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Chapter 1

Polarized Neutron
Reflectometry

1.1 Introduction

Advances in our understanding of the structure and properties of matter have
so often depended upon finding the right probe for studying a given problem.
This was appreciated long ago, at the beginning of the evolution of modern
science. In his masterpiece Faust, Johann Wolfgang von Goethe wrote about
the legend of Doctor Faust, who bargained his immortal soul to the Devil,
Mephistopheles, in exchange for unlimited knowledge. Early in the story,
Faust ponders the relationship between humankind and the universe (Part I,
Scene I):[1]

Mysterious even in open day,
Nature retains her veil, despite our clamors:
That which she doth not willingly display
Cannot be wrenched from her with levers, screws, and hammers.

Fortunately, for anyone in the 21st century interested in the structure of
condensed matter on the atomic and nanometer length scales, the consider-
able efforts of our predecessors have led to the development of a remarkable
collection of sophisticated and exquisitely sensitive probes (far surpassing the
capabilities of levers, screws, and hammers). These newfound tools are so
powerful, in fact, that making a pact with Mephistopheles may no longer be
necessary!
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Figure 1.1: Schematic illustration of the structural information which can be
deduced from a polarized neutron reflectivity measurement, performed under
specular conditions, on a typical model magnetic film. The film is flat and
composed of alternating layers of ferromagnetic (the magnetization direction
in a given layer is indicated by an arrow) and nonmagnetic material. The
reflected intensity, measured as a function of the glancing angle of incidence
θ or wavevector transfer Q, can be analysed to obtain the in-plane average
of the chemical composition and vector magnetization as a function of depth
along the surface normal, with subnanometer resolution under certain con-
ditions, as is described in detail in the text. Reflectivities for a polarized
incident beam can be differentiated according to whether the spin state of
the neutron changes (“flips”) upon reflection from a magnetic film. In this
particular example, the relative orientations of incident neutron polarization
P̂I and layer magnetizations M⃗ are such that the non-spin-flip reflectivity
contains information only about the chemical compositional depth profile
whereas the spin-flip reflectivity reveals the vector magnetization depth pro-
file.
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Polarized neutron reflectometry (pnr) is one such probe that is partic-
ularly well suited for determining the nanostructures of magnetic thin films
and multilayers. Different types of magnetometers ordinarily yield only aver-
age magnetization values, integrated over the entire volume of the specimen,
whereas other probes which do possess a higher degree of spatial resolution,
such as scanning electron microscopy with polarization analysis (sempa) [2],
are specifically surface sensitive because their relatively strong interaction
with matter limits penetration. Together with magnetic x-ray scattering,
pnr provides a unique means of “seeing” the vector magnetization with ex-
traordinary spatial detail well beneath the surface. For neutrons this sensi-
tivity to atomic magnetic moments comes about because the neutron itself
possesses a magnetic moment and neutrons can be obtained with a wave-
length comparable to interatomic distances. More specifically, the specular
reflection of polarized neutrons, namely, coherent elastic scattering for which
the angles of incidence and reflection of the neutron wavevector relative to a
flat surface are of equal magnitude, can be analysed to yield the in-plane av-
erage of the vector magnetization depth profile along the surface normal. By
measuring the reflectivity (the ratio of reflected to incident intensities) over
a sufficiently broad range of wavevector transfer Q⃗, subnanometer spatial
resolution can be achieved. The specular geometry is depicted schematically
in Figure 1.1. Furthermore, by tilting Q⃗ away from the surface normal, the
resulting projection of Q⃗ parallel to the surface of the film allows in-plane
fluctuations of the magnetization, which give rise to nonspecular scattering,
to be sensed. Unlike optical or electron microscopy, neutron and x-ray reflec-
tometry do not directly provide real-space images of the objects of interest.
Because neutron and x-ray wavelengths are of the order of the dimensions of
the objects being viewed, the information about shape and composition that
is contained in the reflected radiation pattern, including the vector magneti-
zation depth profile, must be extracted by mathematical analysis.

Given the ability to obtain the vector magnetization profile by pnr, a mul-
tilayered structure composed of ferromagnetic films separated by intervening
layers of another material can be systematically studied to reveal various fun-
damental magnetic behaviors. For instance, the strength and range of the
interlayer magnetic interaction between ferromagnetic layers can be exam-
ined as a function of layer thickness, crystallographic orientation, the strain
associated with lattice mismatch (in single-crystalline films), the electronic
states (e.g., super-, normal-, semi-conducting or insulating) and magnetic
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configurations (co- and noncollinear) of the intervening layers, and on chem-
ical interdiffusion (e.g., of hydrogen). Investigations of magnetic domain size
and orientation and the effects of finite layer thickness can also be performed
by measuring both specular and nonspecular spin-dependent scattering.

A broad range of related problems of fundamental scientific and techno-
logical interest involving magnetic thin films can be addressed using pnr,
especially when employed in conjunction with other techniques such as mag-
netic x-ray reflectometry and complementary real-space probes. Nonetheless,
the realization of this research potential depends to a certain extent on the
capability of growing nanostructures with atomic scale precision by a variety
of thin-film vapor deposition techniques, e.g., molecular beam epitaxy.

It is not the purpose of this chapter to review the multitude of magnetic
thin film systems which have been studied with pnr. There exists a substan-
tial literature on this subject, including a number of review articles [3, 4].
The primary goal here, rather, is to describe the fundamental concepts of
the theory and experimental methodology of pnr. As it turns out, a signif-
icant fraction of the description of the basic reflection process for polarized
neutrons can be applied to magnetic x-ray reflection and to more general
reflectometry studies involving nonmagnetic materials.

1.2 Fundamental Theory of Neutron Reflec-

tivity

For our purposes, we can (fortunately) ignore the intricate internal workings
of the quarks comprising a neutron having an energy in the millielectron volt
range and concentrate on only a few resultant properties that are relevant to
its interaction with condensed matter. As it happens, we can accurately rep-
resent the neutron, according to quantum mechanics, in the simplest of terms
as a plane wave of wavevector k⃗ propagating undistorted through free space,
as represented in Figure 1.2. Because we are concerned with elastic scatter-
ing processes in which the neutron in interacting with matter or magnetic
field neither gains nor loses energy (i.e., the total energy of the neutron is
conserved), the neutron wave function and corresponding time-independent
Schrödinger wave equation of motion do not exhibit any explicit dependence
on time. (This does not imply, however, that the neutron has zero velocity.)
We will defer discussion of the neutron spin and magnetic interactions until
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Figure 1.2: Idealized representation of a neutron as a plane wave propagating
in space (the planar wavefronts of constant phase are assumed to extend
laterally to infinity).
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Section 1.3. General discussions of the specular reflection of waves in one
dimension can be found in such texts as Merzbacher [5] and Born and Wolf
[6]. Early discussions of specular reflection specific to neutrons can be found
in a number of works including those of Yamada et al. [7] and Croce and
Pardo [8].

1.2.1 Wave Equation in Three Dimensions

The mathematical representation of a neutron plane wave in three dimensions
is given by

Ψ
(

k⃗, r⃗
)

= eik⃗·r⃗ (1.1)

where the neutron wavevector k⃗ = kxx̂ + kyŷ + kzẑ and its position in space
r⃗ = xx̂ + yŷ + zẑ. The square of the modulus of the neutron wavefunc-
tion, |Ψ|2 = Ψ∗Ψ, is interpreted as the probability that a given neutron
can be found at a specific location in space with a particular momentum
mv = h/λ = !k (where m is the neutron mass, v its velocity, λ its wave-
length, h is Planck’s constant, and ! = h/ (2π)). The description of the
neutron as a single plane wave implies that it extends infinitely in all direc-
tions. A more realistic representation would be a wavepacket consisting of
a coherent superposition of plane waves, having a distribution of different
wavevectors, which results in a localization in space consistent with a corre-
sponding uncertainty in momentum—an inescapable quantum phenomenon
(see, for example, the text by Merzbacher [5]). Nonetheless, in regard to
the wave equation of interest, for the problem at hand (Equation 1.2 below),
it turns out that the single, plane-wave representation of the neutron is re-
markably accurate in practice. Thus, unless necessary to do otherwise, we
will treat the neutron so.

Now the neutron interacts with matter primarily through a nuclear poten-
tial and a magnetic potential which affect the magnitude of k⃗. The strengths
of these potentials are effectively characterized by scalar “coherent” scatter-
ing lengths, although for the magnetic coupling a scattering-angle-dependent
“form factor” is also necessary at sufficiently high wavevector transfers (due
to the relatively extended spatial distribution of unpaired electron spin den-
sity which gives rise to the magnetic potential). We will ignore absorptive
as well as incoherent interactions for the time being and also make the as-
sumption throughout that any nuclear spins in the materials considered are
completely disordered (see, e.g., the book by Bacon [9] for a discussion). To
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properly account for the neutron magnetic moment and its interaction with
a magnetic potential requires that the neutron be represented by a more
complicated wave function consisting of two components, each of which has
the form of a plane wave. Discussion of the magnetic interaction will be
postponed until Section 1.3.

At present there exist no coherent neutron sources analogous to a photon
laser: the neutrons in a beam can be taken to be independent of and effec-
tively noninteracting with one another. Therefore, we can avoid the concept
of beams altogether in describing the reflection process and focus on one neu-
tron at a time, as represented by a plane wave, and compute probabilities
that a neutron is, say, reflected or transmitted by a particular film structure.

Since we are concerned here with structural (instead of vibrational) in-
formation, we can limit our considerations to elastic scattering processes,
as mentioned earlier. Thus, a time-independent Schrödinger wave equation
predicts the evolution of a single neutron plane wave in its interaction with
material:

[

−
!2

2m
∇2 + V (r⃗)

]

Ψ = EΨ (1.2)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.3)

and where the first term of the Hamiltonian operator in the brackets on
the left-hand side of Equation 1.2 represents the kinetic energy while the
second term accounts for the potential energy V of the neutron. Outside of a
material medium, the potential energy is zero. On the right-hand side (rhs)
of the equation, E expresses the total energy of the neutron, which is taken to
be conserved for the static nonabsorbing potentials which we are considering
here. (A description of the quantum mechanics pertinent to the neutron
reflection process can be found, for example, in the text by Merzbacher [5].)
Now in vacuum, V (r⃗) = 0 so that the total energy E of the neutron is equal
to the kinetic energy alone. Consequently,

E0 = 1
2mv2

0 =
!2k2

0

2m
(1.4)

where the subscript “0” signifies the value for free space. For now we will
assume that matter can be described as a continuous distribution without
an atomic scale granularity. That this is in fact a valid assumption can be
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demonstrated by calculation for model film structures using the reflectivity
formula to be derived below. Within a continuous medium of density N
(number of scattering centers, e.g., atoms, per unit volume), the potential
energy is given by [10, 11]

V =
2π!2

m
Nb =

2π!2

m
ρ (1.5)

where it is assumed that the material consists of only a single isotope of a
given element possessing a coherent scattering length b and ρ is defined as the
scattering length density (sld). If absorption were present, then the scat-
tering length would include an imaginary component, but, as stated above,
such a possibility will be ignored for the discussion here since it only compli-
cates the derivations without adding any essential insight in most cases; for
neutron reflection, absorption is rarely an appreciable effect. For multicom-
ponent materials the sld can be generalized to

ρ =
M

∑

j=1

Njbj (1.6)

where M is the number of distinct types of isotopes present.
Now because the total energy of the neutron is conserved in an elastic

process, we can equate the kinetic energy of the neutron in vacuum with the
constant total energy E within any material medium. Then, substituting the
rhs’s of Equations 1.4 and 1.5 into Equation 1.2 and simplifying, we obtain
the three-dimensional wave equation

[

∇2 + k2
0 − 4πρ

]

Ψ = 0. (1.7)

1.2.2 Refractive Index

We can impose conservation of energy once again to define a neutron refrac-
tive index analogous to that employed in ordinary light optics. In vacuum,
E is given by Equation 1.4, whereas within a medium

E =
!2k2

2m
+

2π!2

m
ρ. (1.8)

Equating the rhs’s of Equations 1.4 and 1.8 we get a relationship between
the neutron wavevector k inside and k0 outside of the medium of scattering
length density ρ:

k2 = k2
0 − 4πρ. (1.9)
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Figure 1.3: Diagram of the specular reflection of a plane wave from a ho-
mogeneous flat slab of thickness L (and of infinite lateral extent in the xy
plane).

The refractive index n is defined as the ratio k/k0 so that

n(k0) =
√

1 − 4πρ/k2
0 (1.10)

and k = nk0. Thus, we can write Equation 1.7 alternatively as
[

∇2 + k2
]

Ψ = 0. (1.11)

1.2.3 Specular Reflection from a Perfectly Flat Slab:

The Wave Equation in One Dimension

Consider next the reflection of a neutron plane wave from an idealized slab
of material of thickness L and infinite lateral extent in the plane of the
film, as depicted in Figure 1.3. This slab is perfectly flat, smooth, and
homogeneous. In Figure 1.3, the reflection of the wave is depicted to be
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specular in nature, i.e., as mentioned earlier, the angles of incidence and
reflection are equal in magnitude. It will be shown in the following discussion
that this specular condition is indeed the only possibility for reflection if there
are no material density fluctuations along x or y in plane and the density is
a function of z alone, along the surface normal: i.e., ρ(x, y, z) = ρ(z). (Here,

since
∣

∣

∣⃗
ki

∣

∣

∣
=

∣

∣

∣
k⃗f

∣

∣

∣
, Q⃗ = k⃗f − k⃗i implies that

∣

∣

∣
Q⃗

∣

∣

∣
= 2k0 sin(θ). We will have to

solve the general equation of motion 1.11 for a nonuniform sld, specifically
for a region of space where abrupt changes in the potential occur along z.

To determine the physical constraints on the mathematical solution, let
us first assume that we are in another region of space where the sld has a
uniform but nonzero value everywhere. In this particular case the solution
to Equation 1.11 has the particularly simple form of a plane wave

Ψ(r⃗) = Ψ(x, y, z) = ψ(x)ψ(x)ψ(z)

∥ ∥ (1.12)

eik⃗·r⃗ = ei(kxx+kyy+kzz) = eikxxeikyyeikzz

which, when substituted into Equation 1.11 yields an identity which can be
recast, using the expanded form of Equation 1.9, as

k2
x + k2

y + k2
z + 4πρ = k2

0x + k2
0y + k2

0z. (1.13)

Now let us return to the case in which the sld is zero everywhere except for a
slab of thickness L perpendicular to the z axis wherein ρ = ρ(z) only so that
dρ/dx and dρ/dy, which are proportional to the gradients of the potential
in the respective directions (see Equation 1.5), are zero. Thus, no force can
be exerted on the neutron along the x or y directions and the momentum
and corresponding wavevector components along x and y must be conserved
as “constants of the motion”; i.e., kx = k0x and ky = k0y. Consequently,
k2

z = k2
0z −4πρ. Therefore, for a slab of material that is of uniform density in

plane, the reflection must be specular in nature—a result which is, in fact,
valid for any distribution of sld that is a function only of z across a slab of
finite thickness. The wave equation describing the motion of the neutron in
the reflection process then reduces to one dimension, as can be verified by
substituting the wave function

Ψ(r⃗) = eik0xxeik0yyψ(z) (1.14)
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Figure 1.4: Pictorial representation of specular reflectivity from a homoge-
neous slab as a one-dimensional problem.

into Equation 1.11 which then produces
[

∂2

∂z2
+ k2

0z − 4πρ(z)

]

ψ(z) = 0. (1.15)

When ρ(z) is constant everywhere, Equation 1.15 has the simple one-dimen-
sional plane wave solution ψ(z) = e±ikzz. From Equation 1.10, a special
refractive index nz = nz(k0z) can now be defined which is associated with kz

along the z axis:

kz = nzk0z = k0z

√

1 − 4πρ(z)/k2
0z . (1.16)

Having reduced specular reflection to a one-dimensional problem, we can
now proceed to find a solution for reflection from the uniform slab of finite
thickness. Look at Figure 1.4 where the slab of Figure 1.3 is shown schemat-
ically in cross section, with a thickness L and with a constant sld ρ. We can
partition space into three distinct regions: Region I extending from z = −∞
to the boundary of the potential at z = 0; Region II from z = 0 to z = L
in which the sld is ρ; and Region III from z = L to z = ∞. (Note that in
following a commonly adopted convention of having the wave incident from
left to right, the +z axis has been extended into Region III of the transmitted
wave, opposite to that which was adopted in Figure 1.3; we will follow the
new convention for the present discussion only.)

The wave function ψI in Region I can be written as the sum of an incident
plane wave of unit amplitude propagating to the right and a reflected wave
of amplitude r moving back to the left:

ψI = 1e+ikIz + re−ikIz (1.17)
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where kI denotes the wavevector in Region I as given by Equation 1.16. Note,
however, that we have dropped the subscript z from here on for simplicity!
In Region II, ψII is given by

ψII = ce+ikIIz + de−ikIIz (1.18)

where c and d are the undetermined amplitudes of the waves moving to the
right and left within the slab medium, respectively, both having wavevector
kII along z. The value of kII is given by Equation 1.16 with nonzero ρ(z).
Finally, in Region III there exists only a solitary transmitted plane wave
propagating to the right with amplitude t and wavevector kIII (again, entirely
along z with the z subscript omitted):

ψIII = te+ikIIIz. (1.19)

Recall that the square of the modulus of the wave function represents the
probability of finding the neutron somewhere in space. Thus, in order to
conserve the number of neutrons, the probability density current must be
conserved, which, in turn, requires that the wave function be continuous
across any boundary, such as occurs at z = 0 and z = L in Figure 1.4.
(For a general discussion of probability density currents, see, for example,
the quantum mechanics text by Merzbacher [5].) In addition, conservation
of momentum requires that the first derivative of the wave function also
be continuous at a boundary between regions of differing sld. These two
boundary conditions lead to four relations among r, t, c, and d. That is,
upon setting ψI = ψII and dψI/dz = dψII/dz at z = 0 as well as ψII = ψIII

and dψII/dz = dψIII/dz at z = L, we obtain

1 + r = c + d (1.20)

(kI/kII) (1 − r) = c − d (1.21)

ce+ikIIL + de−ikIIL = te+ikIIIL (1.22)

ce+ikIIL − de−ikIIL = (kIII/kII) te+ikIIIL. (1.23)

We can solve for c and d in terms of (1+ r) and (1− r) using Equations 1.20
and 1.21 and then substitute the resulting expressions into Equations 1.22
and 1.23, thereby eliminating the explicit appearance of c and d. The term
containing t can be isolated to one side of each of the two equations. If the
quantities (1 + r) and (1− r) are then factored out on the other side of each
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Figure 1.5: Reflectivity vs. Q for: a) a semi-infinite substrate of single-
crystalline Si; and b) a uniform 500 Å thick (nonmagnetic) film of Ni on
a semi-infinte Si substrate. Note the flat region of total or mirror reflection
below a critical value of Q. The oscillations of the reflectivity in b) are called
Kiessig fringes and result from the self-interference of the neutron wave as it
is simultaneously reflected from the front and back of the Ni film.

equation, the resultant expressions can be rearranged in matrix form as
(

t
ikIIIt

)

e+ikIIIL =

(

cos (kIIL) sin (kIIL) /kII

−kII sin (kIIL) cos (kIIL)

) (

1 + r
ikI(1 − r)

)

(1.24)
where the z components of the neutron wavevectors in the three different re-
gions of space are given by Equation 1.16 (remember that the z subscripts on
the k’s have been dropped). Equation 1.24 represents a pair of simultaneous
equations from which both the reflection and transmission amplitudes r and
t can be solved for in terms of the thickness and sld of the material slab and
its surrounding media (which may be vacuum, in which case nz = 1). The
matrix of sine and cosine functions which contain the information about the
scattering properties of the slab is referred to as the transfer matrix.

In Figure 1.5 is shown the reflectivity |r|2 vs. the wavevector transfer
Q for two sld profiles, one simply for a substrate with a perfectly smooth
surface boundary and the other for the same semi-infinite substrate but with

15



Figure 1.6: Arbitrary sld profile divided into N bins of thickness dL. The
sld is taken to be constant across the width of each bin. The larger the num-
ber of bins, the smaller the bin width and the more accurate the rectangular
representation becomes.

a single homogeneous layer deposited on its surface. The oscillations of the
reflectivity curve corresponding to the layer of finite thickness are known as
Kiessig fringes and result from wave interference between the front and back
film interfaces. Note the flat region of total or mirror reflection between
the origin and a certain critical value of the wavevector transfer designated
Qc. Qc can be determined for any substrate sld ρ from Equation 1.16 by
computing the value of k0z(Q = 2k0z) for which the argument of the square
root vanishes (i.e., k2

0z = 4πρ(z)).

