated with the Very-High-Frequency Omni-
Directional Range (VOR) aircraft navigation systems The Lrans-~
formation provides a model linear in relevant phase parameters.
Thus, estimation of VOR bearing angle utilizes existing
statistical theorys. Finally, it is shown that certain generaliza-—
tions of the VOR model also are reduced to approximate linear form
by the phase spectrum transformation.

Key Words: Fourier coefficients; linear model; nonlinear model;
phase spectrum transformation; spectrum; VOR aircraft navigation
system; white noise.

1. INTRODUCTION

There are many different reasons for making a transformation of variables
in the statistical analysis of data. This technical note discusses an unusual
type of transformation useful in comnection with a particular nonlinear
regression model for audiofrequency signals from the Very-High-Frequency
Omni-Directional Range (VOR) air navigation system. The model, which is
considered in a more general form than the VOR requires, is intrinsically
nonlinear in the uinknown parameters. By intrinsically nonlinear we mean that
a single observatlon cannot be transformed into linear form. For éxample,
consider the two models

Y = exp(By + Box + €)
Y = [B81/(B1-89) ] [exp(=Box) ~ exp(-81x) | + &

where By and By are unknown parameters, x is an independent variable, and €

is a random error term. Both models are nonlinear in 8; and B5, but the first
is intrinsically linear because the transformed variable InY is linear in B
and By, However, the second model is intrinsically nonlinear because it is
impossible to convert the model into a form linear in the parameters. For a
discussion of these concepts see reference [1].

Usually, it is not useful to transform a2 model of the second type because
it remains nonlinear whatever transformation is applied. The transformation
introduced in this paper is unusual because it involves computation of the



Fourier coefficients of the sample data and uses phase variables to estimate
parameters. For thils reason the procedure to be described is called the phase
spectrum transformation. The method will be demonstrated for the model
specific to the VOR air navigation system.

The VOR is a fundamental component of the present-day air navigation
system. A feature of the VOR system which provides much versatility for
defining controlled airways is that the facility emits an infinite number of
radial courses providing aircraft bearing information. This information is
contained in the phase angles of two 30 Hz audiofrequency signals. The first
has a constant phase at all points around a VOR station and is called the
reference signal, The other, called the variable signal, has a phase equal to
‘the bearing angle to (or from) the VOR transmitter. In the aircraft, bearing
information is determined by measuring the phase difference between the two
component signals.

The importance of the accuracy of bearing angle estimation devices can-
not, of course, be overstated. At present, measurement accuracy for VOR test
instruments depende upon calibration with commercial equipment designed for
that purpose. As system requirements become more severe because of increasing
traffic in the air lanes, it is clear that both the accuracy .and precision of
present VOR calibration equipment will require additional scrutiny. Hope-
fully, this will increase the safety and efficiency of aircraft operations.
For a general discussion of the VOR system, see [2].

This paper presents a statistical technique for estimation of VOR bearing
angle and gives the corresponding precision of the estimated angle. The
general method is based on regression ahalysis of samples taken by a sample-
and-hold amplifier and an analog-to-digital converter. The method provides a
linear model in relevant phasé parameters. Thus, the bearing angle estimation
utllizes existing statistical theory.

In section 3 of this technical note, the nonlinear regression model is
represented in continuous time. Fouriler coefficients are obtained for the
noise-free signal, and results for the special case of the VOR signal are
stated. The results for the VOR application are extended without proof to the
discrete time sample model in section 4. The spectrum for the VOR model with
noise is derived and the phase spectrum transformation is defined. 1In section
5 the approximate linear model for transformed variables is used to estimate
unknown parameters and the usefulness of the transformed model is discussed.
Section 6 i5 a limited discussion concerning the propertles of esLiwators if
some assumptions specific to the VOR model are invalid.

2. NOTATION

For X, a random variahle with probhability deneity F(x) wa denots the

mean and variance of X by E[X] and Var[k], and the covariance between X and a
random variable Y is denoted by Cov[X,Y].

Vecturs and malrices are denoted by underlined letters, for example, ©
and V. 1f O denotes a vector, then 87 will denote the transpose of 8, An
estimator of 6 will be denoted by 9



3. CONTINUOUS TIME NONLINEAR MODEL

The nonlinear model considered in this report will be represented, ini-
tially, as a continuous function of time. In a later section the mathematical
results obtained for the continuous time model are extended to the case where
the data are equally spaced observations from the continuous signal.

