



### **Cybersecurity in K-12 Formal Education**

Jan Cuny and Jim Hamos, National Science Foundation

# **NICE Strategic Plan: Formal Education (Goal 2)**

Broaden the pool of skilled workers capable of supporting a cyber-secure nation.

- 2.1 Early focus on STEM curriculum
- 2.2 High school focus shift to CS courses



### **NICE Strategic Plan: Early STEM focus**

**Objective 2.1:** Improve K-12 STEM education emphasizing the important role of mathematics and computational thinking.

#### **Outcomes:**

 Within the next decade, U.S. students will move from the middle to the top of the pack in international assessments. (President Obama's Goal)



## **NICE Strategic Plan: Early STEM focus**

### **Strategies**

- Align Federal K-12 STEM education efforts
- Align formal Federal cybersecurity education budgets with the NICE strategic plan
- Assist private entities who produce CS and cybersecurity instructional materials, tools, and resources for K-12 STEM instruction
- Help the cybersecurity workforce to partner with local schools, thus providing content expertise to teachers and role models to students.



### **NICE Strategic Plan: Objective 2.1**

### **Strategies (cont.)**

- Assist corporations and foundations with
  - Organizing around formal computer science education efforts at the state level,
  - Educating their employees/partners about the needs for better education in general and computer science education in particular, and
  - Becoming better at making evidence-based contributions to STEM education reform.



10/10/2011

## **NICE Strategic Plan: CS in HS**

Objective 2.2: Increase the quantity and quality of academic computer science courses in high schools.

#### **Outcomes:**

- By 2018, 50% of high schools nationwide will offer rigorous academic computer science courses taught by well-prepared teachers.
- By 2018, there will be an increase in the number of students pursuing majors in computing at the postsecondary level.
- By 2018, 25% of the states will adopt national cybersecurity education standards for K-12.



10/10/2011

### **NICE Strategic Plan: CS in HS**

### **Strategies**

- Provide access to curriculum, materials and assessments for HS computing courses, across a variety of "delivery trajectories" (e.g. 4th year mathematics courses, CTE, and the proposed, new AP course, CS Principles)
- Partner federal agencies with corporations and foundations to prepare and support high school computer science teachers for rigorous courses such as the proposed, APCS Principles course



# **Computing in the Core?**

### Outline

- Status
- Using the Math Model
- The CS 10K Project



10/10/2011

The percentage of U.S. students taking STEM courses has increased over the last 20 years for all STEM disciplines *except* computer science, where participation dropped from 25% to 19%.

—2009 NAEP High School Transcript Study





# **HS Participation in AP STEM Disciplines**

The Future Workforce -- The High School Pipeline:

AP Mathematics and Science Exams 1997-2010





# **Challenges**

- Low student interest
- Dismal engagement of minorities,
   women & persons with disabilities





### 2010 AP Gender Gap







## **Challenges**

- Low student interest
- Dismal engagement of minorities,
   women & persons with disabilities
- Negligible presence in K-12
  - Lack of an educational research base
  - Academic computing not available in most high schools



# **Computing in the Core?**

### Outline

- Status
- Using the Math Model
- The CS 10K Project



### Computing & Computer Science in the K-12 Curriculum

- Although computer science is an established discipline at the undergraduate and graduate levels, it has not had a natural home in the already crowded K-12 curriculum
- Notions of core K-12 curriculum
  - for science, driven by biology, chemistry and physics
  - for mathematics, driven by algebra and calculus



# **Education Research in STEM Disciplines** The basis for making educational commitments

- Mathematics long-standing, but much argued
- The Sciences fractured across disciplines, with various strengths
- Engineering rapidly moving forward and finding a home
- Computer Science almost non-existent



# The (abridged) Story of Mathematics in K-12 Education

A core K-12 subject for two centuries, but still evolving



### **Mathematics Education**

# A core discipline in U.S. school mathematics since late 1700s

- Ben Franklin: arithmetic, geometry, astronomy, classics, accounts, gardening, good breeding
- Mathematics "to enhance mental discipline"
- Committee of Ten (1893): justification "for mental discipline, life, and college entrance"

(Kliebard & Franklin, 2003)



# Research About Mathematics Teaching and Learning for a Century

~1900: Grew out of psychology, first mathematics education research dissertations at Teachers College, Columbia University