1.2.4 Specular Reflection from a Film with a Nonuni-

form SLD Profile

The preceding treatment for a single slab of material of uniform sld can be
extended to any arbitrary profile by dividing the slab into N bins of width
dL along z as shown in Figure 1.6. The sld is taken to be constant across
the width of any given bin so that the continuity conditions on the wave
function and its derivative at each boundary between adjacent bins can be
applied successively. That is, follow the same procedure used in arriving
at Equation 1.24, except that the wave function within bin j + 1, written
in general terms simply as ψ(j + 1), is set equal to that of the jth bin at
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the boundary between the two bins (at z = j dL): similarly, ψ(j − 1) =
ψ(j) at z = (j − 1) dL. Doing likewise for the wave function derivatives
leads to a relationship similar to Equation 1.24, but between any pair of
wavefunctions (and corresponding derivatives) across an intervening bin of
width dL. With this relation, the wavefunction can be stepped across the
entire film width from the front to back interface, thereby connecting r and t
as in Equation 1.24. In fact, the resultant solution for the general piecewise
continuous sld profile yields an expression identical to Equation 1.24 except
that the following product form of the transfer matrix, representing the entire
film thickness, replaces that for the single slab:

(

A B
C D

)

= MNMN−1 · · ·Mj · · ·M2M1 (1.25)

where the matrix Mj corresponds to the jth bin of the film and has the
explicit form of the transfer matrix appearing in Equation 1.24 for a single
slab. Note the order of the matrix multiplication: M1 corresponds to the
bin or layer in contact with the region of space containing the incident and
reflected waves whereas MN is next to the space in which the transmitted
wave is found. Thus, the general solution for the reflection amplitude r is
obtained by substituting the composite transfer matrix of Equation 1.25 for
the single slab matrix in Equation 1.24. This exact or so-called “dynamical”
expression for the specular reflection amplitude has proven to be remarkably
accurate in a wide range of practical applications in the study of thin films.
Equation 1.24 is readily solved numerically and is computationally stable for
the relatively large numbers of bins into which a film may be divided.

What ultimately determines the number of bins into which a film of a
given total thickness should be divided is the range of wavevector transfer Q
over which reflectivity data can be measured. The general rule of thumb is
that a bin width dL, which is a measure of spatial resolution in the sld depth
profile, is commensurate with a maximum wavevector transfer Q = π/dL
(this is a known property associated with Fourier transforms of real-valued
functions; see, for example, Reference [12] for a discussion in the specific
context of neutron reflectometry).

It was stated at the beginning of Section 1.2.1 that it is the square of
the modulus of the neutron wavefunction which corresponds to the prob-
ability of finding a neutron at a given location in space with a particular
momentum: |ψ|2 represents a measurable quantity. Thus, it is |r|2 which
can be directly measured as an intensity in a neutron detector. Although it
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is straightforward to obtain a prediction of |r|2 from a value of r calculated
using Equation 1.24, solving the inverse problem of extracting the sld profile
from measured |r|2 via Equation 1.24 is another matter altogether. The con-
ventional approach is to employ a nonlinear least-squares numerical analysis
to fit calculated values of the reflectivity based on model or trial sld profiles,
using Equation 1.24, to measured reflectivity data. Even when satisfactory
fits are obtained, the uniqueness of the solution is not guaranteed. Recent
development of reference layer techniques do, however, make it possible to
determine the reflection amplitude exactly, from which a direct unambiguous
inversion can be performed to extract the sld profile directly (for a review
of these methods see, for example, Reference [12]).

Nonetheless, insofar as typical studies of magnetic films and multilayers
are concerned, the chemical structure and composition are often known to a
sufficient degree or can be determined independently from a combination of
nonpolarized neutron and x-ray reflectivity measurements. Such knowledge
can then in certain cases compensate for part of the explicit phase information
lost in having only |r|2 instead of r when determining vector magnetization
profiles.

1.2.5 Born Approximation

The exact one-dimensional solution for the specular reflectivity which was de-
rived above is valid at all wavevector transfers Q. However, at large enough
values of Q, especially towards values corresponding to diffraction peaks aris-
ing from atomic interplanar spacings in crystalline materials, the incident
neutron wavefunction is not significantly distorted from its free-space form
in its interaction with the scattering medium. In this limit, an approximation,
attributed to Born, and also referred to as the “kinematic” approximation,
can be made in which the form of the wavefunction within the scattering
medium is replaced by that in vacuum. The Born approximation turns out
to be applicable even in certain circumstances in reflectometry at lower val-
ues of Q, including the analysis of scattering from periodic superlattices. In
other instances, it is valuable for qualitatively explaining more complicated
scattering phenomena and concepts. Although we will not make extensive
use of the Born approximation, it is particularly helpful when describing
nonspecular reflection in the next section.

Perhaps the most straightforward way to illustrate the Born approxi-
mation is to begin with the integral form of the expression for the one-
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dimensional reflection amplitude r. An alternative expression for the specular
reflection amplitude to that which we derived from a solution of a differen-
tial wave equation in previous sections is (see, for example, the derivation in
Reference [13]):

r(Q) =
4π

iQ

∫ +∞

−∞

ψ(Q, z)ρ(z)e−ik0zzdz (1.26)

where Q = 2k0z for specular scattering from a flat slab of infinite lateral
extent. ψ(Q, z) represents the neutron wave function within the scattering
medium, which exists, say, between z = 0 and z = L. The useful repre-
sentation of r given by Equation 1.26 will be generalized for magnetic films
and polarized beams in Section 1.4.1. To make the Born approximation, we
simply replace ψ in Equation 1.26 with exp(−ik0zz). Then,

rBA(Q) =
4π

iQ

∫ +∞

−∞

ρ(z)e−iQzdz (1.27)

so that the sld ρ(z) and rBA(Q) are related to one another by a Fourier
transform.

The three-dimensional analog of Equation 1.27 for the slab geometry is
[14]:

rBA(Q⃗) =
4π

iQzS

∫ ∫ ∫ +∞

−∞

ρ(r⃗)e−iQ⃗·r⃗d3r (1.28)

where S is a surface area in the plane of the slab (ideally approaching infinity).

1.2.6 Nonspecular Reflection

Looking back at Figure 1.3, we can imagine tilting Q⃗ away from the slab nor-
mal, which implies that the angles of incidence and reflection are no longer
equal, so that a component of the wavevector transfer lies in plane. Thus,
if any density variations exist along the in-plane directions, i.e., in the xy
plane, then reflected intensity will be observed at directions of Q⃗ other than
normal to the surface as described, in the Born approximation, by Equa-
tion 1.28. Although the description of nonspecular scattering is relatively
straightforward in those cases in which the Born approximation is valid, the
complications which arise when it is not can be formidable. More rigorous
treatments of nonspecular scattering are a subject of considerable ongoing re-
search (see, for example, References [15, 16]) and are beyond the scope of this
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chapter. The emphasis here is on specular reflection for two reasons. First,
and perhaps foremost, a thorough understanding of the theory and meth-
ods of specular reflectometry is not only an end in itself, but also provides
a necessary conceptual foundation for further investigation of nonspecular
scattering. Second, to date, reflectometry studies of magnetic films and mul-
tilayers have predominantly involved specular measurements, concentrating
on properties related to the in-plane average vector magnetization depth pro-
file and related interlayer coupling. Thus, much has been and can continue
to be learned from the specular reflectometry work alone. Nonetheless, it is
important to realize the potential usefulness of nonspecular reflectivity mea-
surements in the investigation of magnetic phenomena, for example, that
relate to in-plane domain structure in layered media. The reader is encour-
aged to learn more about nonspecular reflectivity from the references cited
above, as well as more recent literature.

Before continuing, however, it is worthwhile to discuss both what dis-
tinguishes specular and nonspecular components of the reflectivity on one
hand, as well as what connects them on the other. Because what we are
about to demonstrate holds true in both the exact theory and Born approx-
imations, we will adopt the latter description for its relative transparency.
Equation 1.28, which expresses the reflection amplitude in three dimensions
for a sample with the characteristic slab shape, can be rewritten, for the
specular condition where Qx = Qy = 0, in an equivalent form in which the
in-plane and out-of-plane components are explicitly separated:

rBA(Qx = 0, Qy = 0, Qz) =
4π

iQz

∫ +∞

−∞

e−iQz

[

1

S

∫ ∫ +∞

−∞

ρ(x, y, z)dx dy

]

dz.

(1.29)
The term in square brackets in the integrand of Equation 1.29 is simply the
in-plane average of the three-dimensional scattering length density where S
is the in-plane area which approaches infinity as the limits of integration on
x and y do. This can be defined as ρ̄(z):

ρ̄(z) ≡
1

S

∫ ∫ +∞

−∞

ρ(x, y, z)dx dy. (1.30)

Thus ρ̄(z) always gives rise to specular scattering for Q perpendicular to
the surface, i.e., along the z direction. The shape of the nonspecular reflec-
tivity curve along a direction parallel to the surface is determined by the
spatial distribution of the compositional inhomogeneity in the plane of the
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film. Although the specular reflectivity can reveal the presence of nonsharp
boundaries between layers of different sld in the depth profile, only the non-
specular reflectivity manifests the nature of that gradation, i.e., whether the
variation in sld is due, for example, to interdiffusion of two or more iso-
topes on an atomic scale or, alternatively, to the presence of much larger
contiguous regions of the different constituents in plane (e.g., islands of one
material in a sea of the other). The former possibility would give rise to
a relatively broader distribution of scattering along an in-plane nonspecular
direction than would the latter.

1.3 Spin-Dependent Neutron Wave Function

Up to this point we have deliberately ignored the magnetic moment of the
neutron in order to simplify the presentation of those aspects of the reflection
process which are common to both nuclear and magnetic interactions of the
neutron with condensed matter. We will now examine the interaction be-
tween the magnetic moment of the neutron and the atomic moments which
are present in magnetic films.

1.3.1 Neutron Magnetic Moment and Spin Angular

Momentum

The magnetic moment of the neutron is associated with an intrinsic “spin”
angular momentum which is quantized such that the neutron can occupy
only one of two discrete energy states within a given magnetic field. The
energies E corresponding to these states are found to be

E±,magnetic = ∓µ
∣

∣

∣
B⃗

∣

∣

∣
(1.31)

where µ is the magnitude of the neutron magnetic moment (µ = −1.913 nu-
clear magnetons or −1.913×5.051×10−27 Joule/Tesla) and B is the magnetic
induction (which can be treated classically for our purposes: see, for exam-
ple, the discussion by Mezei [17] of the implications of a magnetic interaction
which is proportional to the magnetic induction B as opposed to the field
intensity H). The corresponding spin angular momentum S of the neutron
is S = ±!/2, where ! is Planck’s constant divided by 2π (hence the classifi-
cation of a neutron as a Fermion or “spin half” particle). A consequence of
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the quantum nature of the neutron spin and moment is that the two allowed,
discrete values of either the spin or moment can be projected only along the
direction of a magnetic field, which defines an axis of quantization (and which
can have any continuous direction in real space). A theoretical description
which properly accounts for the observation that along a continuously vari-
able direction in space only a discrete pair of values of the magnetic moment
can occur, can be formulated using the mathematical construct known as a
spinor. The spinor represents the contribution of the property of spin to a
complete wavefunction describing the overall state of the neutron. A spinor is
a two-component column (or row) matrix which can act on and be acted upon
by other matrices describing certain physical operations such as rotations in
space. The matrix formalism is a powerful symbolic means of representing
the simultaneous equations which are necessary to mathematically account
for the observed quantum behavior of the spin. The discussion of spin which
immediately follows is based on well-known principles of quantum mechanics;
more complete accounts can be found in any of a number of texts (see, for
example, Merzbacher [5], for an exceptionally clear and thorough explanation
of spin).

1.3.2 Explicit Form of the Spin-Dependent Neutron

Wave Function

The wave function describing a general state of the neutron can be written
as:

Ψ(r⃗,S) = C+

(

1

0

)

Ψ+(r⃗) + C−

(

0

1

)

Ψ−(r⃗) (1.32)

where |C+|2 = C∗
+C+ and |C−|2 = C∗

−C− are the probabilities of finding the
neutron in the “+” or spin “up” and “−” or spin “down” states, respectively
(in general, C+ and C− are complex numbers satisfying |C+|2 + |C−|2 = 1).
Note, however, that the spatial component wave functions, Ψ+ and Ψ−, are
different from one another in the presence of a magnetic field. Because of
the magnetic energy (Equation 1.31), the refractive index for neutrons in a
magnetic field is two-valued, i.e., the refractive index given by Equation 1.10
for a purely nuclear medium, must now be generalized to include a magnetic
contribution:

n± =
√

1 − 4π(ρN ± ρM)/k2
0 ⇒ nz± =

√

1 − 4π(ρN ± ρM)/k2
0z (1.33)
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where the magnetic scattering length density ρM is given by

ρM = ∓
m

2π!2
µB (1.34)

and where the “+” and “−” subscripts denote the neutron spin state and
“N” and “M” refer to the nuclear and magnetic components of the sld,
respectively (see also Equation 1.5). Therefore, in a magnetic medium, k± =
n±k0 so that

Ψ± = e+ik⃗±·r⃗ = e+in±k⃗0·r⃗. (1.35)

As we shall soon see, however, the vectorial nature of the magnetic field and
the spinor character of the neutron spin wave function, in combination, give
rise to a far more complicated (but, on the other hand, more interesting)
interaction than what the birefringent property of the refractive index alone
might at first suggest.

It can be shown (see, for instance, Merzbacher [5]) that the magnetic
moment and intrinsic spin angular momentum of the neutron can be cor-
rectly represented by the operators indicated in Equations 1.36 and 1.37,
respectively:

µ̌ = −µσ̌ (1.36)

Š =
!

2
σ̌ (1.37)

where ˇ indicates a matrix operator. The operator σ̌ consists of three 2 × 2
component matrices, each of which is directed along one of the three orthog-
onal spatial axes:

σ̌ = σ̌xx̂ + σ̌y ŷ + σ̌z ẑ (1.38)

=

(

0 1
1 0

)

x̂ +

(

0 −i
i 0

)

ŷ +

(

1 0
0 −1

)

ẑ

where the z axis has been specifically chosen to correspond to the direction of
any magnetic field which might exist at the position in space where the neu-
tron is found. (The component operators of Equation 1.38 are known as the
Pauli matrices, in honor of their inventor. It would be difficult to overstate
the fundamental importance of his conceptual achievement in constructing
a mathematical framework to describe the inherently quantum phenomenon
of spin with quantitative accuracy. A detailed exposition of this theory is
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given in the chapters on spin in the text by Merzbacher [5] and is highly
recommended.)

The magnetic field direction, here explicitly taken to lie along z, thus
plays a special role as the adopted axis of quantization. Any procedure which
results in a determination of the neutron spin state in effect projects the full
magnitude of the neutron moment along the magnetic field axis, pointing
either up or down (+ or −).

Now the spin dependence of the neutron wave function can be specified
by a column vector χ normalized such that:

χ∗Tχ = χ†χ = (C∗
+ C∗

−)

(

C+

C−

)

= |C+|2 + |C−|2 = 1 (1.39)

where ∗ denotes complex conjugation and T signifies taking the transpose
(column to row). A direction in space can always be found for which the
neutron has unit probability of residing in a pure + or − state. Consequently,
any interaction, whether with an individual atom or macroscopic magnetic
field region, which affects the spin state of the neutron can be represented by
an appropriately constructed rotation operator ǓR acting through a certain
angle ϵ about a particular axis η̂[5]:

ǓR(ϵ, n̂) = Ǐ cos(ϵ/2) − in̂ · σ̌ sin(ϵ/2) = e−i(ϵ/2)n̂·σ̌ (1.40)

where Ǐ is the identity matrix.
One of the underlying principles of quantum theory is that every physi-

cally measurable quantity corresponds to the expectation (or average) value
of a corresponding operator. For any operator Ǎ which affects only the spin
component of the single neutron wave function directly,

〈

Ǎ
〉

≡ χ†Ǎχ =
(

C∗
+ C∗

−

)

(

A11 A12

A21 A22

) (

C+

C−

)

. (1.41)

1.3.3 Polarization

A quantity of great conceptual value is the polarization P̂ , a unit vector
which, as will be seen below, can be imagined to point along the axis of the
neutron’s spin or magnetic moment (parallel or antiparallel, respectively).
There exists, in fact, a formal isomorphism between the two-state quantum
system describing the neutron spin in an abstract space and the description
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of a classical moment in real space, as characterized by an analogous polar-
ization vector [18]. It can be shown that the ordinary, three-dimensional,
real space polarization vector P̂ has components given by the expectation
values of the Pauli matrices appearing in Equation 1.38:

P̂ = Pxx̂ + Pyŷ + Pzẑ;

Px = ⟨σ̌x⟩ = 2Re(C∗
+C−);

Py = ⟨σ̌y⟩ = 2Im(C∗
+C−); and (1.42)

Pz = ⟨σ̌z⟩ = |C+|2 − |C−|2 .

Thus the rectangular components of the polarization vector are proportional
to the corresponding expectation values of the components of the moment
operator µ̌. Note, in particular, that Pz is the relative probability of finding
the neutron in one of the two basis states (along the quantization axis defined
by the magnetic field, which was stipulated to lie along the z direction).

Another quantity which can be of particular use in dealing with statistical
ensembles of systems (where each identical system represents an individual
neutron) is the density matrix ρ̌. It is formed by the tensor product χχ† (not
to be confused with the inner product χ†χ of Equation 1.39) and contains all
of the information which it is possible to know, in principle, about the spin
state of an individual neutron:

χχ† =

(

C+

C−

)

(

C∗
+ C∗

−

)

=

(

C+C∗
+ C+C∗

−

C−C∗
+ C−C∗

−

)

≡ ρ̌. (1.43)

Using the density matrix operator, Equation 1.41 can be rewritten as

〈

Ǎ
〉

≡ trace

((

C+C∗
+ C+C∗

−

C−C∗
+ C−C∗

−

) (

A11 A12

A21 A22

))

= trace
(

ρ̌Ǎ
)

. (1.44)

With some further manipulation involving Equations 1.38 and 1.42, ρ̌ can
also be expressed in terms of σ̌ and the polarization vector P̂ :

ρ̌ =
1

2

(

Ǐ + P̂ · σ̌
)

. (1.45)

One other parameterization of the polarization vector P̂ , by a pair of real
parameters θ and φ, can help to visualize certain phenomena. A general spin
state can be specified with C+ = cos(θ/2) and C− = exp(iφ) sin(θ/2), since
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Figure 1.7: Three-dimensional neutron polarization vector P̂ referred to rect-
angular coordinate axes.

|C+|2 + |C−|2 = 1 and the phase angle φ can still be chosen arbitrarily (see,
for example, Blum [19]). Equation 1.42 can then be rewritten as

Px = sin θ cos φ

Py = sin θ sin φ (1.46)

Pz = cos θ

where the real parameters θ and φ can be interpreted as the polar angles
of the polarization vector P̂ with θ the angle between P̂ and the z axis as
shown in Figure 1.7. Note that it is easy to show that P 2 = P 2

x +P 2
y +P 2

z = 1
using Equation 1.46. Table 1.1 compares the values of C+ and C− for several
corresponding values of Px, Py, and Pz.

Before moving on to a derivation of the complete set of equations of mo-
tion which govern spin-dependent neutron reflection from magnetic materials,
we can use what we have learned thus far about reflection from nonmagnetic
media and the spin-dependent neutron wave function to examine several im-
portant consequences of the spin on the observable behavior of the neutron.

1.3.4 Selecting a Neutron Polarization State

Recall our discussion at the end of Section 1.2.3 regarding mirror reflection
below a critical value Qc, as obtained for a semi-infinite substrate of nuclear
sld ρ and illustrated in Figure 1.5. Suppose now that the substrate is com-
posed of a ferromagnetic material with a magnetization that is saturated in
the plane of the film along the direction of a relatively small applied magnetic
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Px Py Pz θ φ C+ C−

0 0 1 0 0 1 0
0 0 −1 π 0 0 1
1 0 0 π/2 0 1/

√
2 1/

√
2

0 1 0 π/2 π/2 1/
√

2 i/
√

2
C+ = cos(θ/2); C− = sin(θ/2) [cosφ+ i sinφ]

Table 1.1: Parameters describing a selection of different neutron polariza-
tions.

Figure 1.8: Neutron reflectivity for a saturated ferromagnetic Fe mirror. Two
critical scattering vectors are observed, one corresponding to the sum of nu-
clear and magnetic slds, the other to their difference (the lower value). The
magnetic guide field, which defines an axis of quantization for the neutron,
is applied in the plane of the mirror surface, perpendicular to the wavevec-
tor transfer; the magnetization of the Fe is assumed to lie along the applied
magnetic field (the magnitude of the guide field is taken to be negligible
in comparison to the magnetization of the Fe). In this configuration, the
reflectivity is non-spin-flip.
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Figure 1.9: Rotation of the neutron polarization vector P̂ by 90◦, as discussed
in the text.

field in the space surrounding this substrate. We saw that in the presence
of a magnetic field the neutron refractive index becomes double-valued, as
given by Equation 1.33. This immediately implies the occurrence of two crit-
ical Q values (or angles), one corresponding to (ρN + ρM), and the other to
(ρN − ρM). This birefringent property can be used to obtain a neutron with
almost unit probability of being polarized in one of its basis states if ρM is
sufficiently large and the neutron is reflected at a Q between the critical val-
ues: reflected neutrons will be in one spin state and transmitted neutrons in
the other. (Better yet, if ρN ≤ ρM, then only one spin state is mirror-reflected
between Q = 0 and Q = Qc). A practical case is shown for an Fe substrate
in Figure 1.8. This interference between nuclear and magnetic slds is the
basis of neutron polarizing devices made of mirrors or thin-film multilayers,
as well as single crystals [20, 21]. Polarization efficiencies approaching unity
can be achieved in practice using such reflection devices.