To represent the deterministic component of the model requires two peri-
odic functions described below in (3.0.1). These fuactions are added to
obtain the expected (ideal) value of the output signal in a nonlinear regres-
sion model. The two component functions are

v(t;8,9) = ap cos[27f)(t+8) + ¢1]
and (30001)

s(t;6,¢) = ap cos[Zsz(t+5) + ¢y + B sin{2mf (t+8) + ¢3]]

The waveform generated by the sum of v(t;6,¢) and s(t;$,¢), with some param~
eters .assumed known, may be used Lu represeul the ideal audliofrequency sigial
for the VOR aircraft navigation system. In this context, v(t;$,¢) is called
the variable phase signal, and s(t;8,¢) is the frequency modulated subcarrier
signal, The frequency modulating sinusoid, contained in the argument of
s(t3;8,9), is called the reference phase signal. Equations for the component
signals have been presented in a more general form than the VOR application
requires. However, the above terminology is used throughout this paper. Fol-
lowing are descriptions of the model parameters:

a; = amplitude of variable phase signal;
oy = amplitude of subcarrier signal;
f1 = variable (and reference) signal frequency;
fy = subcarrier frequency;
B = modulation index;
§ = arbitrary fixed time offset;
47 = phase angle of variable phase signal;
99 = phase angle of subcarrier signal;
¢3 = phase angle of reference phase signal.
The fixed time offset, §, is included in (3.0.1) because the output signal
will be observed and sampled from an unknown starting point in the waveform.
We cannot, in general, be assurcd that obscrvation of the signal begins at a
zero crossing on the time axis.
Realistically, measurement of the composite signal involves random

neasurement error in some form. In this paper the random error process, e(t),
is assumed to be additive white noise [3], and the resulting process Y(t) can



be represented by
Y(t) = u+ v(t;8,0) + s(£;6,9) + e(t) , (3.0.2)

where B is a fixed but unknown offset. Unless otherwise specified, e(t) is
not assumed to be Gaussian white moise. However, for the distributional
result obtained in the appendix, we require normality and independence of the
discrete time error series to be as described in subsection 4.1.

In subsection 3.2, a form of the model specific to VOR navigation systenm
1is discussed. For this application some of the parameters in the general form
of the model are assumed to be fixed, known values. On this basis a
statistical method for VOR bearing angle estimation will be derived. Because
the relevant angle for the VOR application is (¢1-¢3), it 1s sufficient to
consider a reparameterized form of the model where we define new parameters §

by

B = ¢ -~ ¢3
92 = 21Tf16 + ¢3
93 = 27|'f26 + ¢2 .

For this parameterization the general model becomes

¥(t) = u+ v(t;8) + s(t;8) + e(t) (3.0.3)
where
v(t;0) = o) cos{2wigt + 0 + 07]
and
s(t;90) = ap cos[2Tfyt + O3 + B sin[27f)t + 1] .
In the following scction, we obtain the Fourier sine and cosine transforms of
E[Y(t)]=wtv(t;0)+s(t;0) under the assumption that fy=mf). Hence, E[Y(t)] is

periodic with period (1/f}). Utilizing the general result, the specific
transform for the VOR signal is determined in subsection 3.2.

3.1 Fourier Representation of General Model

Let y(t;8) denote the expected value of Y(t): The deterministic function
y(t;6) is given by

y{t58) = u+ v(t;9) + s(t;9).

Suppose that the frequencies f) and f5 in the definition of v(t;8) and s(t;8)
are such that fy=mf; for some positive integer m. Thus, y(t;8) is periodic
with period (1/fy). Under this assumption, the Fourier coefficients of y(t;)
can be obtained from the real and imaginary parts of the complex integral -



l/2f1
s = 2£1 J  y(£38) expli2mfike] dt, k=0,%1,%2, ..,
-1/2f1

Let ay and by denote the real and imaginary parts of sy, so that sy = ajp+iby.
That is, a) and by are the Fourier cosine and sine transforms, respectively,
of y(t;8). TIn the appendix, it is shown that the Fourier coefficients ap and
bk for.'lz’—'-o,l,..., are

u , k=0
ag = o] cos[0)+0y] + oy ap(s) , k=1
L o ay(s) , k32
and (3.1.1)
0 , k=0
b =< -a; sin[81#87] - ap br(s) , k=1
\—% be(s) s k22

where, for k>1,

n
1

ap(s) = Jpn{Blcos[83 + (k-m) 8] + J_y_(Blecos[B3 ~ (ktm) 0]

and

bk(S) = Jk_m(B)sin[93 + (k-m)ez] + J_k_m(s)sin[e3 (k‘i‘m) 92] .

The notation J,(z) denotes a Bessel function of the first kind [4].

Equations (3.1.1) represent the Fourier coefficients for the mean value
function of the general continuous time model where the subcarrier frequency
fy is an integer multiple of £y, the frequency of the variable phase signal.
For the VOR model, where some parameters in the general model are assumed
known, we will see that the Fourier coefficients can be greatly simplified.
The form of the coefficlents for this special case will suggest a method for
estimating the unknown parameters.

3.2 Fourier Representation of VOR Signal

The VOR audio frequency waveform consists of a 30 Hz variable phase
signal linearly added to a frequency modulated 9960 Hz subcarrier signal. The
modulation index for the reference phase signal is assumed to be fixed and
known, as are the amplitudes of each signal. Specifically, parameter values
assumed to be known are:



=20

o = 2172
a = 2172

£, = 30

£g = 9960 (so m = fp/f = 332)
B =16 .