1967: National conference on needed research in mathematics education (University of Georgia)

- Patrick Suppes: suggested serious work on building theories of mathematics learning
- Tom Romberg and M. Vere DeVault: research needed on mathematics curriculum
- Bob Davis: grades 1-9 curriculum on discovery approach

1970: Journal for Research in Mathematics Education



# Where does this research happen?

73 Ph.D. programs in mathematics education across the U.S.\*

- 18 in Departments of Mathematics
- 50 in Schools and Colleges of Education
- 5 Cross-listed

\*http://sigmaa.maa.org/rume/phd.html



### **Debates Within Mathematics Education**

Late 1990s - present: "Math Wars"



**2008:** National Mathematics Advisory Panel

(National Mathematics Advisory Panel Final

Report: Foundations for Success)

#### **2009:** Common Core State Standards in Mathematics

(state-led effort coordinated by the National Governors Association Center for Best Practices and the Council of Chief State School Officers





ASSUMPTION: The computing, computer science and cybersecurity community is committed to seeing serious attention to their field in the K-12 curriculum.



Draw on influential reports

Build a case through research Shape policy

STRATEGIC OPTIONS

Reach teachers directly Form alliances

Create curriculum & assessments

# **Introducing Students to Computing, Computer Science and Cybersecurity**

- Fully developing cybersecurity education standards for K-12 and getting them adopted by states will be a long, if not impossible, haul
- Rather, at the start, support a meaningful Computer Science course for high school students and embed principles of cybersecurity concerns in as many other K-12 courses as possible



WWW.CSRC.NIST.GOV/NICE/

# **Introducing Students to Computing, Computer Science and Cybersecurity**

### Highlight...

- Issues of safety in the cyber world
- Awareness of the field of cybersecurity
- Careers in cybersecurity, including interactions with individuals in the field
- Computational thinking as an important 21<sup>st</sup> Century skill for all students
  - Need clarity regarding components of computational thinking and how these grow over time for students
  - Need teacher workforce with necessary knowledge & skills



WWW.CSRC.NIST.GOV/NICE/

# **Computing in the Core?**

### Outline

- Status
- Using the Math Model
- The CS 10K Project





### **CS 10K Project**

Develop an effective new high school computing curricula and get courses based on that curricula taught in 10,000 schools by 10,000 well-prepared teachers by 2015.

All new CS AP course, CS Principles



## Why AP?

- Often the only CS course that carries college prep credit
- Attractive to students & schools
- 2,000 CB-audited teachers
- Single point of national leverage
- Fidelity of replication



# **CS** Principles



- Engaging, accessible, inspiring, rigorous
- Focused on the fundamental concepts of computing (CT)







### **Timeline**

```
2009-2010
```

✓ Big Ideas, CT Practices, Claims/Evidence

2010-11

- ✓Pilot I: Five colleges
- ✓ College Survey
- √College attestation/support
- √Test item prototypes

2011-12

Pilot II: 9+ colleges, 10+ high schools



## **Exploring Computer Science**

- LAUSD, Jane Margolis
- Piloted ECS 08/09
- ~20 LAUSD schools 10/11
- Spreading in CA, CALCSEPOL
- Complete, detailed curriculum

& lessons plans on CSTA site

- MOBILIZE: CENS participatory science cell phone apps
- "G" credit and CTE credit
- San Jose, Oakland adoptions
- Chicago Connection





# ECS & CS Principles Pilot Sites 2011-12



## **Beyond the AP Curriculum**

Additional course models

Standards & assessments

**CE21** 

Teacher preparation

X 10,000

Yikes!

Entrée into schools

Accomplishing this is beyond NSF's mission and resources



### What all do we need?

- Curricular materials
- CS Standards
- Teacher Certification
- Pre-service
  - Traditional
  - Alternative
- Online& Face-to-Face PD
- Coaching, Mentoring, Communities of Practice



### What else do we need?

- Engagement of Ed Schools, UTeach, TFA, MFA, etc.
- Engagement of Council of the Great City Schools, CCSSO, NSTA, NCTM, NASULGC, etc.
- Fundraising, fund raising
- Public/Private Partnership

Curricula and materials aligned with CSTA standards and CS Principles Framework





# Questions?

Jim Hamos, <u>jhamos@nsf.gov</u>
Jan Cuny, jcuny@nsf.gov