1.3.5 Changing a Neutron’s Polarization

In the previous section we showed how to take a neutron in any unknown
polarization state and, by reflection from a saturated ferromagnetic film, pre-
pare it to be in an essentially pure spin + or “up” state, along the direction
coincident with that of the applied magnetic field, often referred to as the
“guide” field which defines the axis of quantization z along the neutron beam
from one region of space to another. Later, in Section 1.4.1, we will explicitly
label the states corresponding to “up” and “down” along the guide field with
the symbols ↑ and ↓, respectively. How can we effect a change from this
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initial pure spin state, P̂I = Pzẑ = +1ẑ, to one in which the final neutron
polarization points in another direction, say P̂F = Py ŷ = +1ŷ, as schemati-
cally represented in Figure 1.9? Mathematically, the rotation operator ǓR,
defined in Equation 1.40, can be used to identify rotations in space that
would accomplish this transformation. Examination of Figure 1.9 suggests
the obvious possibility of a −90◦ rotation about x (i.e., 90◦ cw; the adopted
right-hand-rule convention implies that ccw is positive). In this particular
case Equation 1.40 gives

ǓR(ϵ = −π/2, n̂ = x̂) = (1.47)
(

1 0
0 1

)

cos(−π/4) − i

(

0 1
1 0

)

sin(−π/4) =
1√
2

(

1 i
i 1

)

.

Then

χF = ǓRχI = ǓR

(

C+I

C−I

)

= ǓR

(

1

0

)

(1.48)

=
1√
2

(

1 i
i 1

) (

1
0

)

=

(

1/
√

2
i/
√

2

)

=

(

C+F

C−F

)

where Equation 1.42 immediately identifies χI as corresponding to P̂I =
+Pzẑ = +1ẑ and χF to P̂F = +Pyŷ = +1ŷ.

Precession

How can the rotation of the neutron polarization described mathematically
in the preceding discussion be realized physically? The answer is by em-
ploying magnetic fields which vary in magnitude and direction over different
regions of space along the neutron’s trajectory (time-varying fields are also
employed in practice, but to understand their use requires an equation of
motion that is explicitly time-dependent; a complication that we have cho-
sen to avoid since it is not necessary for describing the elastic scattering
processes that we are primarily interested in here). Consider then a neutron
plane wave propagating, say, along the y axis in the positive direction, where
the magnetic guide field BGF points along +z in a Region I (where y < 0),
along −x in Region II (where 0 < y < L), and back up again parallel to
+z in Region III (where y > L), all of which is indicated in Figure 1.10.
Thus, the magnetic guide field changes direction abruptly at y = 0 and at
y = L. (For the present discussion, it is assumed that the magnetic field

29



P P y yˆ = ˆ = +1ˆF y

B B z~

GF GF= ˆ B B z~

GF GF= ˆ
B

B x
~GF

GF= –
ˆ

y = 0 y L=

x z'ˆ = –ˆ

y y'ˆ = ˆ

z x'ˆ = ˆ

P Pz zˆ = ˆ = +1ˆI z

Region I Region II Region III

Figure 1.10: Process for rotating the polarization by 90◦. A neutron in the
+ spin eigenstate in Region I has a polarization vector P̂ = Pz ẑ where the
quantization axis, defined by a magnetic guide field BGF, is directed along
+z. As the neutron propagates along y, it crosses from Region I to Region II
at y = 0 where the magnetic guide field abruptly changes direction by 90◦.
This so-called “sudden” transition results in the neutron polarization being
initially orthogonal to the new guide field direction in Region II. As the
neutron traverses Region II its polarization precesses about the magnetic
field direction. If the distance L and the magnitude of the constant field
are properly selected, then the neutron polarization will be rotated by 90◦

in its passage from y = 0 to y = L. The neutron then makes a sudden
transition from Region II to Region III at y = L, where the guide field in
Region III is oriented back along the same direction as in Region I. The
neutron polarization is initially along y in Region III and will again precess,
but now about the original z axis. Consult the corresponding text for further
discussion.
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strengths involved and the orientation of the neutron wavevector relative to
boundaries between adjacent field regions are such that no appreciable reflec-
tion occurs.) In quantum theory, the passage of the neutron wave function
across an infinitesimally thin boundary separating regions of space wherein
the magnetic field points in different directions induces a “sudden” transition
in its polarization state. A sudden transition means, for the conditions de-
picted in Figure 1.10, that if the neutron has a polarization P̂ = +Pzẑ = +1ẑ
in Region I, then just across the boundary with Region II at y = 0 it finds
itself still pointing along +z but now orthogonal to the new magnetic guide
field direction which is parallel to −x. (See a text on quantum mechanics,
e.g., Reference [22], for further discussion of the circumstances under which
it is justified to assume a “sudden” transition as opposed to one that is “adi-
abatic,” i.e., one for which the neutron spin and moment follow and stay
aligned with the changing magnetic field direction.) A change of neutron
polarization with respect to the magnetic field direction can be effected via
a sudden transition in the laboratory, for example, by passage of a neutron
beam through a thin current sheet [20]. From the neutron’s perspective, this
is equivalent to an abrupt change in the applied field.

Now once inside Region II, we need to consider what happens to the
neutron wave function as a consequence of the change in direction of the
magnetic field. It is essential to realize that within this region, a new quan-
tization direction is established by the physical presence of a magnetic field
pointing along the −x axis. The convention which has been adopted is to
designate the field direction as the z axis; thus, we call it z′ in Region II so as
to distinguish it from the former z axis. By maintaining y = y′, the former
z axis becomes x′. These labeling changes are also indicated in Figure 1.10.

The wavefunction describing the neutron in Region II is obtained from
Equations 1.32 and 1.35 (note that here k0 = k0y):

ψ(y) = C+

(

1

0

)

+ C−

(

0

1

)

= C+0e
+in+k0y

(

1

0

)

+ C−0e
+in−k0y

(

0

1

)

(1.49)

where the refractive indices are different in the presence of the magnetic field
and are given by Equation 1.33 with ρN, in this instance, equal to zero; ρM

is obtained from Equation 1.34. At y = 0, P̂ = +Px′x̂′ = +1x̂′ so that
C+0 = 1/

√
2 and C−0 = 1/

√
2.
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From Equation 1.49 we then obtain

C+ = C+(y) = C+0 [cos(n+k0y) + i sin(n+k0y)] (1.50)

=
1√
2

[cos(n+k0y) + i sin(n+k0y)]

with a similar expression for C−. Using Equations 1.42 then gives us the fol-
lowing expressions for how the polarization components evolve with position
in Region II (recall that the y axis has not changed, so that y′ = y):

Px′(y) = 2Re(C∗
+C−)

= cos(n+k0y) cos(n−k0y) + sin(n+k0y) sin(n−k0y)

= cos ((n− − n+) k0y) ; (1.51)

Py′(y) = sin ((n− − n+) k0y) ;

Pz′(y) = 0.

This rotation of the polarization components Px′ and Py′ in Region II is
known as precession. Note in particular that the z′ component remains un-
changed at zero value. The argument of the sine or cosine functions in the rhs

of Equation 1.51 is the precession angle ∆φ in radians: ∆φ = (n− − n+) k0y.
In the absence of a magnetic field (n− = n+), no precession occurs. Or, if
C+0 = 1 and C−0 = 0, which would have been the case had the magnetic
guide field remained along the original z axis, instead of being rotated by 90◦

through Region II, then Pz would have remained +1.
Neutron precession can also take place if nuclei with spin-dependent nu-

clear coherent scattering lengths (associated not with the atomic electron
moments of our primary interest, but rather with net nuclear magnetic mo-
ments), are aligned (see Reference [23]). Ferromagnetically ordered nuclear
magnetic moments also give rise to different + and − refractive indices.
Early discussions of precession, viewed in the way we have just described as
a “beating” phenomenon arising from the interference between the two spin
basis states of the neutron wave function, can be found in Reference [23] and
also in the text by Gurevitch and Tarasov [24].

Now the precession angle ∆φ(y) can be directly related to the magnitude
of B⃗ by

∆φ(y) = (n− − n+)k0y =

=
(

√

1 − 2mµB/(!k0)2 −
√

1 + 2mµB/(!k0)2
)

k0y, (1.52)

|∆φ(y)| ≃
(

2mµB/(!k0)
2
)

k0y =
(

2µB/(mv2
0

)

k0y
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where the approximate expression (obtained by expanding the square root
and keeping the first two terms) is good enough for many purposes involving
the design of instrumental devices for effecting rotations of the polarization.
(For Fe, B ≃ 2.2 Tesla or 22 000 Gauss with corresponding p = 0.6×10−12 cm

and ρM = 5.09 × 10−6 Å
−2

.) For instance, the π/2 rotation depicted in

Figure 1.10 could be accomplished for k0 = 2.67 Å
−1

(λ = 2.35 Å; speed
v = 1683. m/s) with B = 0.005 Tesla or 50 Gauss, and L = 0.577 cm. A
spin “flipping” device based upon this principle can be constructed from or-
dinary aluminum wire in the form of a rectangular solenoid and is commonly
employed in pnr [25, 26].

As mentioned earlier, the derivation of the precession angle above as-
sumed, implicitly, that there was no appreciable reflection of the neutron
wave at the boundary y = 0 where the magnetic field abruptly changed di-
rection and that the wave continued along +y. In Section 1.4, an equation
of motion will be derived which can account for such possibilities and which
is, in fact, general enough to treat almost all eventualities. We will explore
the polarization dependence of reflection from magnetic films and multilayers
there.

General Means of Rotating and Analyzing the Polarization

We have so far described two devices with which we can manipulate the
neutron polarization. First, a magnetized mirror can be employed to select
the component or projection of the polarization along the direction defined
by the applied magnetic field. Following convention, this quantization axis is
taken to coincide with z. Secondly, adjacent regions of space with effectively
infinitesimally thin boundaries can be established so that the direction and
magnitude of the magnetic field change abruptly; such constructions enable
controlled rotations of the polarization via precession. We have, therefore,
the means for not only creating a particular neutron polarization, but also
for analyzing any arbitrary polarization vector by appropriate combination
of rotations and reflections as will be illustrated next.

Consider the diagram in Figure 1.11 showing a particular initial polariza-
tion P̂I at the boundary between Region I and Region II at y = 0 where the
magnetic guide field is directed along z. If a mirror reflecting device, similar
to that shown in Figure 1.8, with an in-plane magnetization directed along z
was inserted at an appropriate angle θM (between the two critical angles θc−
and θc+) at y = 0 in the path of the neutron (propagating along +y), it would
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Figure 1.11: Magnetic guide field configuration along the neutron trajectory
(y axis) similar to that shown in Figure 1.10, but for a more general ini-
tial neutron polarization at y = 0. Note that as the neutron polarization
precesses through Region II, its projection along the field direction (z′ axis)
remains constant. The component along the y′ axis, however, is rotated to
point along the −x′ axis at y = L.

select out the Pz component of the neutron polarization. Since Pz represents
the probability of finding a single neutron in the + spin state, it would be
necessary to measure the basis spin states of an ensemble of neutrons, i.e., a
beam of neutrons with identical wavevector and polarization state, in order
to determine the value of Pz. For example, if Pz = 0.5, then for 100 neu-
trons incident on the mirror in this configuration, the most probable outcome
would be to detect 75 reflected neutrons, corresponding to the + spin state;
the remaining 25 neutrons, occupying the − spin state, would be transmitted
through the mirror. (Pz = |C+|2 − |C−|2 = (75/100)− (25/100) = 0.5).

For reasons to do with the spatial extent and angular divergences of the
beam encountered in practice, which typically can differ significantly in two
orthogonal directions, a magnetic mirror normally can be efficiently oriented
along only one particular direction. Thus, to find the Px and Py components
of the polarization, a controlled rotation of P̂ must first be induced.

In order to effect the rotation required, for example, to make the y compo-
nent in Region I point along −z in Region III at y = L, consider the rotation
of P̂I to P̂F in Figure 1.11. Using Equation 1.46 we can write the compo-
nents of the final polarization in the primed coordinate system in Region II,
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in which −x̂ → ẑ′, ŷ → ŷ′ and ẑ → x̂′ as

PFx′ = sin θ cos (φI + ∆φ)

PFy′ = sin θ sin (φI + ∆φ) (1.53)

PFz′ = cos θ

where the precession angle ∆φ is again given by Equation 1.52. Because θ
and the z′ (parallel to −x̂) components of P̂I and P̂F are constant along the
field (and rotation) axis, Equation 1.53 can be rewritten as

PFx′ = sin θ cos(φI) cos(∆φ) − sin θ sin(φI) sin(∆φ) (1.54)

= PIx′ cos(∆φ) − PIy′ sin(∆φ)

or, in matrix notation for all three components,
⎛

⎝

PFx′

PFy′

PFz′

⎞

⎠ =

⎛

⎝

cos(∆φ) − sin(∆φ) 0
sin(∆φ) cos(∆φ) 0

0 0 1

⎞

⎠

⎛

⎝

PIx′

PIy′

PIz′

⎞

⎠ . (1.55)

The equation above is a prescription of general applicability for rotating the
polarization in the geometry of Figure 1.11.

Thus, in practice, to determine the component PIy in Figure 1.11, we
would first establish an orthogonal magnetic field along the −x direction in
Region II and rename the −x axis z′. By choosing the proper magnitudes of
BGF and L for a given k0, the neutron would arrive in Region III at y = L
with the y component of its original polarization rotated by π/2, now lying
along the −z axis of the original coordinate system. In Region III the guide
field could be oriented along the original +z and a magnetized mirror placed
at L. The initial component PIy, rotated to PFz, would be analyzed (since
it was rotated to −P̂z = −1ẑ, it will be transmitted by the mirror). The x
component of the original P̂I at y = 0 could also be “projected out” along z,
but in practice two sequential rotations of π/2, one about the +z (or +x′)
axis followed by another about −x (or +z′) would be required. The pair
of rotations is necessary because of the practical requirement of abruptly
changing the magnetic field direction across an effectively infinite planar
boundary defined by the wire coils of a flat solenoid. (Again, any component
of B⃗ normal to the plane of the wire coils would have to be continuous across
the boundary between the interior and exterior of the solenoid whereas the
parallel component can change direction abruptly at this interface.)
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Let us summarize the principal results regarding polarization. It is pos-
sible to measure only whether a given neutron is in the + or − spin basis
state along a quantization direction established by a magnetic field, which,
by convention, is taken to lie along the z axis of the frame of reference. This
measurement can be performed in practice, for example, with a spin-state-
sensitive magnetic mirror. However, the corresponding z component of the
three-dimensional polarization vector P̂ can be deduced only by making a
sufficient number of measurements, to be statistically accurate to the desired
degree, on a collection or ensemble of identical neutron systems (i.e., neutrons
having the same wavevector and polarization). The x and y components of
the polarization can be determined similarly, but by first rotating the polar-
ization the requisite amount(s) about the appropriate field direction(s) and
then projecting out the desired component by reflection from a magnetic mir-
ror, as done for the z component. In the analysis of spin-dependent reflection
from magnetic films, discussed in the following section, performing rotations
of the polarization relative to different coordinate systems, associated with
instrument and sample, will be required.

1.4 Spin-Dependent Neutron Reflectivity

As discussed in Section 1.2, to correctly describe the motion of a neutron
through a region of space in which a nonmagnetic potential exists that is
strong enough to significantly distort the incident neutron wavefunction, an
exact solution of the Schrödinger wave equation is necessary. This so-called
dynamical theory can be augmented to include magnetic interactions if we
take into account the spin-dependent nature of the neutron wavefunction de-
scribed in Section 1.3. Measurements of the spin-dependent neutron specular
reflectivity can be analysed to obtain not only the chemical compositional
depth profile, but the in-plane vector magnetization depth profile as well. Al-
though there have been more recent treatments, the dynamical theory of po-
larized neutron diffraction from magnetic crystals was fully developed many
years earlier by Mendiratta and Blume [27], Sivardiere [28], and Belyakov
and Bokun [29], among others. Scharpf [30] extended the dynamical theory
to the continuum limit, where the scattering potential can be represented
by a sld, while Felcher et al. [31] and Majkrzak and Berk [32, 33] made
specific application of the dynamical theory to polarized neutron reflectiv-
ity measurements of magnetic films and multilayers. Here we will present

36



a derivation of the dynamical theory for the specular reflection of polarized
neutrons from magnetic materials in the continuum limit which parallels that
for the nonmagnetic case presented in Section 1.2. This theory is applica-
ble not only to pnr, but also to macroscopic devices such as resonance spin
flippers [34] and to transmission neutron depolarization studies [35].

1.4.1 Spin-Dependent Reflection from a Magnetic Film

in Vacuum Referred to Reference Frame of Film

We have seen in Section 1.3 that the neutron wavefunction must be described,
in general, as a linear superposition of two plane waves, one corresponding
to the + spin basis state and the other to the − state. Given the existence
of two different spin states, a general magnetic interaction potential must
account for two qualitatively different types of possible scattering processes:
one which results in a change in the initial spin state and another which
does not. Consequently, the description of specular reflection from a flat
magnetic thin film structure now requires a pair of second-order, coupled,
one-dimensional differential wave equations:

[

−
!2

2m

∂2

∂z2
+ V++(z) − E

]

ψ+(z) + V+−(z)ψ−(z) = 0 (1.56)

[

−
!2

2m

∂2

∂z2
+ V−−(z) − E

]

ψ−(z) + V−+(z)ψ+(z) = 0

where, as in the nonmagnetic case, the total energy E of the neutron is
conserved so that there is no explicit time dependence. In matrix notation
we can write Equation 1.56 as
[

−
!2

2m

∂2

∂z2

(

1 0
0 1

)

+

(

V++(z) V+−(z)
V−+(z) V−−(z)

)

− E

(

1 0
0 1

)](

ψ+

ψ−

)

= 0

(1.57)
where the net potential operator V̌ = V̌N + V̌M has a magnetic contribution
V̌M written in terms of the Pauli matrices of Equation 1.38 as

V̌M = µ̌ · B⃗ = −µσ̌ · B⃗ = −µ (σ̌xBx + σ̌yBy + σ̌zBz)

= −µ

[(

0 1
1 0

)

Bx +

(

0 −i
i 0

)

By +

(

1 0
0 −1

)

Bz

]

(1.58)

= −µ

(

Bz Bx − iBy

Bx + iBy Bz

)

.
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The coherent part of the nuclear potential operator V̌N, on the other hand,
is scalar in nature, assuming random orientations of any nuclear magnetic
moments, and can be written as

V̌N =
2π!2

m

(

Nb 0
0 Nb

)

=
2π!2

m

(

ρN 0
0 ρN

)

(1.59)

where we have made use of the definitions of sld ρ = Nb introduced earlier
in Equations 1.5 and 1.6. The matrix elements of the magnetic potential
operator of Equation 1.58 can also be described in terms of the products of
a component magnetic scattering length p(x, y, z) and number density N of
magnetic atoms:

V̌M =
2π!2

m

(

Npz Npx − iNpy

Npx + iNpy −Npz

)

(1.60)

where the magnitude of the magnetic scattering length p is associated with a
given atomic magnetic moment. The magnetic scattering length p arises from
the atom’s unpaired electrons which are distributed about a volume of space
orders of magnitude larger than that occupied by the nucleus. The volume
occupied by the nucleus is so small in comparison, that the nuclear scattering
length can, for almost all practical purposes, be considered to be constant,
independent of Q. Although such is not the case for p, at the relatively small
wavevector transfers typically of interest in specular pnr (Q values typically

less than 0.5 Å
−1

), p normally can be taken to be constant to a good enough
approximation. Earlier in Equation 1.34 we defined a magnetic scattering
length ρM. Here ρM = Np.

The total spin-dependent interaction potential operator for a magnetic
material, including both nuclear and magnetic contributions (where, for sim-
plicity, we assume a common density N of atomic scattering centers for both
nuclear and magnetic interactions), is then

V̌ =
2π!2

m

(

Nb + Npz Npx − iNpy

Npx + iNpy Nb − Npz

)

=
2π!2

m

(

ρ++ ρ+−

ρ−+ ρ−−

)

. (1.61)

Remember that we are considering specular reflection that is due only to
variations in the sld (nuclear and magnetic) along z, normal to the surface.
Although this is a one-dimensional problem in this regard, the magnetization
of the sample is a three-dimensional quantity and, as will become evident in
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the following discussion, the direction of the magnetization in the sample has
a significant effect on the reflectivity.