These specifications define the VOR model
¥(t) = y(£;8) + e(t)
where
y(e;8) = 21/2{cos[2730t + 81 + 0]

+ cos[2719960t + 63 + 16sin{27T30t + 851 ]}.

Noting that y(t;8) is nonlinear in the unknown parameters 07=[8;,8,,83], we
will show in section 4 that the spectrum of Y(t) can be used to transform a
set of sample data to new observations satisfying a model approximately

linear in 8. The transformation to linearity will depend on the simplified
form of the Fourier coefficients for y(t;90) when known values of parameters in
the VOR model are substituted in the general equations (3.1.1).

Substituting known values in the expressions for ay(s) and b (s), we
obtain for k>1,

ar(s) = Jy—332(16) cos[83+(k-332)8,] + J_y_332(16) cos[B3~(k+332)86,]

and

bk(S) Jk..332(16)s1n[ 93+(k-332) 62] + J"k_"332(16) cos [ 93‘( k+332) 52] .

We need the following results for Bessel functions of the first kind.
Lemma 3.1: [4, page 358] For integer n, J,(z) satisfies
Jop(z) = (-ID7 J (2) .

Lemma 3.2: [4, page 365] TFor fixed z, as n>® through real positive values,

Ip(z) & (2m)"1/2(ez/20)0 .



From lemmas 3.1 and 3.2, it follows that

f

J-g-332(16) = (~1)KF3325y433,(16)

3

(-1)K332(2m(k+332) 171/ 2[16e/ 2(k+332) |kF332

0

Clearly, the value of Jy4332(16) is_immeasurably small. Note, for example,
that if k=1, Jyp4332(16) % .02¢.065)333, similarly, for small k, we have that

Jk-332 = 0.

Using the above results, we get

0 , k=1
ap(s) = {
Jk_332(16)-cos[93 + (k=-332) 92] k32 .

>

and

0 , k=1

b(s) = {
J-332(16)sin[ 83 + (k-332)8,] , k22 .

Substituting in the general expressions (3.1.1), the approximate Fourier
coefficients for Y(tig) in the VOR model become

0 ) k=
ay 2< 217 cos[8) + 8] ) k=
2172 3 _332(16)cos[83 + (k=332)65] , k32

and
J, 0 , k=0
by 2 ) —a1/2 ein[8; + 85] > k=l

-21/2 3_332(16)sin[ 83 + (k-332) 851 , k>2.

Because omitted terms are negligible, in the following sections we consider
the Fourier coefficients to be exact.



4, DISCRETE TIME NONLINEAR MODEL

The general model and corresponding Fourier transforms introduced in
section 3 will facilitate a later discussion about errors in assumptions for
the VOR model. Because the approximations discussed in the previous section
depend on the particular values of some parameters in the general model, the
phase spectrum transformation will be developed only for the VOR
specifications. In subsection 4.1 we consider the discrete time analogs of
the VOR model and corresponding Fourier coefficients, slnce a digital phase
estimation technique is desired.

4,1 Fourler Coefficients of VOR Signal

Let Yi, j=1,...,N, he N equally spaced ohservations from one perind of
the continuous time VOR series. TFor.convenience, N is assumed to be even in
the results to follow. The sample model for VOR applications can be written

Ty = 3@ * ey 1.
) 3ok=l, 000 ,N
E[ej]=0; Var[ej}=0 3 E[ejek]=0 if j#k
where
y4(8) = 21/2{cos[2n(5-1)/N + 8] + 8]
+ cos[27332(3-1)/N + 83 + 16sin[27(j-1)/N + 6] ]}.
The ej's denote uncorrelated random error terms with unknown variance o2,
The Fourier coefficients (sy = aptiby) for ys(8) are given by
N,
sk = (2/8) ) y4(8) expli2mk(3-1)/N] .
=1
The ay and by follow directly from the continuous time model. Excluding the

coefficients for k=0, which are not useful to estimate 8, equations for gy and
by are -

2172 cos[6] + 69] , k=1
21/2 3 _332(16) cos[03 + (k-332)9,], k=2,3,...,N/2,
and (40 1. 1)
| -21/2 gin[ 8y + 8y] , k=l
P = 172 '
=212 5y _335(16)sin[ 83 + (k-332)8,1, k=2,3,...,N/2-1 .

Recall that these coefficients can reasonably be considered exact expressions
because omitted terms are negligible. The interesting feature of the
equations for ay and by is the form of the phase of the kth harmonic. If we
let g represent the phase at a chosen harmonic, then the basic equation for

8



g is tan(q)=-b/a. For convenience, we have dropped the subscripts on q, b,
and a. Because Arctan(-b/a) gives the same value for -b and —a as for b and
a, the full solution for q in the interval (-m,7] dis the following

[5, page 12]:

f’
Arctan(-b/a) , a>0
Arctan(-b/a)-w, a<0, b>0
Ar ctan(-b/a)+7w, a<0, b<0 (4.1,2)
g* = <
-T/2 , a=0, b>0
/2 , a=0, B<0
L. arbitrary , a=0, b=0.

