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Topics ...

Why is IBM pursuing research in nanoscale science
and technology?

Self-assembly - the challenge to do it better 

Outlook



T.N. Theis 3/25/03 Research

Nanotechnology is...

“Research and technology development at the 
atomic, molecular or macromolecular levels, in the 
length scale of approximately 1 – 100 nm 
range…”

National Science Foundation
www.nsf.gov/home/crssprgm/nano/omb_nifty50.htm
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By the NSF definition, silicon microelectronics is 
already a nanotechnology.

$1000 buys...
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The silicon transistor has become 
a nanodevice.

Bulk SOI

130 nm

Double-gateGround plane

Ultimate double gate

10 – 15 nm ?
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An Experimental Silicon Transistor

 TSi=7nm
 Lgate=6nm

 Source Drain

  Gate

B. Doris et al., IEDM , 2002.
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Approaching the ultimate silicon nanodevice
(a double-gate Transistor or FinFET) 
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Is there a successor to silicon?

Organic 
Electronics?
Molectronics? 
Spintronics?

Quantum 
Computing?

DNA Computing?
:

i100 nm

Nanoscale
Science and 
Technology

principle 
features  
specified to: i1mm

i10 m
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Attributes of Successful Digital Logic Devices

• Output drives the input
• Signal level restoration
• Noise immunity
• Global as well as local
communications

After H.-S. P. Wong, “Novel Device Options” in Sub-100nm CMOS Short Course, IEDM, 1999
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“Revolutionizing” a large, complex, stratified  
industry is not easy.

• Sphere of successful influence: +/- one layer

Application
Architecture

System
Circuit
Device

Materials
Physics/chemistry

Adapted from M. Horowitz, in Focus Center Research Program (MARCO) MSD-C2S2 Topical Workshop, Nov. 12, 2001
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Carbon Nanotubes

STM Image
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An alternative logic switch --
A simple Carbon Nanotube Transistor
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Carbon nanotube intra-molecular logic gate 
(NOT gate, voltage inverter)
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Ti Ti Ti

Al Al

dox=15nm

TopTop--gate carbon nanotube transistorgate carbon nanotube transistor

Appl. Phys. Lett. 80, 3817 (2002)
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Comparison with siliconComparison with silicon

threshold voltagethreshold voltage --0.2V0.2V --0.5V0.5V

drive currentdrive current 2100mA/mm2100mA/mm650mA/mm650mA/mm(Vg(Vg--Vt=Vt=--1.0V)1.0V)

gate oxide thicknessgate oxide thickness 1.5nm1.5nm ~15nm~15nm

transconductancetransconductance 2300mS/mm2300mS/mm650mS/mm650mS/mm

channel lengthchannel length 50nm50nm 260nm260nm

pp--MOSFET MOSFET a)a) pp--CNFETCNFET

IIOnOn/I/IOffOff ~10~1066101066 -- 101077

subthreshold slopesubthreshold slope 70mV/dec70mV/dec 130mV/dec130mV/dec
a) R. Chau et al. Proceedings of IEDM 2001, p.621
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Carbon nanotube transistors have promise

Carrier transport is ballistic and ambipolar
All bonds are satisfied, stable, and covalent
Chemical synthesis controls a key dimension
Device is not “wed” to a particular substrate

because:

but much remains to be done:
Scalability
Contacts
Doping
Device stability (charge trapping)
High yield, selective growth of nanotubes
(control of the diameter, length, chirality, position)
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Memory 
Everyone wants non-volatile, low-power memory.
Everyone wants a dense cross-point memory.
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There is no conceptual problem with bistable hysteretic 
two-terminal devices as cross-point memory cells.
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Memory Landscape

volatile non-volatile
1Transistor 1T-DRAM Floating-gate

SONOS
SET

Multiple Transistor SRAM
1T-1C DRAM FeRAM
1T-1R MRAM

polymer RAM
molecular memory
phase-change RAM
perovskite MIM RAM

1R (Cross-point) MRAM
polymer RAM
molecular memory
perovskite MIM RAM
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Memory (continued) 
• There is no shortage of two-terminal, bistable

hysteretic memory devices and materials!

– MTJ MRAM (IBM/Infineon, Motorola, Toshiba, NEC, Sony, 
HP, Honeywell, Micromem, Motorola, NVE, Samsung, 
USTC, Toshiba)

– Chalcogenide glasses (Intel/Ovonyx, Micron 
Technology/Axon Technologies, Samsung, ST Micro) 

– Polymeric resistive memory (Intel/Opticom, AMD/Coatue)
– Molecular memories (Hewlett Packard, Molecular 

Electronics Corp., Zettacore, Nantero, …)

• But ...
– All memories require logic devices for read/write. 

Candidate memory cells must be integrated with logic. 
– Replacing a transistor-based memory cell with a cross-

point cell will typically reduce performance. 
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Millipede: A nanomechanical approach 
to storing information
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The Quantum Mirage: 
Single Channel Information Transport

Topograph

dI/dV difference
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Multi Channel Information Transport

Topograph

dI/dV difference



T.N. Theis 3/25/03 Research

But how can we position atoms cheaply?

Persuade  them to 
assemble themselves!
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Nature's 
Self-Assembly

http://www.its.caltech.edu/~atomic/snowcrystals/photos/WWick/wwick.htm
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Self-assembled Magnetic Nanocrystals

S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science, 287, 1989 2000

15 nm

8.5nm grains σarea ≅ 0.5 4 nm FePt NPs σarea ≅ 0.05

35 Gbit/in2 media FePt Nanoparticle Arrays
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AB13 binary Nanocrystal Superlattice of PbSe and Fe2O3

Multi-Component Nanocrystal Superlattices
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T. J. Watson Research Center

40 nm40 nm

(100) View (110) View

20 nm
500 nm

Straight PbSe Nanowires

Semiconductor Nanowires

Branched PbSe Nanowires 
with High Surface Area
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200 nm

Self-assembly: SiGe Quantum Dots 
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Precise Placement of Quantum Dots
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Self Assembly: 
A One-Monlayer-Thick Pentacene “Snowflake”

50 m
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Thin Film Transistors on Transparent Plastic:

µ = 0.2 to 0.4 cm2 V-1s-1, operating voltage 0 to 4 V.
All fabrication processes done at room temperature.
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Patterning Silicon with Block Co-polymers
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Pourous Dielectrics for On-Chip Wiring
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How much digital information 
will specify the structure?

IBM eServer p690

20 m

200 nm

20 m

A living thing 
(Paramecium)

Drawing from: “To Know Ourselves,” US Dept. of Energy and The Human Genome Project 1996.
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How much digital information is needed to 
BUILD the structure?

• Microprocessor – Gigabytes

• Living Thing – Megabytes!
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Nanotechnology ...

The ability to design and control the structure 
of an object on all length scales, from the 
atomic to the macroscopic.
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Nanotechnology: We’re just getting started.

$1000 buys...
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