It is also important to remain cognizant of our conventional choice of the
z direction as the quantization axis for the neutron spin, as realized by the
particular form of the spin operator in Equation 1.38, and the fact that this
direction coincides with the outward normal to the surface and Q.

Setting E = !2k2
0/(2m), the coupled equations of motion 1.56 can be

rewritten in a form analogous to Equation 1.15 for the nonmagnetic case:

[

∂2

∂z2
+

Q2

4
− 4πρ++(z)

]

ψ+(z) − 4πρ+−(z)ψ−(z) = 0 (1.62)

[

∂2

∂z2
+

Q2

4
− 4πρ−−(z)

]

ψ−(z) − 4πρ−+(z)ψ+(z) = 0

where we have substituted Q = 2k0z.

The Wronskian Formula for Magnetic Films

In a later section we will deal with solving the coupled differential equations
in Equation 1.62 and computing the reflectivity. First, however, we derive
a general relationship between these solutions and the complex reflection
amplitudes, which extends Equation 1.26 to the magnetic case and has several
useful consequences. Some readers may wish to skip ahead and return to this
material later.

We begin by reviewing notation and adding a few helpful refinements. For
the time being, we will adopt the convention that the positive z direction
points opposite of Q and into the body of the sample. The spinor wave
function shown in Equation 1.32 can be denoted as

Ψ(k0z, z) =

(

ψ+(k0z, z)
ψ−(k0z, z)

)

(1.63)

where the ψ±(k0z, z) satisfy Equations 1.62, now written in spinor form as

−
∂2Ψ(k0z, z)

∂z2
+ 4π

[

ρ(z)1̌ + B⃗(z) · σ̌
]

Ψ(k0z, z) = k2
0zΨ(k0z, z) . (1.64)

In Equation 1.64 the matrix B⃗(z) · σ̌ = mV̌M/(2π!2), where V̌M is given by
Equation 1.60; σ̌ is the vector Pauli matrix defined in Equation 1.38. Thus
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the film’s magnetic scattering length density is here represented as the vector
“B” field B⃗(z):

B⃗(z) = −µmB⃗/(2π!
2) = Npx(z)x̂ + Npy(z)ŷ + Npz(z)ẑ . (1.65)

The non-magnetic, or nuclear, scattering length density profile of the film
is ρ(z) = ρN(z), as in Equation 1.59, but we drop the N in this section.
We have made the k0z-dependence of the wave functions explicit for clarity,
but as in other sections of this chapter, we remain flexible in the display of
function arguments.

When written out in matrix form, analogously to Equation 1.57, the wave
equation in this notation is

−
(

ψ′′
+

ψ′′
−

)

+ 4π

(

ρ+ Bz Bx − iBy

Bx + iBy ρ− Bz

) (

ψ+

ψ−

)

= k2
0z

(

ψ+

ψ−

)

, (1.66)

where (′) stands for ∂/∂z. The free-space solution corresponding to the
incident beam is

Ψ0z(k0z, z) = eik0zχ0 = eik0zz

(

C+

C−

)

, (1.67)

which fully describes the incident beam in terms of its wave vector k0z and
spin state χ0. We consider here only the case of the free film. The gen-
eralization to non-vacuum, but non-magnetic, fronting and backing is not
difficult.

The Wronskian

Now consider the Wronskian function W (z), composed of the physical solu-
tion Ψ(k0z, z) of Equation 1.64 in the presence of a given magnetic film, and
the incident wave function Ψ0(k0z, z). This is defined as

W (z) = ΨT

0 (z)Ψ′(z) − Ψ′T
0 (z)Ψ(z) , (1.68)

where T indicates the matrix transpose, not the hermitian conjugate †. In
general terms, the Wronskian of two arbitrary continuous functions, say f(z)
and g(z), tests their linear independence from one another: viz., f(z) and
g(z) are linearly independent (i.e., not proportional) if and only if W (z) =
f(z)g′(z) − f ′(z)g(z) ̸= 0. In the scattering context, linear independence
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essentially means that the two waves being compared propagate in different
directions (recall that the differential operator ∂/∂z can be related to the
momentum along the z axis). For example, for z > L, i.e., in the space
behind the film (we are using the convention that the normal to the film is
inward), both the transmitted wave and the incident wave are plane waves
propagating in the same direction. Thus, in this domain they are linearly
dependent, and W (z) = 0. On the other hand, in the fronting region the
incident and reflected waves are plane waves moving in opposite directions
with respect to the z axis, and thus W (z) ̸= 0 for z < 0; in fact, we will
see that W (z) is constant in the fronting. Now W (z) is continuous and has
a continuous first derivative because it is composed of functions having this
property, viz., proper solutions of the wave equation. Thus as z increases
into the film, W (z) goes continuously from a non-zero constant for z ≤ 0
to zero at z = L and then remains at zero for z > L. Roughly speaking,
W (z) is a measure of reflected neutron current—i.e., current in the direction
opposite to the incident current—everywhere along the z axis, even within
the film itself.

To be explicit, we start by differentiating W (z) in Equation 1.68. Thus

W ′(z) = ∂
(

ΨT

0 Ψ′ − Ψ′T
0 Ψ

)

/∂z = ΨT

0 Ψ′′ − Ψ′′T
0 Ψ . (1.69)

Only second derivatives survive on the rhs, since the terms depending on
first derivatives cancel exactly. The second derivatives are cleared using
Equation 1.67 for Ψ0 and the wave equation, Equation 1.64, for Ψ. These
substitutions yield the equation

W ′(z) = 4πΨT

0

(

ρ1̌ + B⃗ · σ̌ − k2
0z1̌

)

Ψ + k2
0zΨ

T

0 1̌Ψ

= 4πΨT

0

(

ρ1̌ + B⃗ · σ̌
)

Ψ .
(1.70)

Integrating both sides of this with respect to z, from the front edge to the
back edge of the film, we have

W (L) − W (0) = 4π

∫ L

0

ΨT

0 (z)
[

ρ(z)1̌ + B⃗(z) · σ̌
]

Ψ(z) dz . (1.71)

There is not much more that can be done in general with the rhs of Equa-
tion 1.71, except for an important refinement to be derived below, but we can
readily replace the lhs with a more useful expression, knowing that W (z) is
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continuous. Thus, note that W (0) = W (0−), where 0− means the limit as
z → 0 from the left, and similarly, that W (L) = W (L+), where L+ means
the limit as z → L from the right. Furthermore, the wave functions for z < 0
and for z > 0 have canonical forms from which we can directly calculate
W (z) in these regions. First consider the backing region. For z ≥ L the
solution consists only of the transmitted wave, which includes the incident
wave and the forward scattered wave. Conventionally these two waves are
combined into one, since in fact they are linearly dependent in z, viz.,

Ψ(k0z, z) = eik0zz

(

C+t++ + C−t−+

C−t−− + C+t+−

)

, (1.72)

where tµν is the transmission coefficient for incident spin-state µ and scat-
tered (here transmitted) spin-state ν, with |tµν | ≤ 1. The upper com-
ponent of the spinor is a coherent superposition of the two ways a spin
“up” state can be observed behind the film: transmission without spin-
flip of an incident spin “up” state and transmission with spin-flip of an
incident spin “down” state. Similarly, the lower component accounts for
the channels producing a transmitted spin “down” state. Now to reduce
the algebra, consider a simpler looking case where Ψ0(z) = eik0zzA and
Ψ(z) = eik0zzB for two constant but otherwise arbitrary spinors, A and B.
Then ΨT

0 Ψ′ − Ψ′T
0 Ψ = (ik0z − ik0z)eik0zzA⊤B = 0. Thus the actual contents

of the spinor for the transmitted wave plays no role, and we have W (L) = 0
quite generally, as anticipated earlier.

In the fronting region, z ≤ 0, we have

Ψ(k0z, z) = eik0zz

(

C+

C−

)

+ e−ik0zz

(

C+r++ + C−r−+

C−r−− + C+r+−

)

, (1.73)

where the rµν are the channel-specific reflection amplitudes, defined analo-
gously to the transmission coefficients tµν . Here we have waves propagating
in different directions, the incident and reflected waves, so W (z) ̸= 0 in the
fronting region. In fact one easily finds that W (z) = 2ik0z

[

C2
+r++ +C2

−r−−+
C+C−(r+− + r−+)], independently of z. Thus for z ≤ 0, W (z) = W (0), a
constant, consistent with the fact that W ′(z) = 0 in the fronting. For still
more compact notation, introduce a matrix of reflection coefficients,

Ř =

(

r++ r−+

r+− r−−

)

. (1.74)
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Then Equation 1.71 can be written as

2ik0zΨ
T

0 (0)ŘΨ0(0) = 4π

∫ L

0

ΨT

0 (z)
[

ρ(z)1̌ + B⃗(z) · σ̌
]

Ψ(z) dz . (1.75)

Equation 1.75 is rigorous, but it can be refined, as we shall soon see. It is
fairly easy to show that in the absence of a magnetic field, Equation 1.75 is
equivalent to the less notationally encumbered Equation 1.26.

The Halperin Effect

As a formal device, the integration on the rhs of Equation 1.75 can be ex-
tended to the entire z axis, since the sld profile of the film provides the
explicit restriction to 0 ≤ z ≤ L. Then recalling Equation 1.67, and tem-
porarily writing k0z ẑ = k⃗0, we can write the integral as a Fourier transform
(ft), viz.,

∫ ∞

−∞

eik⃗0·r⃗
{

ΨT

0 (0)
[

ρ(zẑ)1̌ + B⃗(zẑ) · σ̌
]

Ψ(zẑ)
}

dz

=

∫ ∞

−∞

ΨT

0 (0)
[

ρ[[⃗k0 − ξẑ]]1̌ + B⃗[[⃗k0 − ξẑ]] · σ̌
]

Ψ[[ξ ˆ⃗z]] dξ .
(1.76)

On the rhs of Equation 1.76, we have used the (temporary) notation that
f [[Q⃗]] = FTf(r⃗) for any function f . To obtain the rhs, we used the standard
product-convolution theorem of Fourier analysis.[36]

Recall from Equation 1.65 that the magnetic scattering length density B⃗
(in the current notation) is related to the internal magnetic field strength B⃗
by B⃗(r⃗) = ΛB⃗(r⃗), where

Λ = −
µm

2π!2
. (1.77)

The internal magnetic field due to unpaired electron spins can be represented
(in si units) as

B⃗(r⃗) = µ0

∑

i

∇⃗ ×
(

m⃗i × r̂

r2

)

, (1.78)

where µ0 is the vacuum permitivity and m⃗i is the magnetic moment of the
ith spin. The Fourier transform of Equation 1.78 is

B⃗[[Q⃗]] =

∫

eiQ⃗·r⃗B⃗(r⃗) d3r = µ0Q̂ ×
[

m⃗[[Q⃗]] × Q̂
]

, (1.79)
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where
m⃗[[Q⃗]] =

∑

i

m⃗ie
iQ⃗·r⃗i . (1.80)

The application of a standard identity to the vector cross product in Equa-
tion 1.79 gives

B⃗[[Q⃗]] = µ0

[

m⃗[[Q⃗]] −
(

m⃗[[Q⃗]] · Q̂
)

Q̂
]

= µ0m⃗⊥[[Q⃗]] , (1.81)

where m⃗⊥[[Q⃗]] denotes the component of m⃗[[Q⃗]] perpendicular to Q⃗. Therefore

B⃗[[Q⃗]] = Λµ0m⃗⊥[[Q⃗]] = B⃗⊥[[Q⃗]] , (1.82)

so that, taking account of the rhs of Equation 1.76, Equation 1.75 becomes

2ik0zΨ
T

0 (0)ŘΨ0(0) = 4π

∫ L

0

ΨT

0 (z)
[

ρ(z)1̌ + B⃗⊥(z) · σ̌⊥
]

Ψ(z) dz . (1.83)

As seen from the form of the rhs, only the component of the film mag-
netization perpendicular to the neutron wave vector transfer causes spin-
dependent reflection. This behavior is known as the “Halperin effect” in
magnetic neutron scattering. Since for specular reflection the wave vector
transfer Q⃗ = −2k0ẑ is perpendicular to the film, in Equation 1.83 B⃗⊥(z) is
parallel to the film. Normally the Halperin effect is derived within the Born
approximation, but in fact, as we see in Equation 1.83, it is exact. We refer
to Equation 1.83 as the “Wronskian formula” for the spin-dependent neutron
reflection amplitudes.

Reflection Amplitudes in the Beam Polarization Frame

So far we have chosen the quantization axis for the neutron spin to be along
the film normal, and the elements of Ř specifically refer to this axis. But
as discussed in detail in Sections 1.4.3 to 1.4.5, reflectivity measurements
usually are made with respect to different polarization axes. We must be
able, therefore, to relate the reflection amplitudes of Equation 1.83 to the
measurement frame. There are several formalisms for doing this, usually with
the aid of spinor rotation matrices, depending on the problem at hand. A
general method will be worked out in Section 1.4.3 for the case of the transfer
matrix formulation of the problem. Here we mention another approach which
is perhaps less efficient but is easy to visualize.

44



The incident and reflected spinor wave functions defined in Equation 1.73
are completely general for any state of incident polarization, since the spinor
coefficients, C+ and C−, are arbitrary. Now, however, let us consider the

spinor χ =
(

C+

C−

)

as the “spin-up” state along the axis of polarization, and

let the associated “spin-down” state be designated by χ′ =
(

C′
+

C′
−

)

, where C ′
+

and C ′
− are determined by the pair, C+ and C−. Namely, we specify χ and

χ′ to be the eigenstates of the matrix σ̌ · P̂ . Then the wavefunction in the
fronting region can be represented as

Ψ(k0z, z) = eik0zz

(

C+

C−

)

+ e−ik0zz

{

r↑↑
(

C+

C−

)

+ r↑↓
(

C ′
+

C ′
−

)}

, (1.84)

where r↑↑ and r↑↓ are the non-spin-flip and spin-flip reflection amplitudes,
respectively, relative to the polarization axis. Notice that we are careful to
distinguish between the two quantization axes by using different index sets
for them, where {+,−} refer to the film normal axis and {↑, ↓} refer to
the spin polarization axis. Thus, in the comparison of Equation 1.84 with
Equation 1.73, which represents exactly the same wavefunction, we have two
equations,

C+r↑↑ + C ′
+r↑↓ = C+r++ + C−r−+ and

C−r↑↑ + C ′
−r↑↓ = C−r−− + C+r+− ,

(1.85)

for the reflection amplitudes r↑↑ and r↑↓. Similar equations determine r↓↑

and r↓↓, should they be needed. For example, take the case of an incident
beam completely polarized along the positive x axis in the sample coordinate
system. Then C+ = 1/

√
2, C− = 1/

√
2, C ′

+ = 1/
√

2, and C ′
− = −1/

√
2;

therefore,

r↑↑
(

1
1

)

+ r↑↓
(

1
−1

)

=

(

r++ + r−+

r−− + r+−

)

, (1.86)

so that, solving for r↑↑ and r↑↓, we have

r↑↑x = 1
2

(

r++ + r−−
)

+ 1
2

(

r−+ + r+−
)

r↑↓x = 1
2

(

r++ − r−−
)

+ 1
2

(

r−+ − r+−
)

.
(1.87)

where rx denotes the reflection amplitude for the x direction of polarization.
The formulas for r↓↓x and r↓↑x are obtained from these by the interchange of
± on the rhs. We will give an example of these formulas directly.
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The Born Approximation

In Section 1.2.5 we used the non-magnetic Wronskian formula, Equation 1.26,
to derive the Born approximation for the specular reflection amplitude. We
can do the same here for the magnetic case. The Born approximation re-
places the exact spinor wavefunction Ψ(k0z, z) with the incident wavefunction
Ψ0(k0z, z) in Equation 1.83. The result of this approximation is

2ik0zΨ
T

0 (0)ŘBAΨ0(0) = 4π

∫ L

0

e2ik0zzΨT

0 (0)
(

ρ(z)1̌ + B⃗⊥(z) · σ̌⊥
)

Ψ0(0) dz

= 4πΨT

0 (0)
(

ρ[[Q]]1̌ + B⃗⊥[[Q)) · σ̌⊥
)

Ψ0(0) ,

(1.88)

where Q = 2k0z. The spinor Ψ0 can be “factored out” of Equation 1.88 by
rearranging it as

ΨT

0 (0)
[

iQŘBA = 4π
(

ρ[[Q]]1 + B⃗⊥[[Q]] · σ̌⊥
)]

Ψ0(0) . (1.89)

Since this holds for arbitrary polarization, the equality within the brackets
must be satisfied, i.e.,

ŘBA(Q) =
4π

iQ

(

ρ[[Q]]1̌ + B⃗⊥[[Q]] · σ̌⊥
)

, (1.90)

which in explicit matrix form is
(

r++(Q) r−+(Q)
r+−(Q) r−−(Q)

)

BA

=
4π

iQ

(

ρ[[Q]] Bx[[Q]] − iBy[[Q]]
Bx[[Q]] + iBy[[Q]] ρ[[Q]]

)

. (1.91)

Equation 1.91 is the magnetic generalization of Equation 1.27. We see at
once from Equation 1.91 that r++

BA = r−−
BA = rBA, since there is now no

spin dependence in the diagonal elements on the rhs. Such behavior is
not true in general since the exact spinor in the medium, Ψ(k0z, z), induces a
“diagonal” spin-dependence; but this is a “dynamical” effect, i.e., one strictly
outside Born approximation, and thus it must diminish as Q → ∞ where the
Born approximation becomes asymptotically exact. Equation 1.91 reduces
immediately to Equation 1.27 for B⃗⊥[[Q]] = 0.
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Helical Magnetization

A simple but interesting application of Equation 1.91 is a film having a twist-
ing magnetization modeled by a continuous helix, such that the magnetic sld

varies with z as

Bx(z) = |B| cos (2πz/L) and

By(z) = |B| sin (2πz/L) ,
(1.92)

where L is the pitch of the helix; a positive value of L signifies right-
handedness, a negative value, left-handedness. The phase of the helix is
chosen here so that B⃗(0) = |B| x̂. A straightforward calculation of the Fourier
transform of the helix gives

Bx[[Q]] ± iBy[[Q]] = ei(Q∓K)L/2sinc

(

(Q ∓K)L

2π

)

, (1.93)

where K = 2π/L is the pitch wave number, and where sinc(x) = sin(πx)/(πx).
We leave the behavior of the non-magnetic sld profile ρ(z) unspecified. We
then can insert Equation 1.93 into Equation 1.91 and, for the particular case
of the incident beam fully polarized along the x axis, use Equation 1.88 to
get

r↑↑BAx(Q) =
4π

iQ

(

ρ[[Q]] + 1
2e

i(Q−K)L/2sinc
(

(Q−K)L
2π

)

+ 1
2e

i(Q+K)L/2sinc
(

(Q+K)L
2π

))

(1.94)
and

r↑↓BA x(Q) =
4π

iQ

(

1
2e

i(Q−K)L/2sinc
(

(Q−K)L
2π

)

− 1
2e

i(Q+K)L/2sinc
(

(Q+K)L
2π

))

.

(1.95)
We can see from this that r↑↑BAx(Q) does not depend on the handedness of
the helix (the sign of K), while r↑↓BA x(Q) only changes sign with handed-

ness. Therefore,
∣

∣

∣
r↑↑BAx(Q)

∣

∣

∣

2
and

∣

∣

∣
r↑↓BA x(Q)

∣

∣

∣

2
are independent of handedness.

(Nonetheless, handedness is observable in single-domain samples for the case
where P⃗ ∥ Q⃗, as discussed in Section 1.4.4.) However, the reflectivity does
depend on the phase of the helix at z = 0 relative to the incident neutron
polarization. For example, it is not difficult to work out that twisting the
helix in Equation 1.92 counter-clockwise by 90◦ takes Bx[[Q]] → −By[[Q]] and
By[[Q]] → Bx[[Q]]. The resulting changes in Equations 1.94 and 1.95 are sum-
marized by multiplying the terms involving Q∓K by ±i, respectively. Thus
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for a polarized beam,
∣

∣

∣
r↑↑BA x(Q)

∣

∣

∣

2
, but not

∣

∣

∣
r↑↓BAx(Q)

∣

∣

∣

2
, depends on the rela-

tive helical phase at the surface. Reflection of polarized neutron beams from
twisting magnetic configurations will be discussed below in Sections 1.6.3
and 1.6.4 using the full dynamical theory.