The notation Arctan(x) is used to denote the principal value, so that
-n/2<Arctan(x)<{m/2. If arctan(x) denotes any angle whose tangent is x, then
it follows that

arctan{~b/a) = q* + j27 (4.1.3)

where j is an arbitrary integer. From (4.1.3) and the expressions for ap and
by, it then follows that there exist integers Yy such that q(®)=q*+m 27T is

given by

8, + 52 , k=1
(8 = ’{ | (4.1.4)
(k-332) 92 + 93 , k=332 <K ,

where K is a constant chosen to assure that Jy.332(16) is non-negligible. A
zero value for the Bessel function leads to an arbitrary phase because
ap=by=0. Table 1 lists the values of J(16) for n=0,...,24. In a later
section it will be shown that a value of K#10 is sufficient for the proposed
estimation of 9.

Table 1. Bessel Functions

n 3,(16) n Jn(16)

0 =, 1748990739 '
1 .0903971756 13 + 2368225047
2 . 1861987209 14 . 2724363352
3 ~. 0438474954 15 .2399410820
4 -.2026415317 16 . 1774531934
5 ~. 0574732704 17 . 1149653049
6 1667207377 18 0668480795
7 .1825138237 19 0354428740
8 -.0070211419 20 .0173287462
9 ~.1895349656 21 .0078789915
10 ~. 2062056944 22 .0033536066
11 ~. 0682221523 23 . 0013434266
12 .1124002349 24 .0005087450




The multiples of 27 indexed by Y in the expression for qu(8) are
necessary to adjust the qu* from the interval (-m,7] to the interval (-« =),
Because the 9's will represent unknown parameters, the Y's are not kmnown in
general. If we assume, however, that 0,20, it is clear from (4.1.4) that the
Y's must satisfy

Qj* + YjZT[ £ qi* + YiZ‘h‘ , j<i H i¢l¢j >

so (4.1.5)
(Y3 = YW gyt - ag*, 3G 5 1AE .

This implies that for |k-332|<K, the Yy's can be uniquely determined if, for
example, the following conditions are assumed:

-‘7T<91+62<1T
82>0
=1< 93(7[ .

With these constraints Y[=Y332=0 and successive values of Y, near k=332
are determined from (4.l1.5). For the extension of the results to the VOR
signal with error we will assume that the Y's are known.

4.2 Spectrum of VOR Noise Model

In the previous subsection Fourier coefficients were obtained for the
deterministic component of the VOR process. TFor the nonlinear VOR regression
model:

Yj=y35(8) + ej '
) ) 2 } j,'k'=].’o--,N
Efe;]=0; Var[e l=0"; Elejerl=0 if j#k

the Fourier coefficients of»ijE), represented by sp=ap+iby, were shown to
have phase values linear in 8. 1In this section we prove that random phase
variables derived from Fourier transformation of Yi, j=1,...,N are appropri-
ately represented by a regression model linear in O,

Letting the random variables Sy =A+iBy, k=1,...,N/2-1, represent the
Fourier coefficients of Yj, we ‘have

il

N
(2/M) | ¥j exp[12mk(j-1)/x]
3=1

Sy

N
2/N) ) (v5¢8)+e)exp [12mk(3-1)/N]
31

N
s + (2/N) _Zlej exp[127k(§~1)/N]
J=

10



where sp=aptiby are the Fourier coefficients for y;(8) given in (4.1.1). If
we let the transform of the random error sequence be denoted by

N
g + ihy = (2/N) ] ey exp[12mk(3-1)/N] ,
=1

it is well known [6, page 110] that the random variables gy and hy,
k=l,+ss,N/2=1 are mutually uncorrelated and

E{ge] = Ely] =0
' , } k=1,s..,N/2-1

Var{gy] = Var{h] = (2/N)o

It therefore follows that the Ay and By are uncorrelated and satisfy regres-—
sion models

Ak = ag + g

} k=1,...,N/2-1

I

By by + hy

Linearity of arctan(-by/ay) in 8 suggests that we consider the phase spectrum
of Y: to egtimate_g. Tn the next sertian it is_shown that the expected values
of pﬁase variables are approximately linear in 6.

4,3 Phase Spectrum Transformation

The definition of phase random variables parallels the description of the
phase q(8) for the deterministic component yj(g). Phase variables will be
denoted by Qg and initially are defined using principal values in the interval
(-m,m]. Define

Qe* = Arctan[-Bk/Ak] , k=1,...,N/2-1 . (4.3.1)

In the appendix the distribution of the Q¥, k=1,...,N/2-1 is determined when
the errors are Gaussian., The expected value of Q* is not obtained, but the
complexity of the distribution illustrates the usefulness of approximate
moments of Q* which result from a suitable propagation of errors formula.