The Piecewise Continuous Solution Using the Transfer Matrix

Now we return to the problem of obtaining the explicit solution of Equa-
tions 1.62. We resume our convention that the positive z direction points
along Q. As we saw earlier in Sections 1.2.3 and 1.2.4 for nonmagnetic films,
it is possible to represent the given potential by a piecewise constant model
using sufficiently fine subdivisions. Thus, just as in the nonmagnetic case,
we begin by exactly solving the special problem of slab of uniform sld. Now,
however, the spin dependence of the problem makes the solution more com-
plicated, as we shall see. We will need to generalize the 2×2 transfer matrix
of Equation 1.24 for a nonmagnetic film to one of dimension 4 × 4 in order
to handle spin-dependent reflection from magnetic material.

Therefore, let us again consider a slab of finite thickness and constant sld,
but having magnetic as well as nuclear components, so that in Equation 1.62
ρmn(z) = ρmn (a constant). Here m and n each independently can be + or −,
yielding up to four distinct values for ρ at one depth z. Combining the pair
of coupled second-order Equations 1.62 above, two uncoupled fourth-order
equations can be obtained:

(

∂4

∂z4
+ F

∂2

∂z2
+ G

)

ψ±(z) = 0 (1.96)

where

F ≡
Q2

2
− 4π (ρ++ − ρ−−) (1.97)

G ≡
(

Q2

4

)2

− Q2π (ρ++ + ρ−−) + (4π)2 (ρ++ρ−− − ρ+−ρ−+) .

Substituting the trial solution ψ = exp(Sz) in Equation 1.96 yields a char-
acteristic equation for the coefficient S of the form

S4 + FS2 + G = 0. (1.98)

48



The four unique roots of Equation 1.98 are found to be

S1 =
√

4π(Nb + Np) − Q2/4
S2 = −S1

S3 =
√

4π(Nb − Np) − Q2/4
S1 = −S3

(1.99)

where
(Np)2 = (Npx)

2 + (Npy)
2 + (Npz)

2. (1.100)

General solutions of the original pair of coupled second-order differential wave
equations 1.62 are then given by

ψ+(z) =
4

∑

j=1

Cje
Sjz (1.101)

ψ−(z) =
4

∑

j=1

Dje
Sjz

Substituting the expressions 1.101 above for the wave functions into the
coupled wave equations 1.62 then gives a pair of algebraic equations which
can be solved for the coefficients Cj in terms of the Dj :

Dj = Cj

S2
j + Q2/4 − 4π (ρ++ − ρ−+)

S2
j + Q2/4 − 4π (ρ−− − ρ+−)

≡ Cjµj (1.102)

Writing ρN = Nb and ρM = Np (where Np is defined in Equation 1.100)
and using the definitions of ρ++, ρ−−, ρ+−, and ρ−+ from Equation 1.61 we
obtain

µ1 = µ2 =
Np − Npz + Npx + iNpy

Np + Npz + Npx − iNpy
(1.103)

µ3 = µ4 =
Np + Npz − Npx − iNpy

Np − Npz − Npx + iNpy

Returning to the general solutions for the wave functions ψ+(z) and ψ−(z)
given in Equation 1.101, we can write at z = 0

ψ+(0) = C1 + C2 + C3 + C4

ψ′
+(0) = S1C1 + S2C2 + S3C3 + S4C4 (1.104)

ψ−(0) = µ1C1 + µ2C2 + µ3C3 + µ4C4

ψ′
−(0) = S1µ1C1 + S2µ2C2 + S3µ3C3 + S4µ4C4
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where the primes denote differentiation with respect to z. Making use of the
relationships among the Sj and µj derived previously, the above set of linear
algebraic equations can be solved to find the coefficients Cj in terms of the
µj, Sj, ψ(0), and ψ′(0). For example,

C1 =
1

2(µ3 − µ1)

(

µ3ψ+(0) − ψ−(0) +
µ3

S1
ψ′

+(0) −
1

S1
ψ′
−(0)

)

. (1.105)

In general, the Cj can be written as

Cj = αjψ+(0) + βjψ−(0) + γjψ
′
+(0) + δjψ

′
−(0) (1.106)

where the coefficients αj , βj, γj, and δj can be expressed in terms of the Sj

and µj .
As a consequence of several of the expressions derived above, the general

solutions for the wave functions at arbitrary values of z, given by Equa-
tions 1.101, can be expressed explicitly in terms of the known quantities µj ,
Sj and the wave functions and their first derivatives evaluated at z = 0. For
example, after collecting and rearranging terms,

ψ+(z) = (1.107)

ψ+(0)
4

∑

j=1
αje

Sjz + ψ−(0)
4

∑

j=1
βje

Sjz + ψ′
+(0)

4
∑

j=1
γje

Sjz + ψ′
−(0)

4
∑

j=1
δje

Sjz

and similarly for ψ−(z), ψ′
+(z), and ψ′

−(z). We can, therefore, write a general
matrix equation relating the spin-dependent wave functions and their first
derivatives at arbitrary z to those evaluated at z = 0, assuming that the sld

is constant over that interval of length z.

⎛

⎜

⎜

⎝

ψ+(z)
ψ−(z)
ψ′

+(z)
ψ′
−(z)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ψ+(0)
ψ−(0)
ψ′

+(0)
ψ′
−(0)

⎞

⎟

⎟

⎠

(1.108)

The matrix coefficients Aij are listed in Table 1.2.
As was done earlier in the case of reflection from nonmagnetic materials

in Section 1.2, the boundary conditions that the wave functions and their
first derivatives be continuous at any interface between regions of different
constant sld values can be imposed and applied in piecewise continuous
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A11 = 2∆[ µ3 cosh(S1δz) − µ1 cosh(S3δz)]
A21 = 2∆[µ1µ3 cosh(S1δz) − µ3µ1 cosh(S3δz)]
A31 = 2∆[ µ3 sinh(S1δz)S1 − µ1 sinh(S3δz)S3]
A41 = 2∆[µ1µ3 sinh(S1δz)S1 − µ3µ1 sinh(S3δz)S3]
A12 = −2∆[ cosh(S1δz) − cosh(S3δz)]
A22 = −2∆[ µ1 cosh(S1δz) − µ3 cosh(S3δz)]
A32 = −2∆[ sinh(S1δz)S1 − sinh(S3δz)S3]
A42 = −2∆[ µ1 sinh(S1δz)S1 − µ3 sinh(S3δz)S3]
A13 = 2∆[ µ3 sinh(S1δz)/S1 − µ1 sinh(S3δz)/S3]
A23 = 2∆[µ1µ3 sinh(S1δz)/S1 − µ3µ1 sinh(S3δz)/S3]
A33 = 2∆[ µ3 cosh(S1δz) − µ1 cosh(S3δz)]
A43 = 2∆[µ1µ3 cosh(S1δz) − µ3µ1 cosh(S3δz)]
A14 = −2∆[ sinh(S1δz)/S1 − sinh(S3δz)/S3]
A24 = −2∆[ µ1 sinh(S1δz)/S1 − µ3 sinh(S3δz)/S3]
A34 = −2∆[ cosh(S1δz) − cosh(S3δz)]
A44 = −2∆[ µ1 cosh(S1δz) − µ3 cosh(S3δz)]

where 2∆ ≡ 1/(µ3 − µ1) and δz is defined to be the distance over which the
sld is constant.

Table 1.2: Elements of the transfer matrix for polarized neutron specular
reflection.

ψ+,I(z) ≡ I+ = I+eiQz/2; ψ′
+,I(z) = iQ

2 I+

ψ−,I(z) ≡ I− = I−eiQz/2; ψ′
−,I(z) = iQ

2 I−
ψ+,r(z) ≡ r+ = R+e−iQz/2; ψ′

+,r(z) = − iQ
2 r+

ψ−,r(z) ≡ r− = R−e−iQz/2; ψ′
−,r(z) = − iQ

2 r−
ψ+,t(z) ≡ t+ = T+eiQz/2; ψ′

+,t(z) = iQ
2 t+

ψ−,t(z) ≡ t− = T−eiQz/2; ψ′
−,t(z) = iQ

2 t−

Table 1.3: Neutron wave functions for polarized neutron specular reflection
and transmission.
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Figure 1.12: Schematic depiction of specular neutron reflection for polarized
beams.

fashion to approximate an arbitrary sld profile to any desired degree of
accuracy. Using the explicit identifications tabulated in Table 1.3, the spin-
dependent transmission and reflection coefficients can then be related by

⎛

⎜

⎜

⎝

t+
t−

iQ
2 t+
iQ
2 t−

⎞

⎟

⎟

⎠

=
1

∏

l=N

⎛

⎜

⎜

⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞

⎟

⎟

⎠

l

⎛

⎜

⎜

⎝

I+ + r+

I− + r−
iQ
2 (I+ − r+)
iQ
2 (I− − r−)

⎞

⎟

⎟

⎠

(1.109)

where
1

∏

l=N

Ǎl = ǍN ǍN−1 · · · Ǎl · · · Ǎ2Ǎ1. (1.110)

The matrix operator Ǎl corresponds to the lth layer or slab of thickness
δz over which the scattering length density is taken to be constant. The
δz appearing in the arguments of the hyperbolic functions of the transfer
matrix elements Aij (Table 1.2) refer specifically to the thickness of the lth
slab. Slab l = 1 is the first slab encountered by the incident beam. Note
that the fronting and backing media surrounding the sample film have thus
far been assumed to be vacuum. Equation 1.109 represents a system of
simultaneous linear equations which can be solved for the spin-dependent
reflection and transmission amplitudes for the specular reflection geometry
depicted schematically in Figure 1.12. Further details of the solution shall
be revealed in Section 1.6.1.
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To summarize progress thus far, Equation 1.109 enables us to calculate
the probabilities |r+|2, |r−|2 and |t+|2, |t−|2 of finding a reflected or trans-
mitted neutron in the + or − spin basis state, respectively, for a specified
incident beam initial polarization state defined by I = (I+, I−). For example,
Equation 1.109 can be used to compute the probability that a neutron will
be reflected in the + spin state from a magnetic film of a given sld depth
profile if it were incident in the + spin state, I+ = 1 and I− = 0, to begin
with.

Remember that we have so far explicitly assumed that the Regions I
and III (see Figure 1.12) surrounding the potential (Region II) are vacuum.
Although a magnetic guide field is required in the surrounding Regions I
and III of the “laboratory” in order to define an axis of quantization for
the incident, reflected, and transmitted neutrons, we can assume a magnetic
field and corresponding sld of vanishingly small magnitude. However, it is
important to realize that a normal (to the surface) component Bz of the mag-
netic induction B⃗ within Region II, arising from the sample magnetization
M⃗ , cannot exist without identical Bz in the surrounding Regions I and III
because the nature of the electromagnetic field is such that the normal com-
ponent of B⃗ across an infinite planar boundary must be continuous. Thus the
one-dimensional formulation for specular reflection breaks down for films in
which in-plane variations of the magnetization exist on a length scale which
would give rise to significant discontinuous normal components of B⃗, arising,
for example, from flux line closure between adjacent in-plane magnetic do-
mains of different orientation. If a magnetic field component normal to the
surface does exist, it is necessary, then, to consider magnetic sld surrounding
the sample film to ensure that the normal component is continuous.

1.4.2 Magnetic Media Surrounding Film

In order to consider cases in which a normal component of B⃗ exists within
the sample, Equation 1.109 must be generalized to include nonzero magnetic
sld in the fronting and backing surround (Regions I and III of Figure 1.12,
respectively).

Whether the magnetic induction in the fronting or backing surrounding
the sample is due to a magnetic material or a magnetic field applied in vac-
uum or nonmagnetic material, we can associate B with a magnetic scattering
length density ρ as defined by Equation 1.34. The spin-dependent slds as-
sociated with fronting (F) and backing (B) surrounding media are in general
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Figure 1.13: Schematic showing “side” entry of the incident beam into the
“fronting” medium adjacent to the film of interest. The resulting relation-
ship between wavevectors in the laboratory vacuum space and the fronting
medium are derived in the text. Although not indicated in the drawing, it
is assumed that the interaction of the incident neutron with the side face of
the fronting medium and the surface of the film are not simultaneous, i.e.,
any coherence between the two interfaces, which are typically separated by
macroscopic distances, is taken to be negligible.

given by
ρ±F = ρF,N ± ρF,M, ρ±B = ρB,N ± ρB,M. (1.111)

Corresponding to the above values of the slds are spin-dependent wavevector
components:

Q±
F = 2k±

Fz = 2k0zn
±
Fz =

√

4k2
0z − 16πρ±F (1.112)

Q±
B = 2k±

Bz = 2k0zn
±
Bz =

√

4k2
0z − 16πρ±B

As already mentioned above, it is required that any B⃗ component along the
normal to the surface of the film be continuous across each and every interface
within the film as well as the boundaries with the surrounding fronting and
backing regions.

It is important to realize that in practice, the fronting and backing me-
dia typically have the specific relationship to the sample film depicted in
Figure 1.13 where the incident beam enters the fronting medium through a
perpendicular “side” interface, e.g., of a single-crystalline material such as
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Figure 1.14: Vector diagram showing the relationship between laboratory
and sample frames of reference as defined in the text and incorporated in the
reflectivity program appearing in the appendix.

silicon or quartz. Across this orthogonal side boundary, the wavevector k±
MIz

measured on the instrument is equal to the wavevector k±
Fz in the fronting

medium adjacent to the sample, since the z axis is parallel to the side surface
of entry. The effective vacuum values k0z that are required in the solution of
Equation 1.15 can then be related to the measured values k±

MIz by substituting
kMIz for kFz in Equation 1.112:

k2
0z =

(

k±
MIz

)2
+ 4πρ±F . (1.113)

1.4.3 Coordinate System Transformation

Up to now we have defined only a single coordinate system, one in which
the quantization axis lies along z, normal to the film surface. The polariza-
tion states of incident, reflected, and transmitted neutrons are referred to
this reference frame fixed to the film. It is useful to develop a self-consistent
means of describing two separate axes of quantization; one in a “labora-
tory” coordinate system and the other in the “sample” reference frame. This
is convenient for describing the vectorial distribution of the magnetization
within the sample independently of the orientation of the polarization of the
incident and reflected neutrons relative to a laboratory instrument.
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Let us begin by considering the two different rectangular coordinate sys-
tems shown in Figure 1.14. The orientation of the magnetization vector M⃗
at some depth z from the surface of the sample is determined by the angle
θM⃗ from the sample x axis and by the angle φM⃗ between the projection of M⃗

in the yz plane and the sample y axis. For specular reflection, Q⃗ is normal
to the xy plane of the sample. For M⃗ lying in a plane parallel to the sample
surface, φM⃗ = 0 (or φM⃗ = π). The laboratory coordinate system x axis
coincides with that of the sample while the z axes, each of which represents
the axis of quantization in the respective reference frame, are rotated from
one another by an angle ϵ.

Now the time-independent wave equation, referred to the sample coordi-
nate system sam, has the general form

ȞSAMΨSAM = EΨSAM (1.114)

where the Hamiltonian operator ȞSAM represents kinetic plus potential en-
ergy and the scalar quantity E is the total energy of the system described
by the wave function Ψ, as considered in previous sections. Equation 1.114
can be rewritten in the laboratory coordinate system lab by applying the
general rotation operator ǓR of Equation 1.40:

ǓRȞSAMǓ−1
R ǓRΨSAM = EǓRΨSAM =

ǓRȞSAMǓ−1
R ΨLAB = EΨLAB (1.115)

ȞLABΨLAB = EΨLAB.

For the rotation pictured in Figure 1.14, the specific form of the rotation
operator is given by

ǓR = e+iσ̌xϵ/2 = Ǐ cos(ϵ/2) + i

(

0 1
1 0

)

sin (ϵ/2) (1.116)

=

(

cos(ϵ/2) i sin (ϵ/2)
i sin (ϵ/2) cos(ϵ/2)

)

.

The inverse of the matrix of Equation 1.116 is

Ǔ−1
R =

(

cos(ϵ/2) −i sin (ϵ/2)
−i sin (ϵ/2) cos(ϵ/2)

)

(1.117)

(the inverse of a rotation +ϵ is a rotation −ϵ [5]). We are now prepared to
carry out a similarity transformation on a transfer matrix constructed in the
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sample coordinate system. Doing so will enable us express the neutron wave
functions in the laboratory coordinates. In other words, we would like to
obtain a system of simultaneous equations which relate the spin-dependent
reflection and transmission amplitudes to the incident neutron wave functions
in the lab coordinates. In matrix notation, these equations are symbolically
given by

⎛

⎜

⎜

⎝

t+LAB

t−LAB
iQB

2 t+LAB
iQB

2 t−LAB

⎞

⎟

⎟

⎠

= ǍLAB

⎛

⎜

⎜

⎝

I+LAB + r+LAB

I−LAB + r−LAB
iQF

2 (I+LAB − r+LAB)
iQF

2 (I−LAB − r−LAB)

⎞

⎟

⎟

⎠

(1.118)

where
ǍLAB = ǓSAM→LAB ǍSAM Ǔ−1

SAM→LAB . (1.119)

The rotation operator ǓSAM→LAB and its inverse can be constructed from
Equations 1.116 and 1.117. Note that in order to simultaneously transform
both the + and − wave function components and their first derivatives, as
represented, e.g., by the four element column vector on the lhs of Equa-
tion 1.118, a block diagonal matrix of the following form is required:

ǓSAM→LAB =

⎛

⎜

⎜

⎝

cos ϵ
2 i sin ϵ

2 0 0
i sin ϵ

2 cos ϵ
2 0 0

0 0 cos ϵ
2 +i sin ϵ

2
0 0 +i sin ϵ

2 cos ϵ
2

⎞

⎟

⎟

⎠

. (1.120)

The inverse of Equation 1.120 is

Ǔ−1
SAM→LAB =

⎛

⎜

⎜

⎝

cos ϵ
2 −i sin ϵ

2 0 0
−i sin ϵ

2 cos ϵ
2 0 0

0 0 cos ϵ
2 −i sin ϵ

2
0 0 −i sin ϵ

2 cos ϵ
2

⎞

⎟

⎟

⎠

. (1.121)

Thus we now have the equations necessary to compute the spin-dependent
specular reflection and transmission amplitudes in the laboratory frame of
reference for any layered magnetic structure. It should become evident, in
the discussion and illustrative examples that follow, how immensely powerful
pnr is as a probe of magnetic thin films and superlattices, in large part due to
the accuracy of the theoretical description of the specular reflection process
described above. A computer program, based on the formulas derived above,
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is included in the appendix at the end of this chapter for calculating the
spin-dependent reflectivities. (It should be noted that this program uses
different, but equivalent, expressions for the µj ’s given in Equation 1.103
that are written exclusively in terms of the angles θM⃗ and φM⃗ , defined in
Figure 1.14, as

µ1 = µ2 =
1 + cos θM⃗ + i sinθM⃗ cosφM⃗ − sinθM⃗ sin φM⃗

1 + cos θM⃗ − i sinθM⃗ cosφM⃗ + sinθM⃗ sin φM⃗

(1.122)

µ3 = µ4 =
−1 + cos θM⃗ + i sinθM⃗ cos φM⃗ − sinθM⃗ sinφM⃗

−1 + cos θM⃗ − i sinθM⃗ cosφM⃗ + sinθM⃗ sinφM⃗

.

These expressions appear explicitly in the lines of code.) It should also be
mentioned that Equation 1.118 is applicable not only in the nanometer length
scale range, where matter can be treated as a continuum of scattering length
density, but also on the atomic scale corresponding to the higher wavevector
transfers associated with atomic planes, as in the case of single-crystalline
superlattice films grown by molecular beam epitaxy [37, 38]. Equation 1.118
is valid even at macroscopic length scales and can accurately predict the be-
havior of such neutron optical devices as resonance spin flippers for spatially
oscillating magnetic fields. The universal application of the dynamical the-
ory of spin-dependent neutron reflectivity to length scales differing by many
orders of magnitude is remarkable.

1.4.4 Selection Rules “of Thumb”

Despite its proven accuracy and range of applicability, even for simpler lay-
ered magnetic film structures, Equation 1.118 does not necessarily translate
to particularly transparent analytic expressions of the reflection amplitudes.
Nonetheless, at sufficiently large Q the Born approximation of the integral
expressions for r±, derived in detail in Section 1.4.1, are valid so that im-
portant symmetries and sensitivities to particular magnetic structures are
recognizable in the form of more familiar structure factors. Moon et al. [39]
described the spin-dependent reflection of neutrons from atomic crystals in
the kinematic limit (Born approximation), assuming the incident neutrons
to be in either a pure + or − spin basis state, i.e., Pz = ±1, and that only
the resultant + or − reflected intensities could be measured. In this section,
we examine in explicit terms some of the more useful results of the formal
presentation in Section 1.4.1.
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Figure 1.15: Schematic representation of the specular reflection of polarized
neutrons from a layered film structure comprised of a finite series of atomic
planes, as can be grown by molecular beam epitaxial techniques. The seg-
ment shown constitutes a “super” cell containing a number of ferromagnetic
planes with alternating directions of the magnetization followed by several
nonmagnetic planes (each dot or arrow indicates an atomic position). The en-
tire cell can be repeated periodically to form a superlattice of total thickness
L. Projections of each plane’s magnetization on the vertical axis parallel to
the incident neutron polarization give rise to non-spin-flip scattering whereas
horizontal components cause spin-flip scattering.
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Consider the configuration shown in Figure 1.15 where the applied mag-
netic guide field defining the quantization axis is parallel to the neutron
polarization P̂ and perpendicular to the wavevector transfer Q⃗. The magne-
tization vector M⃗ , at any depth along the surface normal, lies in the plane
of the film. (Because of the requirement that the normal component of B⃗ be
continuous across an infinite boundary between sample film and surrounding
medium, as discussed earlier, any out-of-plane component of the magnetiza-
tion cannot contribute to the scattering in the ideal case. This is the Halperin
effect which was rigorously derived in Section 1.4.1 for the general dynamical
problem.) In this geometry the Born approximation to the structure factor
for non-spin-flip (nsf) reflection is proportional to

r±±
BA (Q) ∝

∫ L

0

(ρN(z) ± ρM(z) cos (φ(z))) eiQz dz (1.123)

where φ is the angle defined in Figure 1.15 between the magnetization M⃗
and the neutron polarization P̂ (parallel to the vertical in-plane axis of the
sample) and L is the film thickness. Note the interference which can occur
between nuclear and magnetic slds, as encountered earlier in the discussion
of birefringence and the production of a polarized beam in Section 1.3.4. The
spin-flip (sf) scattering, on the other hand, is given by

r±∓
BA (Q) ∝

∫ L

0

ρM(z) sin (φ(z)) eiQz dz (1.124)

and is purely magnetic in origin. Thus, Equations 1.123 and 1.124 imply that
by measuring both nsf and sf reflectivities vs. Q, we can extract not only the
magnitude of the magnetization as a function of depth, but its orientational
depth profile as well.

Another special geometry, particularly useful in the examination of cer-
tain noncollinear magnetic structures, e.g., a simple helix of a single chirality
where the in-plane magnetization advances at a constant angular rate with
depth, is that for which the neutron polarization vector P̂ lies completely
along a direction parallel to Q⃗. (This is in contrast to the configuration for
the helix considered in Section 1.4.1 in which the neutron polarization was
taken to be perpendicular to Q⃗.) In this case the nsf reflectivity will be
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entirely nuclear in origin whereas the sf scattering will be solely magnetic:

r±±
BA (Q) ∝

∫ L

0

ρN(z)eiQz dz, and (1.125)

r±∓
BA (Q) ∝

∫ L

0

ρM(z) [sin (φ(z)) ∓ i cos (φ(z))] eiQz dz. (1.126)

Note that in this case (P⃗ ∥ Q⃗) the magnetic sf scattering is sensitive to the
sense of rotation of the magnetization orientation angle φ so that a helix with
a left-handed helicity can be distinguished from one that is right-handed,
for example. As we saw in Section 1.4.1, however, for P⃗ ⊥ Q⃗ differences
in handedness are not observed in the reflectivities. Further discussion of
kinematic magnetic structure factors can be found in other works [see, e.g.,
[3, 9, 13]].

Recall our discussion in Section 1.2.6 regarding in-plane inhomogeneities
in the nuclear sld that give rise to nonspecular reflection. An analogous sit-
uation occurs with in-plane inhomogeneities in the magnetization, notably
associated with ferromagnetic domains. Within an individual saturated fer-
romagnetic domain, all of the atomic magnetic moments are aligned parallel
to a common direction. If the sample consists of single magnetic domains
in-plane at every depth along the surface normal, then the reflectivity will be
purely specular. If not, then both specular and nonspecular scattering can
occur, depending on the in-plane areas of the domains relative to the effective
lateral coherence length of the incident neutron wave packet. If the neutron
coherence length in-plane is sufficiently larger than the average domain size,
then the specular component of the reflectivity will be representative of the
net magnetization which results from averaging over this collection of do-
mains. In the opposite case, where the domain areas are far larger than
the neutron in-plane coherence length, the specular contribution to the mea-
sured reflectivity will represent an incoherent sum of the reflectivities from
individual domains, weighted by the relative area of each.

1.4.5 Three-Dimensional Polarization Analysis

It is possible to prepare an incident neutron in a mixed state, i.e., one with
both C+ ̸= 0 and C− ̸= 0 (as discussed in Section 1.3), have it interact
with a magnetic sample placed within a region of zero applied field, and
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Figure 1.16: Schematic picture of experimental setup for selecting incident
beam polarization and analysing the polarization of the scattered beam, as
described in the text.
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subsequently analyse its polarization state after reflection, albeit by statis-
tical analysis of an ensemble of identically prepared incident neutrons. A
schematic of the instrumental configuration for carrying out this general
type of experiment is shown in Figure 1.16. This method is analogous to
what is conventionally referred to as “zero-field polarimetry,” typically per-
formed at higher wavevector transfers in the atomic lattice diffraction regime
[40, 41]. The rotations of the neutron polarization which are performed in
the regions preceding and following the sample volume can be realized with
the rectangular magnetic solenoids described in Section 1.3 (either a single
coil or two in succession with orthogonal rotation axes). This general type
of polarimetry can be extended to measurements of the polarization states
of transmitted neutrons as well, sometimes referred to as a neutron depo-
larization measurement [25, 35, 42]. In the dynamical regime, nonclassical
polarization-dependent tunneling effects can occur for certain sld profiles
with magnetic barriers [43, 44].

1.4.6 Elementary Spin-Dependent Reflectivity Exam-

ples

Table 1.4 lists values of neutron nuclear and magnetic scattering length densi-
ties for some common elements (corresponding x-ray densities are included for
comparison). Figure 1.17 shows the sld profiles of several prototypical mag-
netic multilayer structures and their corresponding spin-dependent neutron
reflectivity curves assuming the measurement configuration of Figure 1.15:
a) a bilayer, one layer of which is ferromagnetic and where the in-plane mag-
netization of each and every magnetic layer is aligned parallel to the neutron
polarization; b) the same repeating unit bilayer of Figure 1.17a but with ad-
jacent magnetic layers aligned antiparallel to one another and perpendicular
to P̂ ; c) the bilayer of Figure 1.17a again, but with a canted, alternating
sequence of magnetizations. Note that in the structure of Figure 1.17b the
unit cell for the magnetic structure is double the length of the chemical bi-
layer thickness. In the more complicated arrangement of Figure 1.17c, the
vertical magnetization components are equal and have a periodicity equal
to that of the chemical modulation whereas the horizontal magnetizations
have a commensurate but doubled period. In the reciprocal scattering space,
the doubled spatial periodicity corresponds to peaks in the reflectivity which
occur at approximately half the interval associated with the fundamental bi-
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Ele- b p f N Nb Np Nf
ment (10−12 cm) (1022 atom· (1010 cm−2)

Re Im cm−3) Re Im

Si 0.42 0.00

3.95
+ 0.07
= 4.02 0.09 5.00 2.10 0.00 20.1

Fe 0.95 0.60

7.33
− 0.33
= 7.00 0.90 8.48 8.05 5.09 59.4

Co 0.25 0.46

7.61
− 0.69
= 6.92 1.02 9.09 2.27 4.18 62.9

Ni 1.03 0.16

7.89
− 0.83
= 7.06 0.14 9.13 9.40 1.46 64.5 1.3

Cu 0.77 0.00

8.17
− 0.57
= 7.60 0.17 8.49 6.45 0.00 64.5 1.4

Ge 0.82 0.00

9.02
− 0.33
= 8.69 0.25 4.41 3.62 0.00 38.3 1.1

Table 1.4: Selected neutron and x-ray scattering lengths (from Refs. [9]
and [54]) and densities for Q = 0 and for a wavelength of 1.54 Å. The
imaginary parts of the nuclear scattering lengths for neutrons are omitted
because of their relatively small values.
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Figure 1.17: Polarized neutron reflectivity curves (nsf and sf) for several
idealized sld profiles of magnetic thin film structures that are described
further in the text. The profile in panel c) has the same chemical modulation
as those in panels a) and b) but its sld profile shows only the magnetization
directions in successive layers. In all three cases, there are ten chemical
bilayer repeats and the fronting and backing media are taken to be vacuum
for simplicity. Because each bilayer is made up of two different layers of
equal thickness, the even order multiples of the fundamental multilayer Bragg
reflection maximum (at Q ≃ 2π/D) are suppressed.
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layer period (the slight deviation is due to the dynamical effect of refraction).
In these examples the bilayer thicknesses are constant and the widths of the
principle reflections associated with this period are inversely proportional to
the number of bilayer repeats: certain deviations from perfect periodicity can
result in a broadening of the widths, although sufficiently small random fluc-
tuations in bilayer thickness about a perfect periodic spacing primarily cause
a decrease in peak height (static Debye-Waller effect). Further examples of
pnr studies of magnetic thin film systems can be found in other references
[4, 13, 31, 37]. Alternatively, the computer program provided in the appendix
can be used to generate the spin-dependent reflectivities for any possible sld

profile and experimental configuration of interest.
Finally, it should be noted that polarized x-ray reflection (pxr) can also

be a powerful probe of magnetic thin films and multilayers. pxr is similar
in a number of significant ways to pnr, but in others, complementary (e.g.,
the reflection of polarized x-rays can differentiate electron spin and orbital
contributions to the magnetic scattering). Although the magnetic scattering
is normally orders of magnitude weaker than that due to the electron charge,
under certain resonance conditions the magnetic interaction can be compa-
rable and element specific. Discussions of the magnetic scattering of x-rays
can be found in both journals and texts [45, 46, 47, 48, 49].

1.5 Experimental methods

It is well beyond the scope of this chapter to discuss all of the experimen-
tal techniques pertaining to pnr, especially since a significant fraction of
the methods apply to reflectometry in general. Furthermore, those aspects
particular to the use of polarized neutron beams are common to other in-
struments, such as triple-axis and spin-echo inelastic scattering spectrometers
(see, for example, the text by Williams [20]). Nonetheless, some discussion
is in order.

In a significant fraction of pnr applications, a beam can be treated as a
superposition of independent, noninteracting neutrons, each of which is de-
scribed by a wavepacket. The wavepacket of each neutron, in turn, describes
the uncertainty in that neutron’s momentum and corresponding longitudinal
and lateral coherence lengths (through the quantum mechanical uncertainty
principle). The shape and size of the wavepacket is determined by how the
neutron is prepared, i.e., from where it originated and with what optical
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elements, such as apertures and monochromating crystals, it interacted on
its flight to the sample film. If the source and all of the interactions with a
given set of optical elements are the same for every neutron, then the beam
will consist of an ensemble of identical neutron “systems.” In a rigorous
treatment, the two-component plane wavefunction used in the equations of
motion derived above must then be replaced with a wavepacket, e.g., made up
of a Gaussian or other distribution of plane wave components. However, the
neutron wavepackets in the beam may not all be identical because of inter-
actions with discontinuous, extended elements, such as sources, moderators
or a monochromating crystal with a “mosaic” distribution of microcrystallite
blocks, which result in a distribution of different wavepacket sizes, shapes and
nominal wavevector values. In this more complicated circumstance, in addi-
tion to accounting for the effects of each individual wave packet, the different
neutron reflectivities (i.e., |r|2 values) arising from the incoherent distribu-
tion of nonidentical wave packets must be averaged over. Nonetheless, in
practice, the approximation typically made is to assume an expression for
the reflectivity derived for the simple two-component plane wavefunction, as
we have done above, and then average the calculated reflectivity over a dis-
tribution of wavevectors determined by an instrumental resolution function
for an incoherent beam. Ordinarily, for a continuous source, the instrumental
resolution function is primarily defined by a mosaic crystal monochromator in
conjunction with a pair of horizontal and vertical apertures, the latter which
limit the angular divergences of the beam. The widths of the distribution
of neutron wavevector components are then straightforwardly calculated. In
the case of pulsed sources using time-of-flight techniques, the instrumental
resolution function depends on the angular divergences, pulse shape and fre-
quency, as well as the distances from sample to detector. Discussions of
coherence length and instrumental resolution can be found, for example, in
References [50, 51, 52].

Similarly, consideration must be given, in practice, to the polarization of
a beam of neutrons as opposed to the polarization of a single neutron. Sup-
pose that the beam is a statistical ensemble or collection of N neutrons which
have been prepared in exactly the same way (i.e., such that each neutron is
described by a pair of plane waves with an identical pair of corresponding
wavevectors k± and has the same probability of being found in either the
spin + or spin − basis state). Each individual neutron, then, is represented
by its own spinor wave function and density matrix operator ρj as defined
by Equation 1.45. Now we can construct an ensemble wave function, which
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has coefficients CE+ and CE−, analogous to the single neutron quantities
in Equations 1.32 and 1.42, representing the entire homogeneous collection
of identical neutrons in the beam. Thus, for example, a beam or ensemble
having a polarization of PEx = 1 (with CE+ = 1/

√
2 and CE− = 1/

√
2) repre-

sents a collection of neutrons in which each individual neutron has the same
corresponding values of C+ and C− as the ensemble, where the probability
of finding any one of the neutrons of the ensemble in the + spin state is 1/2
and in the − spin state 1/2 as well. Note that this particular example does
not imply a beam of neutrons in which one half are definitely in the + spin
state and the other half in the − state. The latter case would correspond to
an incoherent superposition of two distinct ensembles or component beams,
each with one half the total number of particles, where one component beam
is in a pure spin + state (CE+ = 1 with every one of its member neutrons
having C+ = 1) and the other in a pure spin − state (CE−

= 1).
In general then, we need an ensemble of neutrons made up of identical

replicas of one another to determine, statistically, the values C+ and C− for
an individual member, as was also discussed earlier in Section 1.3.5; we can-
not determine the three-dimensional polarization vector of a single, isolated
neutron (see again, for example, Reference [5]). If, on the other hand, a
neutron beam does not consist of a collection of identical members with the
same corresponding values of C+ and C−, then the probabilistic determina-
tion of a physical quantity, such as the polarization, yields a value which
represents the average over the entire inhomogeneous ensemble. In either
case, the ensemble or beam polarization vector P⃗E is given by

P⃗E = P̂ =
1

N

N
∑

j=1

P̂j =
1

N

N
∑

j=1

⟨σ̌⟩j (1.127)

where N is the number of particles in the collection. Note that P⃗E is in
general not a unit vector as P̂ is for a single particle.

Figure 1.18 shows a typical polarized neutron reflectometer configuration.
For the relatively narrow angular beam divergences in the scattering plane,
defined by k⃗i and k⃗f , that are common in pnr, multilayer polarizers are well
matched. Alternating layers of a saturated ferromagnetic layer and a non-
magnetic spacer, such as Fe and Si, respectively, can yield relatively high
polarizations (∼ 95% or better) and reflectivities (∼ 95%) of one spin state
over the required angular range of beam divergence if a graded sequence of
bilayer thicknesses is deposited to form a so-called “supermirror” (see, for
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Figure 1.18: Schematic and photograph of the polarized neutron reflectome-
ter on the ng-1 guide tube at the nist Center for Neutron Research.
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Figure 1.19: An alternate parameterization for the three-dimensional neutron
polarization vector P̂ optimized for zero magnetization out of the sample
plane.

example, Reference [53, 21]. Spin turning devices or “flippers” constructed
of flat solenoidal coils are also efficient (∼ 99%). Nonetheless, accurate quan-
titative methods which correct for imperfect polarizers and spin turn devices
must often be applied in practice (see, for example, References [20] and [37]).

1.6 An Illustrative Application of PNR

An excellent example of the application of the theoretical formalism and
experimental methodology of pnr which we have presented here is illustrated
in the reflection from magnetic twists where the interpretation of the raw data
is not necessarily obvious. But before we delve into the details of that system,
it would be good to summarize our results thus far, and recast them into a
slightly different form which will be more suitable to noncollinear magnetic
structures.

1.6.1 Symmetries of Reflectance Matrices

Recall that the description of a homogeneous slab can be characterized by
the four-dimensional linear equation given by Equation 1.109, the solution
of which yields reflection amplitudes for nsf and sf processes. A magnetic
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helix consists of a layered system where each layer is uniformly magnetized in
the xy plane. As layers are stacked along z, the moment in successive layers
is rotated about z relative to the magnetization in the layer below. For
such a system it will be convenient for us to rotate our spherical coordinate
system so that the polar axis is along the quantization axis z, as shown
in Figure 1.19. In this figure we have adopted a convention different from
Figure 1.14 for naming the polar and azimuthal angles. Now the polar angle
is labeled φM⃗ and the azimuthal angle is labeled θM⃗ . In this way a smoothly

varying direction of in-plane magnetization M⃗ can be described as a function
of only θM⃗ . From now on we will drop the M⃗ subscript when it is convenient
to do so. In this coordinate system we can write the single-layer transfer
matrix Ǎz as

2Ǎz = (1.128)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c̃1 + c̃3 e−iθ (c̃1 − c̃3)
s̃1

s1
+

s̃3

s3
e−iθ

(

s̃1

s1
−

s̃3

s3

)

eiθ (c̃1 − c̃3) c̃1 + c̃3 eiθ

(

s̃1

s1
−

s̃3

s3

)

s̃1

s1
+

s̃3

s3

s̃1s1 + s̃3s3 e−iθ (s̃1s1 − s̃3s3) c̃1 + c̃3 e−iθ (c̃1 − c̃3)
eiθ (s̃1s1 − s̃3s3) s̃1s1 + s̃3s3 eiθ (c̃1 − c̃3) c̃1 + c̃3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with c̃j = cosh(sjδz), s̃j = sinh(sjδz), s1 =
√

4π(Nb + Np) − Q2/4, s3 =
√

4π(Nb − Np) − Q2/4, and θ is the angle with respect to x of the projection

of B⃗ into the xy plane. The scattering vector Q⃗ lies along z. In this and
subsequent expressions in Section 1.6.1 we always choose the principle root
for the solution of the radical. This root is the one whose complex phase η is
one-half that of the argument of the radical. Negative real arguments have
η = π. The transfer matrix Ǎz is a 4 × 4 matrix of complex numbers. The
product transfer matrix Ǎ, which describes a layered system L1, L2, . . . , Ln, is
given by Equation 1.110 when the neutron encounters layer L1 first. However,
we recognize that, fundamentally, our system is described by 2-dimensional
spinors. Eliminating t from Equation 1.109 leads to an equation of the form

ǔϵ̌

(

r+

r−

)

= v̌ϵ̌

(

I+

I−

)

= v̌ϵ̌ψ. (1.129)

Here we allow ourselves the explicit possibility of having the quantization axis
in which we measure I+, I−, r+, and r− be different from that which we used
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to define Ǎ. The operator ϵ̌ transforms the coordinates from the laboratory
frame to the sample frame in which Ǎ, ǔ, and v̌ have been defined, as was
discussed in Section 1.4.3. Common choices for ϵ̌ are the identity matrix, and

one which describes a polarization axis ϵ̂ = Q̂ × k̂/
∣

∣

∣
Q̂ × k̂

∣

∣

∣
where k⃗ is the

incident wave-vector. This ϵ̌ has the form ϵ̌ =
√

2
[

1
−i

−i
1

]

. The inversion of

Equation 1.129 leads to the actual 2 × 2 linear operator Ř which we desire:

Ř ≡ ϵ̌−1ǔ−1v̌ϵ̌. (1.130)

The matrices u and v have elements
(

v

u

)

ij

= ±(ζiAi j − Ai+2 j) + ξ(ζiAi j+2 − Ai+2 j+2) (1.131)

where the upper sign is chosen for v and the lower sign is chosen for u.
The lingering effect of t is that we must correct for the relative index of
refraction of the fronting media to the backing media. Part of the correction
has already be assumed in the construction of Ǎz; the final correction is
supplied by ζ2

i = ξ2 + 4π(ρi,backing − ρi,fronting) where ξ = iQ/2. We allow
for polarization dependent refraction effects in the surround, choosing the
value for spin-up when i = 1 and the value for spin-down when i = 2. When
constructing Equation 1.128, we implicitly added ρi to Q2 in sj .

One surprising result is that reflection from helices with the beam incident
from one side of the film may be different from reflection with the beam inci-
dent on the other side. For the vast majority of other systems encountered,
such is not the case. Certainly, there are generic reasons to expect differ-
ences in “front” and “back” reflectivity that are not specific to noncollinear
magnetic films. For example, the scattering vector Q⃗ must be corrected for
refraction effects from the incident medium, and if the sample is backed by
a thick silicon substrate on one side and air (or vacuum) on the other, the
reflectivities will be subtly different. The main difference would be the ob-
servation of different critical edges for the front side and the back side. Or, if
one side of the sample contains a stronger neutron absorber than the other,
then a difference between front and back reflectivities will also occur. On the
other hand, noncollinear magnetic films in which the fronting and backing
media are identical and which contain no strong neutron absorbers can pro-
duce reflectivities from the front and back that are grossly different. That is,
even if the only inhomogeneity is due to variations in direction of the magne-
tization, there still can be strong differences in the reflectivity measured from
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the front side and that measured from the back side. Noncollinear magnetic
structures are special in that they may give rise to asymmetric reflectivities
that are unrelated to the aforementioned common effects.