To conclude this subsection we obtain approximate formulas for the mean
and variance of Qu*. These results are the basis for the linear nodels used
to estimate @ in Scction 5. As defined, Ay and By appcaring in (4.3.1)
satisfy:

E[Ak] = ap E[Bk] = by

1

2
Var[Ag] = Var[B] = (2/Mo K,3=Ll,ee0,N/2-1

CovlAg,Bj] =0 all 3,k

11



For values of k such that ap#0#b., it can be shown [7, page 333] that,to order
N2, Qy* has approximate mean and variance given by

13

ETQ*] Arctan|-by/ay ]

(4.3.2)

IR

Var[Qg*] = (2/N)ry~20?

where

2 , k=l

2 2 2
rk = ay ~+ bk = { »
2J2k—3_32(16>, |k-332|$K .

The value of K is chosen to assure that Jy_332(16) is nongero. Note that
E[Qg*]2qr*, where the solution for qg* in the interval (-,7] was given in
(4.1.2). Based on the discussion following (4.1.2) we can define Qu=Q*FY 27
where the Y's are (generally) unknown integers such that

E[Qc] = qx(®)
Var[qel = (2/8)r " ?9?
where
8y + 8y , k=1

q (9 = { (4.3.3)
(k-332)8, + 85 ,  |k=332[<K .

The method of estimating 8 to be outlined in Section 5 is based on the
above results. To the chosen degree of approximation, the iImportant features
are:

l. E[Q] is linear in O for all permissible k.
2. Var[Qg] is proportional to 0? with known constant of proportionality.

3. For all permissible k, the Q;'s are mutually uncorrelated (assuming
white noise errors in the original model).

Because the linear model of Section 5 requires that Q be an observable random
variable, it will be necessary to assume that the Y.'s are known integers.

The Yi's are used to adjust the computed values of the arctan function to
satisfy inequalities implied by (4.3.3). Though it is not obvious that this
correction can be accomplished with the Q, which are subject to error,
computer simulations indicate that the adjustment is possible if the
measurement error variance, 02, is small. Values used for 62 are thought to
be representative of measurement precision for a new system designed to obtain
sample values Yj, J=1, 000 N '

12



5. LINEAR MODEL FOR PHASE SPECTRUM

In the previous section approximate formulas for the means of phase
random variables for the nonlinear VUK model were shown to be linear in the
unknown parameters 6. Correspondiné variance approximations are unequal at
the harmonics and proportional to 0, but do not depend on other unknown
parameters. The additional observation that phase random variables are
uncorrelated suggests that 8 and 02 may be estimated using a linear model in 8
with known error covariances. For the description to follow the reader is
reminded that expressions for the mean and variance of @y are hot stated as
approximations.

Consider the n=2+2K equations
8] + By + € , k=1
%" { (k-332)8y) + 03 + € , k=332-K,...,331,332,333,...,3324
where €; represents a random error term such that
E[g]=0 ; Var[g]=(2/8)r " 20%;
Cov[ek,ej]=0 if k#j 3
and where

(1) the Q are observable random variables;

2

(2) the ri“ are known constants.

2
(3) &y, 8, 83, and 0 are unknown parameters.

The model can be represented as .a single matrix equation
2
Q=X06+ ¢« Ele]l =0 Cov[el=0"V (5.0,1)

where the vectors and matrices are

_ - _ -
Q1 1 1 0
Q332-x 0 X 1
- . . . 91
Q= |Q3 X= |0 -1 1 8= |6
Q132 0 0 1 84
Q333 |0 1 1 L
| 9332+K | K 1

13



—31 -1 '—1 0 ¢ & s 0 ]
[ D] A
[ 0 [Jx16)]2
€= €331 V= (l/N)A . - .
! { €332 . [Jo(l6) ]—2 .
E333 Ad . »
. 0 . e [og(16) 72
€3324K | - N

2
For these specifications of the linear model, unbiased estimators of 8 and ¢
are given by [8, page 207]:

|
|

= XV
(5.0.2)

Lot T e
= _

Variances and covariances of the 9's can be estimated by substituting the
estimator of 62 in

cov[ 8] = o?(x v 1x)~! (5.0.3)

The quantities listed above are those needed for point estimation and
confidence intervals involving 6 and o2,

5.1 VOR Bearing Angle Estimator

According to the reparameterization of the original nonlinear model, the
relevant phase angle for VOR applications is 81 + The estimator of 9; can be
obtained by algebraic expansion of the matrix equation in (5.0.2), and its
corresponding variance is the first element of the square matrix in (5.0.3).
The estimator of VOR bearing angle and its estimated wvariance are

K
61 = Q1 - Ck L 3 35716 [Q33245 = Q332-3] (5.1.1)
3=
var[8;] = (1/0M)(1+cg) 52
where
R
g = 2] 325706 ]!
51
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Note that the variance of the bearing angle estimator depends on the selected
number of phase values through Cg. Because the Bessel function J;(16)
approacheé zero as j increases, 1t is clear that Cg, and hence Var{8;],
approaches a lower bound as K increases. In practice, computational speed

and/or memory constraints may require that only a few phase observations be

used to estimate 0y «

sufficient to minimize Cg »