1.6.2 Basis-Independent Representation

Let us formalize more precisely the concepts we have been discussing. We can
divide the universe of reflectivity samples into three classes: samples with no
magnetism (p = 0), samples with collinear magnetism (p ̸= 0, θ = 0, for some
suitable choice of orientation of the x axis), and samples with noncollinear
magnetism (all the rest). In this section we will concentrate on magnetic
helices. In these samples θ is a linear function of the depth z into the sam-
ple. Magnetic structures like this are expected for layered exchange-spring
magnets in certain ranges of applied magnetic fields. Exchange-spring mag-
nets are two-component systems consisting of a hard ferromagnetic material
(Fe0.45Pt0.55, for example) and a softer ferromagnetic material (Fe0.20Ni0.80

is a typical choice). Hard and soft here refer to the materials’ magnetic
anisotropy, which indicates the difficulty in changing the direction of mag-
netization in a magnetically saturated specimen. Soft ferromagnets reorient
much more easily than hard ferromagnets. These two-component systems
were proposed by Kneller and Hawig [55] to solve a long-standing problem
of permanent-magnet materials science. It is a quirk of nature that soft fer-
romagnets typically have much larger saturation magnetizations than hard
ferromagnets. As a result, quite strong ferromagnets can be made from soft
material, but they are readily demagnetized. Hard ferromagnets are much
weaker, so you need a greater volume to get the same magnetic dipole mo-
ment. Since miniature permanent magnets are integral components of de-
vices such as computer hard disks, cellular telephones, and miniature stereo
headphones, solving the problem of producing tiny, hard to demagnetize per-
manent magnets is important. In a bilayer of soft ferromagnet on top of hard
ferromagnet, strong exchange across the interface couples the magnetization.
At saturation, both layers are fully aligned. As a reverse field is applied,
the soft layer demagnetizes first while the bottom of the hard layer stays
aligned in the original direction. As a result, a smooth twist develops across
the thickness of the bilayer. These samples exhibit strong spin-flip scatter-
ing, non-spin-flip splitting, and the reflectivity from the back side is different
from the front side, especially near the critical angle, as shown in Figure 1.22.
To understand the origins of this effect in general is quite difficult. But by
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abstracting the essential features we can make progress. First, we shall again
make some slight adjustments which will reduce our 4 × 4 matrix of scalars
into a 2 × 2 matrix of spinor operators.

The construction of Equation 1.128 as a 2× 2 block matrix comprised of
2×2 blocks suggests a form for Ǎz developed by Rühm, Toperverg and Dosch
[56], called a “supermatrix.” In this formalism the 2 × 2 blocks are replaced
with one 2-dimensional spinor operator. Reversing the order of operands
under the square root in the definition of sj introduces a factor of

√
−1 which

can be absorbed into the hyperbolic trigonometric functions, changing them
into ordinary trigonometric functions. With this modification, the transfer
matrix for layer m (Equation 1.128) becomes

Ǎm =
1

2

[

Ǎ B̌
Č Ǎ

]

(1.132)

where

Ǎ =
1

2

[

c̃1 + c̃3 e−iθ (c̃1 − c̃3)
eiθ (c̃1 − c̃3) c̃1 + c̃3

]

,

B̌ =
1

2

[

s−1
1 s̃1 + s−1

3 s̃3 e−iθ
(

s−1
1 s̃1 − s−1

3 s̃3

)

eiθ
(

s−1
1 s̃1 − s−1

3 s̃3

)

s−1
1 s̃1 + s−1

3 s̃3

]

, and (1.133)

Č =
1

2

[

−(s1s̃1 + s3s̃3) −e−iθ (s1s̃1 − s3s̃3)
−eiθ (s1s̃1 − s3s̃3) −(s1s̃1 + s3s̃3)

]

.

Equation 1.132 can be rewritten as

Ǎm =

[

cos(p̌mδz) p̌−1
m sin(p̌mδz)

−p̌m sin(p̌mδz) cos(p̌mδz)

]

(1.134)

≡ Šm

where p̌m is an operator which expresses the polarization axis of the neutron
in this layer of uniformly magnetized matter oriented at an angle θ with re-
spect to the x-axis. Equation 1.109 is now a 2 × 2 matrix equation of these
operators. In writing Equation 1.132 we have halved the number of dimen-
sions, hiding them implicitly in the operator. The operator p̌m is related to
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the original Hamiltonian via the following relations:

p̌2
m = Ξ

[

cos γ i e−iθ sin γ
i e−iθ sin γ cos γ

]

,

cos γ = Υ/Ξ, sin γ = Ω/Ξ,

Ξ2 = Υ2 + Ω2, (1.135)

Υ = p2
0 − 2mVm/!

2, and

Ω = −2imµB/!
2.

In the absence of magnetization (Ω = 0), p̌2
m becomes a multiple of the

identity operator, and the reflectivity reduces to the well-known scalar result
[6].

1.6.3 Front–Back Reflectivity of Idealized Twists

As our final step in motivating the essential difference between front and
back reflectometry for non-collinear systems, we cut the system down to the
bare essentials:

1. a free-standing film (so as to remove refraction effects on the neutron
wavefunction),

2. composed of only two layers,

3. where both layers have the same thickness,

4. both layers have the same magnitude of magnetization, and

5. the top layer is oriented at angle +θ to the x-axis, the bottom at angle
−θ to x.

The sample is depicted in Figure 1.20a). Our choice of θ means that the av-

erage magnetization M⃗ lies along x. Rühm, Toperverg, and Dosch [56] make
use of the fact that the 2×2 reflectance operator Ř, given by Equation 1.130,
can be decomposed into a sum of scalar multiples of the identity operator σ̌0

and the three Pauli spin operators σ̌x, σ̌y, and σ̌z: Ř = 1
2(R0 + R⃗ · σ̌), where

R⃗ is a normal Cartesian three-vector, and σ̌ is given by Equation 1.38. They

showed that the non-spin-flip reflectivity RNSF = 1
4

∣

∣

∣
R0 + R⃗ · P̂

∣

∣

∣

2
, where P̂ is
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Figure 1.20: A simple free-standing bilayer with non-collinear magnetization.
Each layer is uniformly magnetized in the xy plane. The x component of
each layer is identical, but the y component differs in sign between the two
layers. Panel a) shows the view seen by a neutron associated with front
reflectivity and Panel b) shows the view seen by a neutron associated with
back reflectivity.
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the polarization of the incident neutron. Applying the simplifications made
above, we find that

RNSF = 1
4 |R0 + RxPx cos θ + RyPy sin θ|2 . (1.136)

R0, Rx and Ry are fractions with numerators which include multiples of
cos θ and cos(2θ) and share a common denominator consisting of multiples
of cos θ and cos(2θ), but otherwise no explicit dependence on θ. When the
magnetization is confined to the xy plane, Rz = 0.

The reflectivity of Equation 1.136 corresponds to the case in which the
neutron encounters the top layer first. When the neutron encounters the
bottom layer first, the only change we need to make is the transformation
θ → −θ, as shown in Figure 1.20b. We can examine the effect of this
change for various configurations of the polarization of the incident neu-
tron. Our discussion is facilitated if we first expand Equation 1.136 to
first order in θ: RNSF = 1

4 |R0 + RxPx + θRyPy|2. We see that if P̂ ∥ x̂,

then RNSF = 1
4 |R0 + RxPx|2 is independent of θ. This result is familiar for

collinear magnetism: when the neutron polarization is in the plane of the
film, we cannot tell whether the magnetic moments lie to the left or to the
right of P̂ . Therefore, we cannot see a difference between front and back
reflectivity. Now suppose that P̂ ∥ ŷ. Then RNSF

front = 1
4 |R0 + θRyPy|2 and

RNSF
back = 1

4 |R0 − θRyPy|2, which are different when θ ̸= 0. Recall that the use
of spin-flippers gives the experimenter the ability to measure two non-spin-flip
reflectivities. Let us associate R++ with polarization P̂ and R−− with polar-
ization −P̂ . Then R++

front = 1
4 |R0 + θRyPy|2 and R−−

front = 1
4 |R0 − θRyPy|2, but

the latter is seen to be identical to the expression R++
back = 1

4 |R0 − θRyPy|2

which we get by taking θ → −θ for R++
front → R++

back. So for P̂ ⊥ M⃗ , the
two non-spin-flip reflectivities interchange on interchanging the side of the
sample first encountered by the neutron. If P̂ is at some arbitrary angle φ
with respect to x̂, then we would expect the following table of values

4R ++ −−
front |R0 + Rx cos φ+ θRy sinφ|2 |R0 − Rx cos φ− θRy sinφ|2

back |R0 + Rx cosφ− θRy sinφ|2 |R0 − Rx cosφ+ θRy sinφ|2

which generally takes on four distinct values when θ ̸= 0. For collinear
structures, of course, θ = 0, and there is no difference between front and
back reflectivities for any one spin state.
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Let us now examine the spin-flip scattering, as derived by Rühm, Top-
erverg, and Dosch [56]. We find that RSF = 1

4(|Rx|2 + θ2|Ry|2 + |RxPx +
θRyPy|2 + Im((RxR∗

y − RyR∗
x)θPz)) for small θ. We can apply the same

sort of inspection of this result for different polarizations of the incident
neutron as we did for RNSF. When external magnetic field is applied in
the xy plane of the sample (as is typical for exchange-spring magnets),
the polarization of the neutron will also lie in the xy plane. If in addi-
tion, px = 0, RSF = 1

4(|Rx|2 + θ2|Ry|2 + |θRyPy|2); conversely, if py = 0,
RSF = 1

4(|Rx|2 + θ2|Ry|2 + |RxPx|2). In both cases, we see that RSF is an
even function of θ. Therefore, the front and back reflectivity are the same.
But, if P̂ is at some arbitrary angle φ with respect to x̂, then we find the
term |RxPx + θRyPy|2 introduces a difference between RSF

front and RSF
back when

θ → −θ.
Some noncollinear magnetic configurations exist in the absence of an ap-

plied magnetic field. In this case we might be free to place the polarization
axis along z. We know from Equation 1.136 that when Px = Py = 0, RNSF

gives information from only R0, independent of Pz, so the non-spin-flip re-
flectivity is independent of incident spin state and which side the neutrons
encounter first. Now the spin-flip reflectivity RSF = 1

4(|Rx|2 + θ2|Ry|2 +
Im((RxR∗

y−RyR∗
x)θPz)) has a contribution which changes sign when θ → −θ.

Rather than changing the sign of θ, we could merely change the sign of the po-
larization Pz, which is exactly what the spin flipper does. When there is non-
collinear magnetism, and the polarization is along z, R+−

front ̸= R−+
front = R+−

back.
Historically, checking the difference between R+−

front and R−+
front has been the

way to detect magnetic twists, as discussed in Section 1.4.4. The elegance of
the front/back technique is that it allows us this same determination when
Pz = 0. Unfortunately, the technique cannot tell us the chirality of the twist,
but it does detect its presence. That is, we can measure |dθ/dz|, but not its
sign.

Let’s now consider a three-layer film, pictured in Figure 1.21. Again,
we impose similar restrictions on the parameters of the film that we did for
the bilayer, except for the following. Let the topmost and bottommost layers
have their magnetization lie at angle −θ to x, while the middle layer has twice

the thickness and its moments lie at angle θ to x. The net magnetization M⃗
still lies along x. By construction, there is no net chirality so that the front
and back reflectivities are identical.
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Figure 1.21: The bilayer of Figure 1.20 has had an additional copy of the
hatched layer applied to the other side of the unhatched layer. Now the sam-
ple contains a magnetic mirror plane parallel to the xy plane and located at
the center of the unhatched layer. Neutrons see the same potential regardless
of whether they encounter the back or front first.

79



Figure 1.22: Reflectivity and fits from an FePt–FeNi exchange-spring magnet
at 16 mT. The front (back) reflectivity is shown on the right (left) with
Q increasing towards the right (left). The non-spin-flip (nsf) reflectivities
are plotted against the left axis. The spin-flip (sf) reflectivities are plotted
against the right axis, which is shifted by 2 orders of magnitude. The insets
show the scattering geometry appropriate for that reflecting off that side of
the sample.
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Figure 1.23: The magnetic structure from the fits shown in Figure 1.22. The
original saturating field was applied along −y. The white line shows the
interface between the FePt and the NiFe.

1.6.4 PNR of Actual Systems

Now we are prepared to put these principles to use on real materials. The
first system we shall examine is a permalloy (Ni80Fe20) film on an Fe55Pt45
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film. This bilayer is buffered on each side with Pt, and the substrate is glass.
Further details can be found in Reference [57]. Permalloy is a soft ferromag-
net, while fct (face-centered tetragonal) FePt is a hard ferromagnet. At
the thicknesses deposited (50.0 nm permalloy, 20.0 nm FePt), the two lay-
ers couple strongly into an exchange-spring magnet. To align the layers, a
magnetic field of 900 mT is applied along −y. The interesting effects emerge
when the sign of the field is changed and very small fields are applied along
+y. The presence of the magnetic field selects a polarization P̂ = ŷ. The
four spin-dependent reflectivities from both the front and the back surfaces
measured at 16 mT are plotted in Figure 1.22. Reflectivity from the front
surface is plotted on the right side with Q increasing towards the right, and
the reflectivity from the back surface is plotted on the left side with Q in-
creasing towards the left. To clarify the differences between spin-flip (sf) and
non-spin-flip (nsf) reflectivities, the sf reflectivities have been shifted down
relative to the nsf reflectivities. The axis for the nsf reflectivity is at the left
edge of the figure and the axis for the sf reflectivity is at the right edge of
the figure. Figure 1.23 shows a plan-view of the vector magnetization at this
field, where the vector from FePt to NiFe comes out of the figure. The vector
magnetization was determined by fitting all the reflectivities in Figure 1.22
simultaneously. The magnetization at the bottom of the hard FePt is still
close to −y while that of the top of the soft NiFe has twisted towards +y.

Exploring the parameter space of the vector magnetization as a function
of the opening angle θ leads us to some qualitative conclusions without ac-
tually fitting the data. For example, note the splitting between the two nsf

reflectivities in Figure 1.22. The splitting is quite pronounced in the back
reflectivity and almost non-existent in the front reflectivity. For this sys-
tem, the large difference between these two splittings is the signature of the
non-collinear magnetism. The fact that the splitting is bigger at the back
coincides with the fact that the net magnetization lies closer to −y than
to +y, i.e., the exchange spring is just beginning to wind up. Looking for-
ward to Figure 1.24 (which shows the reflectivity measured at 26 mT), we
see the splitting is more pronounced on the front, which indicates the net
magnetization is now closer to +y than to −y.

Returning to Figure 1.22, note that the amplitude of the Kiessig fringes
in the sf reflectivities is also different. Those for the back reflectivity are
damped relative to the front. Although the counting statistics for the back
reflectivity are reduced because of attenuation from the glass substrate (a
single-crystalline Si or Al2O3 substrate would have been preferable), the in-
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Figure 1.24: Reflectivity and fits for the exchange-spring after increasing the
field in Figure 1.22 to 26 mT. Note the splitting in the nsf reflectivity near
the critical angle has moved from the back side in Figure 1.22 to the front
side here.

Figure 1.25: The reflectivity and fits from an Co ferrite film on a CoFe film
at 47 mT. There are only subtle differences in the non-spin-flip reflectivity,
but a strong asymmetry exists for the front–back spin-flip reflectivity.

creased relative background is not enough to account for the damping. The
back sf reflectivity is damped because the moments at the back of the sam-
ple are more aligned with −y, while those at the front are more aligned with
+x, and thereby contribute more features to the spin-flip scattering. In Fig-
ure 1.24 the back sf reflectivity is still damped relative to the front—the
FePt spins are still more closely pinned to −y and the NiFe spins are aligned
closer to +x. (This can be demonstrated by simple model calculations.)

As the magnetic anisotropy of the hard layer is increased, we expect that
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Figure 1.26: The magnetic structure from the fits shown in Figure 1.25.

the twist will be found more predominantly in the soft layer. A system such
as Ta(10.0 nm) on CoFe10(6.0 nm) on CoFe2O4(37.5 nm) on Si is an exam-
ple of a soft ferromagnet (CoFe10) coupled to a ferrimagnet (CoFe2O4). A
ferrimagnet still exhibits a net magnetic moment, but at the atomic level
neighboring magnetic sites have alternating direction of magnetic moment,
just like antiferromagnets. The anisotropy of a ferrimagnet is thus typically
greater than for hard ferromagnets. More details of this system can be found
in Reference [58]. Figure 1.25 shows the reflectivity measured at 47 mT after
saturating at −900 mT. Here note that the nsf reflectivities look very sym-
metrical, but there is a peak in RSF

front which is missing in RSF
back. The fitted

structure is shown in Figure 1.26, where the soft ferromagnet occupies the
depth from 10 nm to 16 nm. Here the two layers are canted with respect
to each other, so there is no mirror plane. The sf reflectivities show the
expected asymmetry, but why are the nsf reflectivities so symmetric? The
most likely answer is that the interplay between the nuclear potential (which
is not independent of depth in these real-world samples) and the magnetic
potential complicates our earlier findings for free-standing films of homoge-
neous nuclear character. The symmetry of the measured reflectivity is indeed
that predicted by the program of the appendix. In the FePt–FeNi system,
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Figure 1.27: Reflectivity and fits from an FeMn–Co exchange-biased film
at 23 mT. Despite the difference in the front–back spin-flip-reflectivity, the
fitted magnetic structure is collinear. The interplay between chemical and
magnetic potentials is the most likely cause for the asymmetry.

the nuclear potential Nb was always greater than the magnetic potential Np.
When the saturated magnetic sld Npsat > Nb, then Nb±Np can approach
and cross zero as the direction of magnetization in a layer changes. This
necessarily complicates the systematic dependence of reflectivity with field.

A final example is provided by replacing the ferrimagnet with an anti-
ferromagnet. An example of such a system is Co on FeMn [59]. When the
soft Co couples to the antiferromagnetic FeMn, exchange biasing occurs. Ex-
change biasing, which occurs only when the antiferromagnet is cooled below
its ordering temperature in the presence of a magnetic field, leads to hys-
teresis loops which are no longer symmetric about the origin and may lead
to different magnetic reversal processes when going from large positive fields
to large negative fields and back again [60]. The anisotropy of the antifer-
romagnetic FeMn, once ordered, is so large that we would not expect any
significant change in the local magnetization in the antiferromagnet while
an external field is applied. Because the net magnetization of the antiferro-
magnet is zero, we will observe negligible magnetic scattering in reflectivity
experiments at sufficiently small angles. However, we can detect how the
soft Co demagnetizes. In particular, we are interested in knowing if a twist
develops in the Co due to the pinning of Co magnetization at the Co–FeMn
interface.

Figure 1.27 shows the reflectivity of a Co film 12 nm thick deposited on
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8 nm of FeMn. The FeMn is deposited on Cu, and this trilayer systems is
buffered on either side with Nb. The reflectivity was measured at 22.7 mT
after cooling the system in a field of −242 mT [61]. Again the nsf reflectiv-
ities are not dramatically different, and although the splitting on the front
side is slightly greater than that from the back side, this might be due to the
Si substrate at one side vs. air at the other. There is again a peak in the
front sf reflectivities, and smooth decay in the back sf reflectivities, much as
in Figure 1.24. However, here it is found that a uniformly canted Co layer,
with no twist, is the best fit to the reflectivity [61]. Again, the interplay of
the nuclear potential and magnetic potential of this real system complicates
the simplified models presented earlier.

What lessons should be learned from these three examples? Chiefly, that
although trivial model structures with a high degree of symmetry produce
features in the reflectivity characteristic of twists, canted layers, and other
structures, real-world materials can complicate the issue. Before measuring
the reflectivity, one ought first to simulate the possible reflectivity under
various conditions (including: side of neutron incidence, polarization orien-
tation, fronting media, backing media and magnetic field) using programs
similar to that found in the appendix. After exploring the parameter space
for a particular sample, key features shall often appear near certain values of
Q and in certain reflectivities. Furthermore, the scattering from one side of
the sample may be particularly sensitive to a magnetic configuration, while
the other side may be rather insensitive. Armed with this knowledge, exper-
iments targeted to the material at hand can be successfully crafted.

Appendix

This appendix contains the FORTRAN77 source code for a program which
will calculate the reflection and transmission amplitudes of neutron scattering
from a series of slabs of constant sld. A copy of the code is also available in
the World Wide Web in links from http://www.ncnr.nist.gov/programs/
reflect/. The National Institute of Standards and Technology supplies this
code freely to the public. Although considerable effort has been expended
to ensure the accuracy of the code, the reader assumes all risk in compiling,
using, and interpreting the results of the code.

PROGRAM GEPORE
c ****************************************************************
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c
c Program "gepore.f" (GEneral POlarized REflectivity) calculates the

5 c spin-dependent neutron reflectivities (and transmissions) for
c model potentials, or scattering length density profiles, assuming
c the specular condition.
c
c In the present version, both nuclear and magnetic, real scattering

10 c length densities can be input, whereas imaginary components of the
c nuclear potential cannot. Also, magnetic and nuclear incident, or
c "fronting", and substrate, or "backing", media can be included. A
c description of the input parameters is given below:
c

15 c
c NL = # of distict layers or "slabs" of uniform scattering
c length density (SLD)
c
c NC = # of "unit cell" repeats

20 c
c QS = first wavevector transfer at which reflectivities and
c transmissions are calculated (Angstroms -1)
c
c DQ = increment in Q (A-1)

25 c
c NQ = # of Q-values at which reflectivities and transmissions
c are calculated
c
c EPS = angle, in radians, between the laboratory guide field

30 c or quantization axis and the sample axis of
c quantization, defined to be the z-axis, which is parallel
c to Q: note that the x-axes of the laboratory and sample
c coordinate systems are taken to be coincident. The sense
c of rotation is the following: EPS is the angle FROM the

35 c sample z-axis TO the lab z-axis rotating CCW about the
c x-axis as viewed from the positive side of the x-axis.
c For the lab z-axis to be aligned with the positive y-axis
c of the sample, for example, EPS must be 3pi/2 radians.
c

40 c IP, IM = complex numbers describing the polarization state
c of the incident neutron relative to the lab-
c oratory axis of quantization: e.g., spin "+" is
c represented by IP = (1.0,0.0) and IM =
c (0.0,0.0) whereas a neutron in the pure spin

45 c "-" state is given by IP = (0.0,0.0) and IM =
c (1.0,0.0). Note that in this program, the incident,
c reflected, and transmitted amplitudes and intensities
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c are referred to the laboratory frame: a similarity
c transformation is then performed on the transfer

50 c matrix to go from the sample system, in which it was
c originally formulated, to the lab system. This is
c different from what is done in predecessors of this
c program, such as "r6dp.f", in which the amplitudes &
c intensities are rotated from lab to sample reference

55 c frame and back (with the transfer matrix correspond-
c ing to the sample scattering potential remaining
c unchanged in the sample coordinate system).
c
c ROINP = nuclear + magnetic SLD of incident medium for "+" spin

60 c
c ROINM = " - " " " " "-" "
c
c ROSUP = " + " " substrate " "+" "
c

65 c ROSUM = " - " " " " "-" "
c
c The parameters defined above are input into the program
c through the file "inpt.d".
c

70 c Another input file called "tro.d" contains information about each
c individual layer comprising the sample. Starting with the first
c layer encountered by the incident beam, the following quantities
c for the jth layer are supplied in the format as shown:
c

75 c T(J) BN(J) PN(J) THE(J) PHI(J)
c
c .
c .
c .

80 c
c where
c
c T(J) = layer thickness in A
c

85 c BN(J) = nuclear SLD in A-2 (e.g., 8.05e-06 for Fe)
c
c PN(J) = magnetic SLD in A-2 (e.g., 5.085e-06 A-2 -- for Fe --
c corresponds to a B-field of ~ 22,000. Gauss)
c

90 c THE(J) = angle in radians that the layer magnetization
c direction makes wrt the + x-axis of the sample:
c note that the sample z-axis is parallel to Q
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c so that the sample x- and y-axes lie in the plane
c of the laminar film sample. THE(J) must be defined

95 c in the interval between zero and pi.
c
c PHI(J) = angle, in radians, of the projection of the layer
c magnetization in the sample coordinate system’s
c (y,z)-plane relative to the sample y-axis. The

100 c sense of rotation is CCW FROM the y-axis TO the
c magnetization projection about the x-axis as view-
c from the positive side of the x-axis. PHI(J) can
c be defined in the interval between zero and 2pi.
c

105 c It must be noted that in the continuum reflectivity calculation
c performed by this program, Maxwell’s equations apply, specifically
c the requirement that the component of the magnetic induction, B,
c normal to a boundary surface be continuous. Neither the program
c nor the wave equation itself automatically insure that this is so:

110 c this condition must be satisfied by appropriate selection of the
c magnetic field direction in the incident and substrate media,
c defined by the angle "EPS", and by the values of PN(J), THE(J),
c and PHI(J) specified in the input.
c

115 c Be aware that earlier versions of this program, such as "r6dp.f",
c do not allow for magnetic incident or substrate media AND ALSO
c require that PHI(J) be zero or pi only so that no magnetization
c in the sample is parallel to Q or normal to the plane of the film.
c

120 c The output files contain the spin-dependent reflectivities and
c transmissions, relative to the laboratory axis of quantization --
c which is the same in the incident and substrate media -- as follows:
c
c qrp2.d -- probability that the neutron will be reflected in

125 c the plus spin state
c
c qrm2.d -- probability that the neutron will be reflected in
c the minus spin state
c

130 c qtp2.d -- probability that the neutron will be transmitted
c in the plus spin state
c
c qtm2.d -- probability that the neutron will be transmitted
c in the minus spin state

135 c
c all of the above as a function of Q in A-1.
c
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c Also output are the files:
c

140 c qrpmtpms.d -- the reflectivities and transmissions, in the
c above order, and their sums as a function of Q
c
c sum.d -- Q, sum of reflectivities and transmissions
c

145 c rpolx.d -- x-component of the polarization of the reflected
c neutron vs. Q
c
c tpolx.d -- x-component of the polarization of the transmitted
c neutron vs. Q

150 c
c rpoly.d -- y-component of the polarization of the reflected
c neutron vs. Q
c
c tpoly.d -- y-component of the polarization of the transmitted

155 c neutron vs. Q
c
c rpolz.d -- z-component of the polarization of the reflected
c neutron vs. Q
c

160 c tpolz.d -- z-component of the polarization of the transmitted
c neutron vs. Q
c
c rrem.d -- Q, Re(r"-")
c

165 c rimm.d -- Q, Im(r"-")
c
c rrep.d -- Q, Re(r"+")
c
c rimp.d -- Q, Im(r"+)

170 c
c where
c
c reflectivity = Re(r)**2 + Im(r)**2
c

175 c *********************************************************************
c

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION T(1000),BN(1000),PN(1000)
DIMENSION THE(1000),PHI(1000)

180 DIMENSION A(4,4),B(4,4),C(4,4)
DIMENSION S(4),U(4),ALP(4),BET(4),GAM(4),DEL(4)
DIMENSION CST(4,4)
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COMPLEX*16 IP,IM,CI,CR,C0,ARG1,ARG2
COMPLEX*16 ZSP,ZSM,ZIP,ZIM,YPP,YMM,YPM,YMP

185 COMPLEX*16 S,U,ALP,BET,GAM,DEL,EF,A,B,C
COMPLEX*16 RM,RP,TP,TM,RMD,RPD,X
COMPLEX*16 P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12
COMPLEX*16 ARGZSP,ARGZSM,ARGZIP,ARGZIM
COMPLEX*16 CST

190 COMPLEX*16 CC,SS,SCI
COMPLEX*16 FANGP,FANGM
PI=3.141592654
CI=(0.0,1.0)
CR=(1.0,0.0)

195 C0=(0.0,0.0)
OPEN(UNIT=10,NAME=’inpt.d’,STATUS=’OLD’,FORM=’FORMATTED’)
READ(10,*)NL,NC,QS,DQ,NQ,EPS,IP,IM,ROINP,ROINM,ROSUP,ROSUM
WRITE(*,*)NL,NC,QS,DQ,NQ,EPS,IP,IM,ROINP,ROINM,ROSUP,ROSUM
CLOSE(10)

200 OPEN(UNIT=11,NAME=’tro.d’,STATUS=’OLD’,FORM=’FORMATTED’)
READ(11,*)(T(J),BN(J),PN(J),THE(J),PHI(J),J=1,NL)
CLOSE(11)
IF(NQ.GT.1000)GO TO 900
IF(NL.GT.1000)GO TO 900

205 OPEN(UNIT=14,NAME=’qrm2.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=15,NAME=’qrp2.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=16,NAME=’qtm2.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=17,NAME=’qtp2.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=20,NAME=’qrpmtpms.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)

210 OPEN(UNIT=21,NAME=’sum.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=31,NAME=’rrem.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=32,NAME=’rimm.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=33,NAME=’rrep.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=34,NAME=’rimp.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)

215 OPEN(UNIT=41,NAME=’rpolx.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=42,NAME=’tpolx.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=43,NAME=’rpoly.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=44,NAME=’tpoly.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
OPEN(UNIT=45,NAME=’rpolz.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)

220 OPEN(UNIT=46,NAME=’tpolz.d’,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
CC=CR*COS(EPS/2.)*COS(EPS/2.)
SS=CR*SIN(EPS/2.)*SIN(EPS/2.)
SCI=CI*COS(EPS/2.)*SIN(EPS/2.)
DO 600 IQ=1,NQ

225 DO 200 I=1,4
DO 180 J=1,4
B(I,J)=(0.0,0.0)
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180 CONTINUE
200 CONTINUE

230 B(1,1)=(1.0,0.0)
B(2,2)=(1.0,0.0)
B(3,3)=(1.0,0.0)
B(4,4)=(1.0,0.0)
Q=QS+(IQ-1)*DQ

235 QP=DSQRT(Q*Q+16.*PI*ROINP)
QM=DSQRT(Q*Q+16.*PI*ROINM)
SUMT=0.0
DO 400 IC=1,NC
DO 300 L=1,NL

240 SUMT=SUMT+T(L)
ARG1=CR*(4.*PI*(BN(L)+PN(L))-QP*QP/4.)
ARG2=CR*(4.*PI*(BN(L)-PN(L))-QM*QM/4.)
S(1)=CDSQRT(ARG1)
S(3)=CDSQRT(ARG2)

245 U1NR=+1.+COS(THE(L))-SIN(THE(L))*SIN(PHI(L))
U1NI=+SIN(THE(L))*COS(PHI(L))
U1DR=+1.+COS(THE(L))+SIN(THE(L))*SIN(PHI(L))
U1DI=-SIN(THE(L))*COS(PHI(L))
U(1)=(U1NR*CR+U1NI*CI)/(U1DR*CR+U1DI*CI)

250 U3NR=-2.+U1NR
U3NI=U1NI
U3DR=-2.+U1DR
U3DI=U1DI
U(3)=(U3NR*CR+U3NI*CI)/(U3DR*CR+U3DI*CI)

255 S(2)=-S(1)
S(4)=-S(3)
U(2)=U(1)
U(4)=U(3)
ALP(1)=U(3)/(2.*U(3)-2.*U(1))

260 BET(1)=-ALP(1)/U(3)
GAM(1)=ALP(1)/S(1)
DEL(1)=-ALP(1)/(U(3)*S(1))
ALP(2)=ALP(1)
BET(2)=-ALP(1)/U(3)

265 GAM(2)=-ALP(1)/S(1)
DEL(2)=ALP(1)/(U(3)*S(1))
ALP(3)=-U(1)*ALP(1)/U(3)
BET(3)=ALP(1)/U(3)
GAM(3)=-U(1)*ALP(1)/(U(3)*S(3))

270 DEL(3)=ALP(1)/(U(3)*S(3))
ALP(4)=-U(1)*ALP(1)/U(3)
BET(4)=ALP(1)/U(3)
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GAM(4)=U(1)*ALP(1)/(U(3)*S(3))
DEL(4)=-ALP(1)/(U(3)*S(3))

275 DO 240 I=1,4
DO 220 J=1,4
C(I,J)=(0.0,0.0)
A(I,J)=(0.0,0.0)

220 CONTINUE
280 240 CONTINUE

DO 260 J=1,4
EF=CDEXP(S(J)*T(L))
A(1,1)=A(1,1)+ALP(J)*EF
A(1,2)=A(1,2)+BET(J)*EF

285 A(1,3)=A(1,3)+GAM(J)*EF
A(1,4)=A(1,4)+DEL(J)*EF
A(2,1)=A(2,1)+ALP(J)*U(J)*EF
A(2,2)=A(2,2)+BET(J)*U(J)*EF
A(2,3)=A(2,3)+GAM(J)*U(J)*EF

290 A(2,4)=A(2,4)+DEL(J)*U(J)*EF
A(3,1)=A(3,1)+ALP(J)*S(J)*EF
A(3,2)=A(3,2)+BET(J)*S(J)*EF
A(3,3)=A(3,3)+GAM(J)*S(J)*EF
A(3,4)=A(3,4)+DEL(J)*S(J)*EF

295 A(4,1)=A(4,1)+ALP(J)*U(J)*S(J)*EF
A(4,2)=A(4,2)+BET(J)*U(J)*S(J)*EF
A(4,3)=A(4,3)+GAM(J)*U(J)*S(J)*EF
A(4,4)=A(4,4)+DEL(J)*U(J)*S(J)*EF

260 CONTINUE
300 DO 290 I=1,4

DO 280 J=1,4
DO 270 K=1,4
C(I,J)=C(I,J)+A(I,K)*B(K,J)

270 CONTINUE
305 280 CONTINUE

290 CONTINUE
DO 294 I=1,4
DO 292 J=1,4
B(I,J)=C(I,J)

310 292 CONTINUE
294 CONTINUE
300 CONTINUE
400 CONTINUE

CST(1,1)=C(1,1)*CC+C(2,2)*SS+(C(2,1)-C(1,2))*SCI
315 CST(1,2)=C(1,2)*CC+C(2,1)*SS+(C(2,2)-C(1,1))*SCI

CST(2,1)=C(2,1)*CC+C(1,2)*SS+(C(1,1)-C(2,2))*SCI
CST(2,2)=C(2,2)*CC+C(1,1)*SS+(C(1,2)-C(2,1))*SCI
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CST(1,3)=C(1,3)*CC+C(2,4)*SS+(C(2,3)-C(1,4))*SCI
CST(1,4)=C(1,4)*CC+C(2,3)*SS+(C(2,4)-C(1,3))*SCI

320 CST(2,3)=C(2,3)*CC+C(1,4)*SS+(C(1,3)-C(2,4))*SCI
CST(2,4)=C(2,4)*CC+C(1,3)*SS+(C(1,4)-C(2,3))*SCI
CST(3,1)=C(3,1)*CC+C(4,2)*SS+(C(4,1)-C(3,2))*SCI
CST(3,2)=C(3,2)*CC+C(4,1)*SS+(C(4,2)-C(3,1))*SCI
CST(4,1)=C(4,1)*CC+C(3,2)*SS+(C(3,1)-C(4,2))*SCI

325 CST(4,2)=C(4,2)*CC+C(3,1)*SS+(C(3,2)-C(4,1))*SCI
CST(3,3)=C(3,3)*CC+C(4,4)*SS+(C(4,3)-C(3,4))*SCI
CST(3,4)=C(3,4)*CC+C(4,3)*SS+(C(4,4)-C(3,3))*SCI
CST(4,3)=C(4,3)*CC+C(3,4)*SS+(C(3,3)-C(4,4))*SCI
CST(4,4)=C(4,4)*CC+C(3,3)*SS+(C(3,4)-C(4,3))*SCI

330 DO 480 I=1,4
DO 470 J=1,4
C(I,J)=CST(I,J)

470 CONTINUE
480 CONTINUE

335 RMD=(0.0,0.0)
RPD=(0.0,0.0)
RM=(0.0,0.0)
RP=(0.0,0.0)
TM=(0.0,0.0)

340 TP=(0.0,0.0)
ARGZSP=CR*(QP*QP-16.*PI*ROSUP)
ZSP=(CI/2.)*CDSQRT(ARGZSP)
ARGZSM=CR*(QM*QM-16.*PI*ROSUM)
ZSM=(CI/2.)*CDSQRT(ARGZSM)

345 ARGZIP=CR*(QP*QP-16.*PI*ROINP)
ZIP=(CI/2.)*CDSQRT(ARGZIP)
ARGZIM=CR*(QM*QM-16.*PI*ROINM)
ZIM=(CI/2.)*CDSQRT(ARGZIM)
X=-1.*CR

350 YPP=ZIP*ZSP
YMM=ZIM*ZSM
YPM=ZIP*ZSM
YMP=ZIM*ZSP
P1=ZSM*C(2,1)+X*C(4,1)+YPM*C(2,3)-ZIP*C(4,3)

355 P2=ZSP*C(1,1)+X*C(3,1)-YPP*C(1,3)+ZIP*C(3,3)
P3=ZSP*C(1,1)+X*C(3,1)+YPP*C(1,3)-ZIP*C(3,3)
P4=ZSM*C(2,1)+X*C(4,1)-YPM*C(2,3)+ZIP*C(4,3)
P5=ZSM*C(2,2)+X*C(4,2)+YMM*C(2,4)-ZIM*C(4,4)
P6=ZSP*C(1,1)+X*C(3,1)-YPP*C(1,3)+ZIP*C(3,3)

360 P7=ZSP*C(1,2)+X*C(3,2)+YMP*C(1,4)-ZIM*C(3,4)
P8=ZSM*C(2,1)+X*C(4,1)-YPM*C(2,3)+ZIP*C(4,3)
P9=ZSP*C(1,2)+X*C(3,2)-YMP*C(1,4)+ZIM*C(3,4)
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P10=ZSM*C(2,1)+X*C(4,1)-YPM*C(2,3)+ZIP*C(4,3)
P11=ZSM*C(2,2)+X*C(4,2)-YMM*C(2,4)+ZIM*C(4,4)

365 P12=ZSP*C(1,1)+X*C(3,1)-YPP*C(1,3)+ZIP*C(3,3)
RM=RM+IP*P1*P2
RM=RM-IP*P3*P4
RM=RM+IM*P5*P6
RM=RM-IM*P7*P8

370 RMD=RMD+P9*P10
RMD=RMD-P11*P12
RM=RM/RMD
RP=RP+RM*P9
RP=RP+IP*P3

375 RP=RP+IM*P7
RPD=-P2
RP=RP/RPD
TP=C(1,1)*(IP+RP)+C(1,2)*(IM+RM)
TP=TP+C(1,3)*ZIP*(IP-RP)+C(1,4)*ZIM*(IM-RM)

380 TM=C(2,1)*(IP+RP)+C(2,2)*(IM+RM)
TM=TM+C(2,3)*ZIP*(IP-RP)+C(2,4)*ZIM*(IM-RM)
FANGP=ZSP*SUMT
FANGM=ZSM*SUMT
TP=TP*CDEXP(-FANGP)

385 TM=TM*CDEXP(-FANGM)
RM2=(DREAL(RM))**2+(DIMAG(RM))**2
RP2=(DREAL(RP))**2+(DIMAG(RP))**2
TP2=(DREAL(TP))**2+(DIMAG(TP))**2
TM2=(DREAL(TM))**2+(DIMAG(TM))**2

390 QV=QS+(IQ-1)*DQ
PRXUN=2.0*DREAL(RP)*DREAL(RM)
PRXUN=PRXUN+2.0*DIMAG(RP)*DIMAG(RM)
PRYUN=2.0*DREAL(RP)*DIMAG(RM)
PRYUN=PRYUN-2.0*DIMAG(RP)*DREAL(RM)

395 PTXUN=2.0*DREAL(TP)*DREAL(TM)
PTXUN=PTXUN+2.0*DIMAG(TP)*DIMAG(TM)
PTYUN=2.0*DREAL(TP)*DIMAG(TM)
PTYUN=PTYUN-2.0*DIMAG(TP)*DREAL(TM)
PRX=PRXUN/(RP2+RM2)

400 PRY=PRYUN/(RP2+RM2)
PRZ=(RP2-RM2)/(RP2+RM2)
PTX=PTXUN/(TP2+TM2)
PTY=PTYUN/(TP2+TM2)
PTZ=(TP2-TM2)/(TP2+TM2)

405 WRITE(31,*)QV,DREAL(RM)
WRITE(32,*)QV,DIMAG(RM)
WRITE(33,*)QV,DREAL(RP)
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WRITE(34,*)QV,DIMAG(RP)
SUM=RP2+RM2+TP2+TM2

410 WRITE(20,*)QV,RP2,RM2,TP2,TM2,SUM
WRITE(21,*)QV,SUM
WRITE(14,*)QV,RM2
WRITE(15,*)QV,RP2
WRITE(16,*)QV,TM2

415 WRITE(17,*)QV,TP2
WRITE(41,*)QV,PRX
WRITE(42,*)QV,PTX
WRITE(43,*)QV,PRY
WRITE(44,*)QV,PTY

420 WRITE(45,*)QV,PRZ
WRITE(46,*)QV,PTZ

600 CONTINUE
900 CONTINUE

CLOSE(14)
425 CLOSE(15)

CLOSE(16)
CLOSE(17)
CLOSE(20)
CLOSE(21)

430 CLOSE(31)
CLOSE(32)
CLOSE(33)
CLOSE(34)
CLOSE(41)

435 CLOSE(42)
CLOSE(43)
CLOSE(44)
CLOSE(45)
CLOSE(46)

440 STOP
END
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