Values of C4 listed in Table 2 suggest that K=10 is

Table 2. Bessel Functions and Weights_

323 52(16)

2
J3j Qe) 3

0 0.0305896861 0.,0000000000 -

1 0.0081716494 0.0081716494 61.2080
2 0.0346699637 0.1386798547 3.4032
3 0.0019226029 0.0173034257 3.0448
4 0.0410635904 0.6570174461 »5872
5 0.,0033031768 0.0825794204 .5360
6 0.0277958044 1.0006489577 . 2800
7 0.0333112958 1.6322534965 <1264
8 0.0000492964 0.0031549718 . 1264
9 0.0359235032 2.9098037600 .0752
10 0.0425207884 4.2520788410 » 0240
11 0.0046542621 0.5631657107 .0240
12 0.0126338128 1.8192690450 . 0240
13 0.0560848988 9.4783478893 «0240
14 0.0742215568 14.5474251288 « 0240
15 0.0575717228 12.9536376362 .0240
16 0.0314896359 3.0613467818 . 0240
17 0.0132170213 3.8197191653 .0240
18 0.0044686657 1.4478476965 . 0240
19 0.0012561973 0.4534872292 .0240
20 0.0003002854 0.1201141759 .0240
21 0.0000620785 0.0273766197 .0240
22 0.0000112467 0.0054433896 . 0240
23 0.00000180438 0.0009547344 .0240
24 0,0000002588 0.0001490789 . 0240

However, the apparent gain from using using only a few phase variates is

balanced by a corresponding loss in precision for estimating 0?2 .

According

to the specifications for equipment designed to provide the sample values fronm
a VOR signal, it is likely that K=10 will provide adequate precision for

estimating &; .

The procedure described above can be used to achieve acceptable precision
bounds using only a few lines in the phase spectrum of the observed VOR
signals An alternative wethod, which may require fewer observations, is to
obtain an estimate of 8; from a few phase variables not adjacent to Q332 » To
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illustrate this approach, values of szj2(16) that appear im Cy are listed in
Table 2. The maximum value of this quantity occurs if j=14, corresponding to
phase observations at k=318 and k= 346. Clearly, to minimize the variance of
an estimator of ©; based on nonadJacent Qr's, one should add observations in
order of decreasing values on j 27.2(16). Thus, phase variate pairs would be
included in the order j=14,15,13,16, etc., corresponding to k=(318,346),
(317,347),(319,345),(316,348), etc. It is easy to show that the multiplier
analogous to Cg is already near the lower bound of Table 2 after onl% four
phase pairs are included to estimate 6; . Hence, if estimation of 0 is not
severely affected, a significant saving in computational requirements is
achieved using phase variables nonadjacent to Q337 . Assuming that N is
moderately large, the gain is especially desirable if Discrete Fourier
Transforms are used to obtain the Q.

5.2 Discussion

It can be argued that a transformation of the nonlinear model to linear
form ig unnecessary hecause suitable nonlinear least squares methods can be
applied directly to the sample data., These methods are iterative and require
initial estimates of the unknown phase angles, However, for VOR applicatioms,
software for estimating unknown angles will be implemented on desktop
computers, wlhiich will also serve as controllers in VOR calibration systems.

In this case, the phase spectrum transformation and subsequent estimation of
phase angles using the linear models approach is computationally efficient and
is to be preferred if there are no serious deficiencies in the technique.

From a mathematical standpoint, estimation of 0 using the phase spectrum
transformation depends on two related assumptions. First, it was implicitly
assumed that formulas for the mean and variance of phase random variables
approximate the true meam and variance to the extent that departures from the
correct values are negligible. A second assumption, which requires further
study, concerns the adjustment of computed values of the Arctan function.
Recall that Qp=Qp*+Y, 27, where Qu* is an observable random varlable in the
interval (=w,7m]. In the derivation of the éstimators of 8 and 02, it was
assumed that the integers {Yk} can be determined from the data. If the Y 's
are hot known, then 8 and 6% in (5.0.2) are not estimators because they -are
not observable.

A computer simulation of the VOR signal with independent Gaussian errors
was uged to determine if the assumptions described above severely limit
applicability of the phase spectrum transformation. Results of this
investigation indicate that linearity of the mean and the ability to adjust
the Arctan function depend, primarily, on variability 1n measurement errors.
The technique was applied comsistently for values of 02 less than .UOl. For
somewhat greater values of o2, straightforward determination of the Y's is
usually successful, and indications are that the method can be refined,
perhaps by developing a search technique for the Y's. Analyses were conducted
with N=1024 time samples,

It should be emphasized that values of 02 used in computer simulations
are believed to be representative of expected variability of measurement
ertors for a VOR audiofrequency genmerator currently being constructed.
Computations based on simulated data were used to affirm the mathematical
results of previous sections and are not reported here.
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To conclude this section we remark that hardware specifications for VOR
generators and the method for sampling the continuous time signal will togeth-
er determine the accuracy and reliability of specified values for frequency,
amplitude, offset, and wodulation index. Because ptoPerties of measurement
errors, such as stability and independence, can be affected by hardware and
software specifications, examination of estimated residuals for the time
samples can be useful to validate assumptions about sampling errors.

Estimated residuals for the VOR model are given by

€y =Yj-yy(8) , =l N

Plots of residuals and/or tests for serial correlation can be expected to
reveal inconsistent or unusual properties of a particular VOR measurement
system. Detection of a problem may require redesign of the system or a
modification of the estimation method developed in this report.

6, ROBUSTNESS OF ASSUMPTIONS

In this section, two generalizations of the VOR model are examined to
understand the consequences if values of some parameters assumed to be known
are in error. To facilitate the discussion, we state a modification of the
VOR model which is sufficient for the generalizations comsidered in this
section:

Y(t)

i

vit:8) + s(t;8) + e(t)
where

v(t;0) = o cos[2ﬂ30t + 8 + QZ]
-and

s(t;8) = ay cos[279960t + 16sin{2730t + 051] .

Recall that for VOR applications we assumed that a1=a2=21/2 .

6.1 Signal Offset

Let Y(t) denote a signal with al=az=21/2 « Suppose that instead of Y(t)
we observe Y(t)+u where p#*0s The Fourler transform of the observed process
is:

1/60
60 [ [¥(t) + wlexp[i2m30kt] dt
-1/60

{ Sg + 30u y k=0
Sk , k#0

>

where Sy is the transform of Y(t). Therefore, signal offset does not affect
the previous results because Sg yags not used to estimate 6.
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6.2 Signal Amplitude

In subsection 3.1 we obtained the Fourier coefficients of a signal more
general than the VOR requires. The derivation of essential results that
followed in no way depended on the particular values of the amplitude
parameters &} and oo, If y(t;8)=v(t;08)+s(t;8) denotes a VOR signal with @
and oy unspecified, and sy=apt+iby, denotes the corresponding transform of
y(t;8), then it 1s easily shown that

ay cos[ﬁl + 92] , k=1
ap = {
@) Jy-332(16) cos[03+(k-332) 8, ], k>2
and
-a; sinf8; + @;] y k=1
by 5{
-~y Ji-332(16)sin[83+(k-332) 8, ], k>2

Clearly, phase computations using tan(qg)=-by/ay, which are fundamental to the
estimation method, are invariant with respect to particular values of o] and
az, even if aj#o .
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APPENDIX

The appendix presents the derivation of Fourier coefficlents in equation
(3.1.1), and obtains the distribution of phase variables when errors in the
VOR model are Gaussian.

A.l Derivation of Fourier Coefficients

In this section we determine the Fourier coefficients for the function

y(t;8) = n+ v(t;8) + s(t;8) (A.l.1)
where

v(t;8) = o) cos[27fjt + 8] + 8 |

and
s(£38) = a cos[Zﬂmfl + 83 + 8 sinf[27f; + 62]]

The following results and trigonometric identities are needed in the
derivation:

1/2f (172 ,  3=k#0
| cos(2mfjt)cos(2nfke)de = { (A.1.2)
~1/2f o . 3k
1/2¢
/| cos(2mfjt)sin(27fkt)dt = 0, all j,k (A.1.3)
-1/2f
cos(at+B) = cos @ cos B - sin a sin B {(A.1.4)
cos & cos B = (1/2) [cos(a~8) + cos(a+B) ] (A.1.5)
T
fcos(nt - z sin t)dt = nJ,(z) . (A.1.6)
0

The Fourier coefficlents of y(tig) dre obtalned from the complex Integral
l/2f1

ap + ib = 2f; [ y(r;8expliznf ke Jde
-1/2£
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where ap and by can be represented by

ap = ap(u) + ap(v) + ap(s)
k=0,%1,%2,2°~,

b (1) + b (v) + by(s)

it

by

The components of ay and by represent Fourier coefficients of respective terms
in (A.l.1). Since M 1s a constant, it 1s clear that

{ 21, k=0
0, k¥

0 , allk

ak(U)

and

bk(U)

Following is a derivation of ap(v) and ap(s). The corresponding Fourier sine
transforms, by{v) and b (s), are easily deduced from these results.

For non-negative integer values of k, we have

1/2f1
a(v) =2£; [ o cos[2mfyt + 6] + By Jcos(2mf kt)dt
-1/2£;
l/2f1
= 2fjay cos(8; + 67) f cos{27f t)cos(2mf kt)dt
-1/2£4
l/2f1
- 2fjoysin(8) + 89) f sin(27f t) cos(27f kt)dt
-1/2fy

{ oy cos(el + 92) 3y k=1
0 » k#l

where we have used (A.l.2) to (A.l.4). Similarly,

-0y sin( 31 + 92) . k=1
b(v) = {

0 ;  k#l

The Fourier coefficients ayp(s) are given by
1/2£y

a(s) = 2f; [ o cos[Zﬂmflt + 83 + B sin[27f;t + 05] Jcos(2mE kt)dt.
-1/2f)
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Substituting u=27ft+8;, so de=(27f;)™1, we get

™
ay [ coslmu = my + B3 + B sin ulcos(ku = kf3) du,
-7

ap(s) = 771

where the limits =m+8;€ufm8; can be replaced by =w<usm because the
integrand has period 2%. Furthermore, using the identity (A.l1.5), we obtain

L}
ag(s) = (2ﬂ)‘1a2 [ cos[(m=k)u = (m=k)®5 + 63 + B sin u]du
-

il
+ [ cos[(mHk)u = (mtk)8y + B3 + B sin u)du,
-7

and using (A.l.4) we get

_ ™
ag(s) - (21\‘)'1qz cos[e3 - (‘m-k)ez] [ coe [.(m—’k)u + B pin u]du
-

)
- sin[6‘3 - (m—k»)ﬂﬂzj f sin[(m——k)u + B sin u]du
—~1r

T
+ cos[63 - (m+k)92} [ cosl(mtk)u + B sin uldu
=7

m
- sin[83 - (m+)0y ] [ sin[(mk)u + B sin uldu.
-

The second and fourth integrals are zero because the integrands are odd
functions with period 27, Since the first and third integrands are even
functions, it follows from (A.1l.6) that

ar(s) = a9{Ip (BIcos[B3~(m-k) By ] + Iy (B)cos[85-(mtk) 9y ]} .
Similarly,
be(s) = =ag{J 1 (B)sin[83~(m-k)0,] - Jm+k(8)sin[e3—(m+k)62}} .
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We have proved that the Fourier coefficients of y(t;9) are

(" u

ap =< o] cos[0) + 871 + @y ay(s) , k=1

a9y ap(s) , k»2
and
0 , k=0
b =< ~-o1 sin[8) + 8] ~ ay by (s) , k=l
‘I:az bk(S) , k?2

where ap(s) and by(s) are defined above.

A.2 Distribution of Phase Random Variables

A justification for using approximate formulas for the mean and variance
of phase random variables is the complexity of the exact distribution of the
Qk*'s even when crrors arc agcumed to be Cauesian. For completeness, the
distribution of Arctan[-By/A,] is derived in this section. The subscript is
dropped in the derivatiom.

If errors are Gaussian, then A and B are independent Gaussian random
variables and

E{Al=a; E[B]=b; aZ+bZ=rZ;
Var[Al=Var[B]=(2/N)cZ,

Particular valuce of a and b are given by (4.1.1). The joint dietribution of
A and B is

£a, (0, v)=(8/4102)exp {~(N/40%) [(u-a) 2+ (v-b) 2 }}, —e=cu,vie

Let X=A and Y=Arctan[-B/Al. Then because u=x and v=-x tan y, the Jacobian of
the transformation is J=|x|sec?y, and the joint distribution of X and Y is
given by

£(x,y)=(N/40%) Ix]sec?y exp {~(W/402)[(x~a)?+{x tan y+b) 2]}, ~edm<m, ~n/2<y<n/2.,
Expanding the exXponent and completing the square, we obtain
17 i
(Nseczy/4ﬂ02) 2exp{(N/lwz){(a*b tan y)zcoszy—rzl}

1./Z.e}:p{(—l\l/lwz)sc-:-czy.[x--(a‘—b tan y)coszy]z}

£(x,y)

*1x] (Nsec?y/4m0?)

K(y)*1x] ¢[x:(a~b tan y)cosly,(2/N)c2cos?y]

where ¢{z:£,72] denotes the probability density function of a Gaussian
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distribution with mean £ and variance 12. Integration of £(x,y) over x to

obtain the distribution of Y shows that f(y)-K(y)Eglxi] where X is Gaussian
with mean (a-b tan y)cos?y and variance (2/N)a?%cos?y.

2

If Z is .a Gaussian random variable with mean &€ and varlance T4, then

0 -
E{lz]] = - fz¢[z:E,12)dz + [26[z: &, 12]dz
0

- 00

®©

-E + 2[z¢lz: £, T%)dz.
0

Integration by parts gives
E(]2]] = & (1-26(-£/T:8,721) + 2t/ 1) " Pexp [-£2/272].

w
where ®(w:£,12)=[¢[z:£,7%]dz. It follows that the distribution of

-0

Y=Arctan{- B/A] is given by £(y)=K(y)E[!2]] with E=(a—b tan y)cos? y and
T2‘(2/N)02cos ¥+ Substition of these values above gives the following
distribution for a phase random wvariable:

£(y) = exp(-Nr2/402) {11+ (Ncos2y/4102) (a-b tan v)
°(1—¢[—(NcOszy/202)1/2(a~b tan y):E,Tz]J
'exp[(Ncoszylhoz)(a—b tan~y)2]}, -n/2{y<n/2,

2

where & and T are defined above.
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